Keeping software engineering students in touch with not only *what* they are to learn, but with *why*
Origins...
Origins

GRADUATE APPRENTICESHIPS
BSc (Hons) Software Engineering

Work in partnership with a world leading university to upskill your existing team or recruit new talent through our fully funded Graduate Apprenticeship (GA) Degree in Software Engineering.

Key features:
- Employers recruit apprentices directly
- Apprentices achieve a BSc in Software Engineering in 4 years
- Programme structure: 20% study, 80% work-based learning

How to learn a new language
Professional software engineering
Testing fundamentals
Web application systems
Origins

GRADUATE APPRENTICESHIPS
BSc (Hons) Software Engineering

Work in partnership with a world leading university to upskill your existing team or recruit new talent through our fully funded Graduate Apprenticeship (GA) Degree in Software Engineering.

Key features:
- Employers recruit apprentices directly
- Apprentices achieve a BSc in Software Engineering in 4 years
- Programme structure: 20% study, 80% work-based learning

Practical Algorithms

- How to learn a new language
- Professional software engineering
- Testing fundamentals
- Web application systems
GRADUATE APPRENTICESHIPS
BSc (Hons) Software Engineering

Work in partnership with a world leading university to upskill your existing team or recruit new talent through our fully funded Graduate Apprenticeship (GA) Degree in Software Engineering.

Key features:

- Employers recruit apprentices directly
- Apprentices achieve a BSc in Software Engineering in 4 years
- Programme structure: 20% study, 80% work-based learning

Origins

Practical Algorithms

How to learn a new language
Professional software engineering
Testing fundamentals
Web application systems

Algorithms and Data Structures

A1 Introduction to Data Structures and Algorithms
A2 Algorithmic Analysis techniques
A3 Recursion
A4 Sorting Algorithms
A5 Linked Lists
A6 Abstract Data Types (ADTs)
A7 Trees
A8 Hash Tables
A9 Advanced Topics in Algorithmic Design

Discrete Mathematics

B1 Introduction to Discrete Maths / Algorithmic Foundations
B2 Propositional Logic
B3 Predicated and Quantifiers
B4 Sets, Functions, Countability
B5 Sequences, Summations, Integers
B6 Methods of Proof / Rules of Inference
B7 Induction and Recursive Definitions
B8 Counting
B9 Probability
B10 Graphs
B11 Relations
Origins
What is the narrative here?

How do these topics connect to each other?

Why is this useful for my students?

If I have these questions, most likely my students will too.
Outline:
Keeping software engineering students in touch with not only what they are to learn, but with why

- Why is why important (meta-whyness)
- Identifying the challenges
- Towards addressing the challenges: using concept maps
The importance of why

“Meta-whyness”
The goal: student engagement

Why do students disengage?
Disengagement dynamics: Student Motivation

• Encouraging self-motivation: Focus on concepts rather than facts:
 • Leads to: “Self-directed construction of knowledge structures for deep and sustainable learning”¹.

• Some students may perceive theory as not relevant to their profession (although employers value it)².

• Temporal aspect
 • The answer to “why am I learning this” may come many years later

• Last but not the least: Students may not all share the same motivations.
 • Student may not share the “why”
Disengagement dynamics: Structure

- Having little sense of where to begin
 - or how to proceed through the steps
Outline:
Keeping software engineering students in touch with not only what they are to learn, but with why

Why is why important (meta-whyness)

Identifying the challenges

Towards addressing the challenges: using concept maps
Identifying the Challenges

How do we provide a meaningful and motivated learning experience for students in a Work-Based Learning (WBL) degree programme.
Student vs Teacher Perspective
Teacher Perspective:
Why teach something

• **Work-based learning vs Higher education**
 • Students’ and employers’ expectation:
 • complement workplace
 • address workplace requirements
 • Higher education perspective
 • *broad-based* education, *foundational concepts*
 • academic *rigour* and (considerable) *theory*
Teacher Perspective:
Why teach something

• Work-based learning vs Higher education
 • Students’ and employers’ expectation:
 • complement workplace
 • address workplace requirements
 • Higher education perspective
 • broad-based education, foundational concepts
 • academic rigour and (considerable) theory

• Applied skills vs Universal truths
 • Applied skills: Extrinsically motivated, short to medium term focus, focus on skills.
 • Universal truths: Intrinsically motivated focus on axioms, theories, laws, concepts etc (long shelf life)
Student Perspective: Why learn something

• The *temporal* aspect
 • WBL students may (to some extent, should) prioritize immediate relevance of learning
 • However, some knowledge may become relevant a lot later.

• Personal view points
 • There is a “normal” variation of prior knowledge and motivations in students in the general case
 • For WBL students working as apprentices, the workplace adds another dimension to the variation
Outline:
Keeping software engineering students in touch with not only *what* they are to learn, but with *why*

- Why is *why* important (*meta-whyness*)
- Identifying the challenges
- Towards addressing the challenges: using *concept maps*
Using Concept Maps

Discrete Mathematics

- Number Theory
- Set Theory
- Propositional logic
- Combinatorics
- Relations are a type of
- Linear Recurrence Relations
- Probability
- Functions
- Predicate logic & Quantifiers
- Rules of Inference / Methods of proof
- Mathematical Induction
- Recursion & Recursive definitions

Algorithms

- Algorithm Analysis Techniques
- Sorting algorithms
- Balanced Trees

Data Structures

- Queues, Stacks
- Linked lists
- Maps and Hash tables
- Lists and iterators

Formal Methods

- Cyber Security
- Computer Networks
- Databases
- Machine Learning & AI

- Algebraic Data Types

- use

- use

- use

- are a type of

- are used in

- are used in

- are used in

- are used in

- are used in
The course: “Practical Algorithms”

Practical Algorithms: Course Outline

Algorithms and Data Structures
- **A1** Introduction to Data Structures and Algorithms
- **A2** Algorithmic Analysis techniques
- **A3** Recursion
- **A4** Sorting Algorithms
- **A5** Linked Lists
- **A6** Abstract Data Types (ADTs)
- **A7** Trees
- **A8** Hash Tables
- **A9** Advanced Topics in Algorithmic Design

Discrete Mathematics
- **B1** Introduction to Discrete Maths / Algorithmic Foundations
- **B2** Propositional Logic
- **B3** Predicated and Quantifiers
- **B4** Sets, Functions, Countability
- **B5** Sequences, Summations, Integers
- **B6** Methods of Proof / Rules of Inference
- **B7** Induction and Recursive Definitions
- **B8** Counting
- **B9** Probability
- **B10** Graphs
- **B11** Relations
One proposal: Use concept maps

- A graphical tool that is useful in illustrating the relationships between concepts

- Developed by Novak in the 1970s as an aid to understanding and following changes in children’s understanding of science

- Based on the cognitive development theory of subsumption
 - learning takes place by assimilation of new concepts into an existing framework and concepts
The “Practical Algorithms” Concept Map
Utility: Teacher

• A personal, internal model of concepts and their interconnectedness

• Develop an over-arching narrative for the course

• Connections between *universal truths* and *applied skills*

• Identify a suitable order of delivery of topics
Utility: Student

• Appreciate the temporal aspect of knowledge acquisition

• Connections between course concepts and workplace roles

• Track and evaluate their own understanding as the course progresses

• Deeper, more meaningful learning *(retain and utilize)*
The Solution?

• Not quite...

• We have framed the problem, and highlighted the challenges.

• We now suggest one approach – the use of concept maps - that we have used against this backdrop.
 • Can be useful in addressing different viewpoints and motivations

• There can (should) be others that can complement this tool.

• We have not yet carried out a quantitative or qualitative analysis of our approach.
A proposal to address the challenge of motivating students learning theoretical concepts in a work-based learning setting.

- Why is *why* important (*meta-whyness*)
- Identifying the challenges
- Towards addressing the challenges: using *concept maps*