

CSEE&T2

Unreined Students or Not: Modes of Freedom in a Project-Based Software Engineering Course

Øystein Nytrø, <u>Anh Nguyen Duc</u>*, Hallvard Trætteberg, Madeleine Lorås, Babak Amin Farschian

* University of South Eastern Norway Norwegian University of Science and Technology

Overview

- Introduction
- Research questions
- Research methodology
- Course settings
- Results
- Recommendations

Introduction

- Educating software engineering (SE) students is challenging:
 - Balance of ensuring practical competence while still providing futureproof research-based knowledge
 - Balance of lucid research-based lectures and running a smooth and large-scale lab operations
- Project-based courses motivate students to collaborate, explore, take responsibility and learn for themselves
 - Educators need the right levels of constraints, theory, tools, and infrastructure for the course

Course setting

- Large class size
- Progressive enhancement of curriculum
- Project-based course
- Trained, but lower-grade TA staff

Research Questions

• RQ1: What dimensions of students' choices are possible to accommodate in a large, project-based SE course?

• RQ2: What are the strengths/weaknesses associated with such freedom?

Overview of courses' schedule

	Week no.	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W15	W16	W17
ESIAI	Lectures	Process- SEMAT, MobileD	Process - Metric	Architec ture	Require ment	Software quality	Testing	Project manage ment	SEMAT (2)	Secure SE						
	Process				Sprint 0	Sprint 1		Sprint 2		Sprint 3		Sprint 4			Sprint 5	
	Deliverables			Project plan Backlog Poster			Sprint 1 demo		Sprint 2 demo		Sprint 3 Demo		Team practice card	Final delivery Video Report		
	Assessment				100%											
NSLB	Lectures	Intro, Tech	Scrum, Cl, Req, GitLab	VC, Testing, Framew.	Agile meth., Testing	Safety, Quality, Cl	Cardiolo gy, SO, servers	Enterpri se arch., UML	Archi., Gamific., Security							
	Process			Sprint 1	Sprint 1				Sprint 2			Sprint 3				
	Deliverables			GitLab config	Project plan	MC Test					Demo 1				Demo 2	MC Test
	Assessment			10%	10%	10%	10%			10%	10%			10%	20%	10%

Every Student is an Innovator

Dimensions	Fixed	Flexible
Project	Project theme	Project idea
setting	Report template	Product backlogs
	Overall	Detailed
	architecture	architecture
Process	Number of Sprints	Process metrics
	Duration of Sprints	Adopted
	Delivery of each	practices
	Sprint	Team
	Weekly	communication
	supervision	and meeting
	meeting	Quality
		assurance
Technology	Version Control	Programming
	System	language
		(frontend,
		backend)
		Servers,
		Database
Supervision	Weekly meeting	N/A
	Delivery	
Assessment	Video-presentation	N/A
	and report eval. at	
	end of course	

No Student Left Behind

- Fixed project problem
- Template code in GitLab
- Assigned group TA's, frequent deliverables
- Continuous assessment under senior supervision

Dimensions	Fixed	Flexible
Project	Overall architecture	Domain,
setting	and server	application, user
	functionality	functions
Process	Scrum with sprints	Roles,
		organization
Technology	GitLab support,	Students could
	setup and working	decide on prog.
	code templates,	language, version
	example service	control, service
	stack setup.	stack etc. Most
		would follow
		provided examples
		and templates.
Supervision	Given according to	Ample resources
	defined	and agile and
	deliverables,	eager staff. Full
	process and content	flexibility in use of
	requirement. TA's	staff with time,
	trained in templates	location and
	and examples.	medium.
Assessment	Continuous,	Senior staff would
	structured,	receive complaints
	assessment of	about unfair
	various types of	deliverable
	deliverables.	evaluation, and
	Individual multiple	could intervene if
	choice tests.	valid complaint.

Answering RQ1 – Possible dimensions to accommodate

- all of the dimensions (1) project setting, (2) process, (3) technology, (4) supervision, and (5) assessment allow and need a certain level of flexibility to cope with the variety of projects, students' experience and TA's experience
- freedom of choice is both inspiring and challenging but must be balanced with precise control in order to reach learning objectives and maintain fairness.

Answering RQ2 – strengths/ weaknesses associated with such freedom

	Strength	Weakness
No Student	Thorough and	Too many details
Left	predictable coverage.	that may be
Behind	High, average level	relevant to
	of competence.	everybody.
	Effective TA	Hard work and
	involvement.	less fun, negative
		appreciation of
		innovation.
Every	Fun and motivating.	Uncertain
Student Is	Lifelike and realistic	individual
An	learning. Exposure	learning
Innovator	to innovative	outcomes.
	thinking in teams.	Hard to control
		resource use.
		Little cross-team
		communication.
		Ineffective TA's.
		Overwhelming.

Recommendations

- Freedom of technology and method choices reduce the value and validity of TA aid and assessment.
- Freedom of problem selection increases involvement, and time spent.
- Freedom of team arrangement increases team competitiveness and potential student lockout or team failure.
- Freedom (lack) of precise deliverable content and form makes assessment non-transparent and subjective.