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Many goalkeeper trainees cannot afford a personal human coach. Hence, they could benefit from a virtual coach that provides
personalized feedback about the execution of their training exercises. As a first step towards this goal, we developed an algorithm to
detect and classify goalkeeper training exercises using a wearable inertial sensor attached to a goalkeeper glove. We collected data
from 14 goalkeeper trainees while performing a series of training exercises (e.g., dives, catches, throws). Our approach first detects the
exercises using an event detection algorithm based on a high-pass filter, a peak detector, and Dynamic Time Warping to detect and
eliminate irrelevant motion instances. Then, it extracts a set of statistical and heuristic features to describe the different exercises and
train a machine learning classifier. Our exercise detection approach retrieves 93.8% of the relevant exercises with 90.6% precision and
classifies the detected exercises with an accuracy of 96.5%. The exercises recognized by our algorithm can be used to compute further
qualitative metrics about individual exercise executions to provide goalkeepers with relevant feedback about their training.
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1 INTRODUCTION

Soccer is one of the most popular sports in the world with numerous professional and an even larger number of
non-professional practitioners. A soccer team consists of ten field players and a goalkeeper. Due to their unique role
within the team, goalkeepers undergo a different training than the rest of the players in the team. Goalkeepers train
a specific set of well-defined motions to consolidate them into muscle memory and lower their reaction time during
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(a) Dive High (b) Dive Low (c) Jump Catch

(d) Catch Body (e) Catch Ground (f) Catch Hand

(g) Throw High (h) Throw Low (i) Pass

Fig. 1. Goalkeeper training exercise variations.

a game. The correct execution of the exercises have a steep learning curve and can only be assessed by experienced
trainers.

Despite the importance of personalized feedback from a professional trainer, only older, more experienced goalkeepers
enrolled in a soccer club have access to a dedicated trainer. In contrast, most young goalkeeper trainees cannot afford a
personalized coach. The ultimate goal of our work is to realize a system based on an unobtrusive wearable sensor able
to provide personalized and objective feedback to goalkeepers automatically after or during a training session to help
them improve their skills.

A goalkeeper training session typically includes exercises to stop incoming balls (e.g., dives, catches, jumps) and
others to pass the ball at field players. Goalkeepers execute different variations of these exercises to learn the right
Manuscript submitted to ACM
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Sensor-based Detection and Classification of Soccer Goalkeeper Training Exercises 3

movements—mostly involving the legs, torso and arms—to handle each incoming ball. For example, they execute a
different motion to catch balls thrown at their chest, belly and legs. They catch balls thrown at the chest with their
hands, wrap balls thrown at their belly between the hands and their chest and control lower balls on the ground using
their entire body. Figure 1 shows different variations of goalkeeper training exercises.

In this article, we present a smart glove and algorithm to automatically detect and keep track of goalkeeper training
exercises using a single inertial sensor. To the best of our knowledge, this application has not been studied previously.
The work we present enables goalkeepers to keep track of the training exercises they perform. Goalkeepers could get
an overview of the exercises performed by goalkeepers during the last days, weeks or months, which they could use to
plan future training sessions accordingly. More importantly, the ability to detect and classify training exercises is a first
step towards a virtual coach that extracts performance metrics from the recognized exercises and gives personalized
feedback to goalkeepers.

The high variability in the training exercises and individual execution of each exercise make this application extremely
challenging. A particular challenge we address is on filtering out irrelevant motions that originate from the high degree
of freedom in the movement of a goalkeeper’s hands. The development process and methods we describe in this article
can be reused in similar activity recognition applications.

This paper is structured as follows. Section 2 lists similar activity recognition applications and discusses the state
of the art in activity recognition with wearable sensors. In Section 3, we present our algorithm to detect and classify
goalkeeper training exercises using the signal produced by an inertial sensor. Section 4 presents the results of our
evaluation to quantify the performance of our detection and classification algorithms. In Section 5, we discuss the
results we obtained and in Section 6 we summarize our contribution and present future research directions towards the
realization of a virtual coach for soccer goalkeepers.

2 RELATEDWORK

Activity recognition using wearable sensors has been a field of study for over two decades. In this period, a variety of
activity recognition applications have been developed that extract information about the user or her context using
sensor signals. This is done for several possible reasons: 1) to assess the performance and correctness of a physical
exercise of a patient or athlete, 2) to monitor a physiological parameter or activity over time, 3) to provide feedback to a
user about her actions and 4) to adapt a user interface to the user’s context. This section first provides a list of similar
activity recognition applications and then discusses the state of the art in recognition methods.

2.1 Activity Recognition Applications

Activity recognition applications developed so far can be grouped under different fields:

• Daily activity monitoring. One of the first activity recognition applications proposed by the research commu-
nity used inertial sensors to recognize daily activities (e.g. walking, jogging, standing, sitting) [Bao and Intille
2004; Tapia et al. 2004]. Since then, several applications have been studied including the automatic detection
of falls [Abbate et al. 2012; Chen et al. 2006] and the recognition and monitoring of dietary activities such as
drinking [Amft et al. 2005; Schiboni and Amft 2018] and chewing [Amft 2010; Amft et al. 2005].

• Medicine. Several studies have developed methods to segment strides and extract information from human
gait [Barth et al. 2015]. In particular, the gait of patients of Parkinson’s disease has been widely investigated by
different research groups [Mariani et al. 2013; Patel et al. 2009, 2006]. Activity recognition applications have also

Manuscript submitted to ACM
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4 Haladjian, J. et al

been developed to extract objective performance metrics to support clinical assessment during rehabilitation and
physical therapy. Performance metrics include the angle of flexion of a leg and the stability while performing a
squat during rehabilitation after a knee surgery [Haladjian et al. 2018a, 2015].

• Sports. Wearable activity recognition applications in sports have been developed to detect and classify strokes
(i.e. serves) in table tennis [Blank et al. 2015] and in tennis [Yang et al. 2017], determine the part of the shoe
used to kick a ball in soccer [Zhou et al. 2016], classify tricks in skateboarding [Groh et al. 2017a], compute
the velocity and the length of a jump in ski jumping [Groh et al. 2017b], calculate performance parameters in
swimming such as the amount of strokes and time needed per lane [Bächlin et al. 2009] and recognize batting
shots in cricket [Khan et al. 2017].

• Animal welfare and sports. Although the field is often referred to as Human Activity Recognition (HAR)
[Bulling et al. 2014], several activity recognition applications have been developed for non-human users. These
include wearable sensors to: detect deviations in the usual gait of cows in order to warn veterinarians about
possible lameness-related diseases [Haladjian et al. 2018b, 2017], assess the performance during horse dressage
riding [Thompson et al. 2015], recognize gaits and compute the duration of jumps in equestrian show jumping
[Echterhoff et al. 2018a,b] and track the activities (i.e. eating, walking, resting) of sheep [Walton et al. 2018].

Few research works have studied the use of wearable sensors in soccer applications. Zhou et al. [Zhou et al. 2016]
attached a pressure sensitive smart textile matrix to a soccer shoe and studied how to compute the angle at which a
soccer ball is kicked. Similarly, Weizman et al. [Weizman and Fuss 2015] developed a smart shoe system with a matrix
of pressure sensors and a user interface that displays the force and center of pressure of soccer kicks. Hossain et al.
[Hossain et al. 2017] studied the use of wrist-worn sensors to classify motion performed by soccer field players such as
passes, kicks, sprints, runs and dribblings. Schuldhaus et al. [Schuldhaus et al. 2016] used a wearable motion sensor in
the insole of a soccer shoe to detect specific motions such as dribbling and kicking, which they use to generate video
highlights automatically.

Other studies have used video cameras to automatically extract metrics from soccer games, such as the positions of
the field players and ball trajectories [Figueroa et al. 2006; Müller Junior and Anido 2004]. Our work focuses on tracking
soccer goalkeeper training exercises. We do this with an unobtrusive wearable sensor strapped around the glove at the
goalkeeper’s main hand that does not require calibration or setup.

2.2 Activity Recognition Methods

Most activity recognition applications developed so far are hand-crafted chains of computations, known as the activity
recognition chain [Bulling et al. 2014] to extract information from sensor signals. Multiple methods to segment sensor
signals, extract features and to select and prioritize features have been studied in the past. Methods used to recognize
patterns in sensor signals proposed so far include template-based methods such as string matching [Stiefmeier et al.
2007] and Dynamic Time Warping (DTW) [Barth et al. 2015; Muscillo et al. 2007; Plouffe and Cretu 2015; Seto et al.
2015], probabilistic methods such as the Hidden Markov Model (HMM) [Li et al. 2015; Martindale et al. 2017; Schiboni
and Amft 2018] and machine learning classifiers such as Support Vector Machines (SVMs) [Haladjian et al. 2018b;
Reyes-Ortiz et al. 2016]. Our exercise detection algorithm is based on a memory-efficient peak detection algorithm and
a two-step recognition method. In a first step, our recognition method filters out most irrelevant motion patterns that
correspond to passes (i.e. when goalkeepers pass the ball back to their trainer) by matching the signal to a pre-computed
template using Dynamic Time Warping. Second, it uses a machine learning classifier to determine the actual exercise.
Manuscript submitted to ACM
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Sensor-based Detection and Classification of Soccer Goalkeeper Training Exercises 5

In the last few years, the community has started investigating the so-called end-to-endmethods for activity recognition.
These methods extract information directly from the raw data, thus, relieving developers from the tedious work to
study data and manually implement and assess an activity recognition algorithm. Different Convolutional Neural
Network (CNN) architectures have already surpassed hand-crafted methods in recognition performance [Ha and Choi
2016; Jiang and Yin 2015; Yang et al. 2015; Zeng et al. 2014]. Most notably, Recurrent Neural Networks (RNN) - mostly
Long-Short-Term-Memory (LSTM) - have been adapted to exploit the time-dependency of the sensor signals, attaining
the highest recognition results so far on large public benchmark datasets [Li et al. 2018; Murahari and Plötz 2018;
Neverova et al. 2016; Ordóñez and Roggen 2016; Zeng et al. 2018]. We use a lightweight unobtrusive device that can
be worn at the wrist by goalkeepers during a training session for up to 3 hours, or ideally longer. To satisfy these
requirements, we designed our system based on a lightweight embedded device that performs a low-cost hand-crafted
recognition algorithm locally.

3 METHODS

Figure 2 shows an overview of our recognition system. In this section, we describe the hardware device we used, how
we collected the data and the computations we performed to detect and classify goalkeeper training exercises.

Data 
Collection

Preprocessing

Labeling

Exercise 
Classification

Feature 
ExtractionSegmentationExercise 

Detection

Feature

Selection

Runtime

Development

Pass 
Elimination

Template 
Computation Validation

Fig. 2. Overview of the computations we perform to detect and classify goalkeeper training exercises. We separate between computa-
tions done at development and runtime.

3.1 Hardware

We collected data using a sensor device called MicroHub developed by the company InteractiveWear 1. The MicroHub is
a modular sensing device developed for wearable applications with an ARM Cortex-M0 microcontroller, Invensense’s
ICM20602 6-axis (accelerometer and gyroscope) Inertial Measurement Unit (IMU), a Bluetooth Low Energy (BLE)
module and an SD card. The accelerometer measures acceleration forces in units of gravity g. Such forces may be
static (e.g. the gravity) or dynamic (e.g. motion). The gyroscope measures angular velocity (i.e. the speed of rotation) in
degrees per second (dps). The accelerometer and gyroscope were set to their maximum ranges: ±16 g and ±2000 dps,
respectively. The data produced by both sensors was recorded with a 16 bit resolution and stored in an SD card mini
with a capacity of 2 GB. This made it possible for us to store several hours of training at a sampling rate of 100 Hz
without data loss or disconnections, as might have been the case with a wireless communication technology.

1http://www.interactive-wear.com/

Manuscript submitted to ACM
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6 Haladjian, J. et al

(a) Glove (b) MicroHub

Fig. 3. Smart Glove components and orientation of the accelerometer axes. The x-axis represents side movements, the y-axis forward
and backward movements and the z-axis up and down movements.

The Microhub was powered with a 200 mAh Li-Po battery. With this battery, the device remains functional for at
least 6 hours while recording raw data continuously and storing it on the SD card. The device’s dimensions (including
the battery) are: 3.8 x 1.1 x 2.4 cm. To fit the device into a goalkeeper’s glove, we designed a mount that is strapped
tightly using the glove’s strap above the wrist. Since our mount does not require modifications to the glove, it can be
strapped around most goalkeeper gloves in the market. The MicroHub is oriented such that the x-axis represents side
movements (i.e. to the left and right of the user’s hand), the y-axis forward and backward movements (i.e. towards or
against the fingers) and the z-axis up and down movements (assuming the palm of the hand is facing the ground). The
glove, mount and sensor coordinate system are shown in Figure 3.

Table 1. Data collection plan followed with each goalkeeper. Dive Stand is a variation of a dive where the goalkeeper had to stand up
quickly after the dive.

# Exercise Type Repetitions

1 Dive x5 low left, x5 low right, x5 high left, x5 high right
2 Catch x10 hand catch, x10 body catch and x10 ground catch
3 Dive Stand x5 low left, x5 low right, x5 high left, x5 high right
4 Throw x10 high, x10 low
5 Jump Catch x8

3.2 Data Collection

We collected data from 14 goalkeeper trainees during their training with a professional goalkeeper trainer with over 30
years of experience. During the training, goalkeepers performed different variations of dives, throws and catches. The
trainer threw balls at the goalkeepers from different angles and at different intensities. After performing the motion,
goalkeepers passed the ball back at the trainer to signal that they were ready for the next repetition. Figure 1 shows
goalkeepers executing these exercises during their regular training. The goalkeeper trainees we recorded were male,
right handed, 10 to 17 years old, had 1 to 7 years of experience training as goalkeepers and were 1.5 to 2.01 meters
tall. Goalkeepers first warmed up, stretched and then started the exercise execution. Table 1 summarizes the exercises
Manuscript submitted to ACM
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Sensor-based Detection and Classification of Soccer Goalkeeper Training Exercises 7

performed by goalkeepers and the approximate amount of repetitions they performed. Each training session lasted on
average 33 minutes, which led to a file size of approximately 3 MB per recording session.

3.3 Labeling

Each training session lasted approximately one hour. We video-recorded the entire training and annotated every
repetition of the training exercises (e.g. dives, catches, throws) as well as other motions goalkeepers performed during
the training, such as passes (i.e., when the goalkeeper passed the ball back to the trainer), sprinting, clapping with the
hands and bouncing the ball. To synchronize the sensor signal and video recording, we asked goalkeepers to clap three
times in the beginning, middle and at the end of the training session. The annotations were done by five individuals and
were reviewed by one of the authors to ensure consistency. In total, we labeled 2562 motion instances (1518 training
exercises and 1044 instances of other motion, such as passes and hand claps).

3.4 Exercise Detection

The Exercise Detection identifies possible exercises in an incoming stream of motion data. An overview of the different
computations our detection algorithm performs is shown in Figure 4. We start by computing the squared magnitude of
acceleration along the x, y and z-axes according to:

Maдnitude2 = a2
x + a

2
y + a

2
z (1)

Most exercises cause a peak in the squared magnitude signal due to an impact with the ball or ground. These peaks
occur suddenly (i.e., have a duration of 50 ms or less) and hence contain mostly motion in high frequency bands.
Therefore, we filter out low-frequency motion using a first order Butterworth high-pass filter with a cutoff frequency
fc = 25 Hz.

In the next step, we detect peaks in the filtered squared magnitude signal with a peak detection algorithm that
executes for each new value. A new value becomes the peak candidate if it is above a minimum peak threshold η and if
it is larger than the current peak candidate (in case the peak candidate is already set). Peak candidates become a peak
after a minimum amount of samples δ elapse. We selected the parameter values η = 8.2 × 106 д2 and δ = 97 samples

because they yielded the best detection performance, as we discuss in the Results section.

3.5 Pass Elimination

The peak detection method described in the previous subsection detects movements with a high intensity. A particular
movement with high intensity performed frequently by goalkeepers is the pass, as they pass the ball back to the trainers
after most exercise repetitions. Since passes are not an exercise that is of interest to goalkeepers, they need to be filtered
out. While passes could be filtered out during the classification stage (i.e. by including them as a class in the machine
learning classifier), doing so would require extracting features and performing a classification for each detected pass.
The goal of the Pass Elimination procedure is to eliminate pass instances with a simple heuristic to avoid the more
computationally expensive feature extraction and classification computations.

Most goalkeepers perform passes in a similar way: they sequentially swing the arm back to gain momentum and
then forward and release the ball. This motion usually lasts approximately one second. Based on this observation, we
designed a method to detect and filter out passes that does not require extracting features or running a prediction for

Manuscript submitted to ACM
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8 Haladjian, J. et al

Fig. 4. Sequence of computations performed by our approach to detect exercises. Top: raw accelerometer signal for two dives and a
pass. Middle: squared magnitude of the accelerometer signal. Bottom: high-pass filtered squared magnitude of accelerometer signal.
Both dives are detected using a peak detector with a minimum peak height η = 8.2 × 106.

each detected pass. It should be noted that we still include the pass in the different classifiers we studied under the
Other class, as described in the Classification subsection.

Comparing two pass segments by accumulating the distances of each of their samples sequentially would not account
for the fact that passes can vary in speed. As a consequence, this naive comparison procedure would compute a high
distance for two similar passes whenever one of the passes was performed at a different speed. Dynamic Time Warping
(DTW) is an algorithm that relies in dynamic programming to measure the similarity of two time series that might vary
in speed. In particular, it finds the matching between samples in a segment to samples in another segment that lead to a
minimal distance between segments.

Previous work in human activity recognition has successfully used DTW to identify human strides by first detecting
strides with a peak detector and then comparing them to a stride template [Derawi et al. 2010] or by directly comparing
consecutive segments to a stride template [Barth et al. 2015]. Similarly, our method compares the signal around a
Manuscript submitted to ACM
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Sensor-based Detection and Classification of Soccer Goalkeeper Training Exercises 9

detected peak to a pass template and discards the detected peaks if the segment around them is similar enough to the
template. Our procedure first creates a segment around the detected peak with index p according to:

skpass = [p − a′, ...,p + b ′] (2)

We determined the offsets a′ = 70 and b ′ = 25 empirically based on our observation that most peaks corresponding
to passes occur approximately 70 samples after the beginning of a pass and that the motion corresponding to a pass
lasts for approximately 95 samples. These segments contain only the acceleration along the y-axis, as we found this
axis to represent best the swing performed during a pass. The DTW algorithm computes the distance between a pass
segment and the pass template based on a cost metric to compare two samples. As a cost metric, we used the absolute
difference in y-acceleration between the two samples.

Our procedure discards events if the segments around them have a DTW-distance to the pass template smaller than
a threshold τ . We compared the performance of different values of τ (see section Results) and set τ = 39000. The next
subsection describes how we computed the pass template.

3.6 Template Computation

An ideal pass template ST has a small distance to as many pass segments Si and a large distance to as many non-pass
segments as possible. Our template computation procedure selects as the template the pass segment with the minimal
distance to the greatest number of other pass segments. We compute the template in three steps. The first step computes
the distance between every pair of pass segments. To this end, we fill the matrixM(i, j) ∈ Rnxn with the DTW-distances
of each pass segment Si to each other pass segment Sj according to:

M(i, j) =


DTW (Si , Sj ), i, j ∈ [1, ...,n], if i , j

∞, if i = j
(3)

where n is the number of pass segments detected by the Exercise Detection stage. The distance between a segment to
itself is set to∞ because the second step counts how many other segments a segment is closest in distance to. Thus,
settingM(i, i) = ∞ avoids counting a segment as having the closest distance to itself.

In the second step, we determine which segments are closest in distance to each other segment. To this end, we define
the matrix B ∈ Rnxn that contains a 1 at each position B(i, j) if the segment Si is closest in distance to the segment Sj ,
or a 0 otherwise. In other words, we set a 1 at B(i, j) ifM(i, j) is the minimum of the j column in M:

B(i, j) =


1, ifM(i, j) =min(M(k, j)),∀k ∈ [1, ...,n]

0, otherwise
(4)

The third step counts how many segments a specific segment has minimal distance to. This is done by accumulating
the values in each row of B into a vector C:

C(i) =
n∑
j=1

B(i, j),∀i ∈ [1, ...,n] (5)

Finally, we perform a voting method to decide which pass segment becomes the template. A naive method to select a
pass template would let every segment vote for another pass segment (e.g. the pass segment with shortest distance) and
select the pass segment with largest number of votes. However, this voting method might select an outlier pass segment

Manuscript submitted to ACM
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10 Haladjian, J. et al

as a template which is closest in distance to only a few other pass segments. In particular, this might happen if the pass
segments are spread such that each of them are closest to different pass segment candidates without a clear winner.

Instead, we use the Instant-runoff voting method. In computational social choice theory, Instant-runoff is a method
to select a single winner in an election with more than two candidates. The method lets voters rank every candidate in
order of preference. If a candidate obtains the majority of the votes, it is elected as the winner. Otherwise, the candidate
with least amount of votes is eliminated and the election is repeated with the remaining candidates. In our adapted
version of the method, every pass segment is a voter and a candidate to become the template at the same time and pass
templates are ranked based on the number of other segments they are closest to in DTW-distance. In each iteration, our
algorithm eliminates the segment Sm with smallest distance to the least other segments: {m | Cm = min(Ci ),∀i = 1...n)}
from the list of candidates. This procedure is repeated n − 2 times. In each iteration, the matrix B and vector C are
recomputed. After n − 2 iterations, only one segment is left, which is selected as template. Figure 5 shows the template
selected with this procedure on top of every other pass segment in our data set.

Fig. 5. Acceleration along the y-axis of every pass segment (black) and the template (red).

3.7 Segmentation

For each event that was not eliminated in the Pass Elimination procedure, we create a segment range k around the peak
location xp according to:

k = [xp−a , ...,xp+b ] (6)

We set a = 130 and b = 90 empirically based on a visual comparison of the motion produced by the different exercise
instances, as shown in Figure 6. The Segmentation stage produces a segment S(k) containing the acceleration, angular
Manuscript submitted to ACM
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Fig. 6. Squared magnitude of acceleration of every segment produced by the segmentation algorithm plotted on top of each other
and grouped by exercise.

velocity and squared magnitude of each sample in the range k . Figure 6 displays the segments produced by our algorithm
after this step, which are used for feature extraction, as described in the next section.

3.8 Feature Extraction

We studied a set of statistical and heuristic features. The statistical features we chose have been previously used in
similar wearable activity recognition applications [Blank et al. 2015; Bulling et al. 2014; Haladjian et al. 2017]. The list of
features we studied is summarized in Table 2. The statistical features are computed on all three axes of acceleration and
angular velocity. Heuristic features are computed on all three axes of the acceleration vector, all three axes of angular
velocity and on the squared magnitude of acceleration computed with Equation 1.

We designed heuristic features to highlight the differences in motion across the different exercise variations. The
peaks detected in the Exercise Detection are located at the moment of maximum intensity of acceleration (e.g., contact
with the ground, contact with the ball, release of a ball). The different exercises have a different acceleration before the
peak and deceleration after the peak along each axis. To capture the differences in acceleration and deceleration, we
split the segment in three parts based on the position of the peak p as: klef t = [1, ..,p − c], kcenter = [p − c, ...,p + c]

and kr iдht = [p + c, ...,n] where n is the number of samples in the segment and c is a constant. We set c = 20 by
observing the signals grouped by exercise, as shown in Figure 6. Figure 7 shows the mean acceleration along the z-axis
of all three parts computed from every right and left dive in our data set.

Some classifiers calculate the distance between feature vectors. Features with a large range of values might contribute
more to the distance than features with smaller ranges of values. Therefore, we normalize every feature fi in the
segment to have zero mean and a standard deviation in the range [−1, 1] with:
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Fig. 7. Dive right (blue) and left (orange) computed by averaging the acceleration along the z-axis of every dive segment in our data
set. Most right dives have a positive acceleration mean before the peak and negative during and after the peak. Most left dives have
the opposite acceleration.

Table 2. List of features we studied. Statistical features are computed on the entire segment. Heuristic features are computed on each
segment part: kle f t , kmiddle and kr iдht .

Type Features
Statistical mean, median, standard deviation (std), accumulated squared magnitude of acceleration, skewness,

kurtosis, zero crossings (zcr), peak to peak amplitude (p2p), root mean square (rms), minimum value
(min), maximum value (max), correlation between acceleration axes (corr)

Heuristic mean, standard deviation (std), zero crossing, quantile, peaks

f̄i =
fi − µ(fi )

σ (fi )
(7)

where µ(fi ) and σ (fi ) are the mean and standard deviation of the feature fi calculated based on every segment in
our data set.

3.9 Feature Selection

Extracting and classifying a larger number of features leads to a larger number of computations that have to done on
the wearable device and make machine learning classifiers more prone to overfitting. For this reason, we studied how
to reduce the number of features with a feature selection algorithm called minimum Redundancy Maximum Relevance

(mRMR) [Peng et al. 2005]. The 20 most relevant features selected by mRMR and the signals they are computed on are
listed in Table 3.
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Table 3. Features selected for classification using mRMR.

Feature Computed on
Quantile Az3, Az2, Az4, Ay2

Amount of Peaks Squared Magnitude on
kr iдht

Cross-correlation Ay - Az
Mean (Segment) Ay, Gz

Maximum Gx, Ay
Root Mean Square Gz, Gx
Standard Deviation Ay, Az

Median Absolute Deviation Ax, Gx
Median Az
Mean Az on kr iдht , Ay on kr iдht ,

Az on kmiddle

3.10 Exercise Classification

We compared the performance of different classifiers: Naive Bayes, Decision Tree, Random Forest, Support Vector
Machine (SVM) with linear and Radial Based Function (RBF) kernels, k-nearest neighbors (kNN) and a Neural Network.
For each classifier, we optimized the performance of the following parameters:

• SVM (RBF and linear kernel): cost parameter c ∈ {1, 2, 3, 5, 8, 13, 21, 34, 55}, kernel coefficient дamma ∈

{0.0, 0.1, 0.2, ..., 10.0}, tolerance for stopping criterion tol ∈ {0.001, 0.002, 0.003, ..., 0.3}.
• Decision Tree: maximum depthmax_depth ∈ {1, 2, 3, ..., 30}.
• Random Forest: maximum depth max_depth ∈ {1, 2, 3, ..., 30}, number of features to consider when look-
ing for the best split max_f eatures ∈ {1, 2, 3, ..., 11}, minimum number of samples required to reach a leaf
node min_samples_lea f ∈ {1, 2, 3, ..., 11}, minimum number of samples required to split an internal node
min_samples_split ∈ {2, 3, 4, ..., 11}.

• kNN: k ∈ {1, 2, 3, ..., 15}.
• NeuralNetwork: number of hidden layersn ∈ {1, 2}, size of hidden layershidden_layer_sizes ∈ {10, 20, ..., 3000},
solver for weight optimization solver ∈ {lb f дs,adam}, tolerance for the optimization tol ∈ {10−2, 10−3, ..., 10−6}.

3.11 Validation

To avoid evaluating the performance of the different methods we presented with the same data used to optimize the
parameters η (minimum peak height), δ (minimum amount of samples between peaks), τ (DTW distance threshold) and
the hyperparameters of our machine learning classifiers, we used a nested cross-validation procedure. In an outer loop,
we tested different values for the parameters and the inner loop performed a leave-one-subject-out cross-validation.
First, we found the optimal values for the parameters η and δ with a grid search in the ranges [3 × 106, 18 × 106] and
[10, 200] at intervals of 105 and 1, respectively. Then, we optimized τ using a linear search in the range [1×102 −2×105]

at intervals of 5 × 103. Finally, we optimized the hyperparameters of the classifiers with a randomized search followed
by a grid search. The randomized search gave us optimal value ranges for each parameter and the grid search found the
optimal values within each range. In each iteration of the inner loop, a different goalkeeper data file was excluded from
the training set and used for assessing the performance of our methods. We selected the parameters that lead to the
best average performance across player files.
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4 RESULTS

Our algorithm first detects exercise instances from a stream of sensor values, and then classifies those detected events.
Applications that rely on our algorithm would only use the final classifications. However, to provide insight about the
different stages of our recognition pipeline, in this section we first report on the performance of the exercise detection
method, and then discuss the classification method.

4.1 Exercise Detection

This subsection reports on the performance results for the computations we presented in the Preprocessing, Exercise
Detection and Pass Elimination subsections. The detection of exercises can be understood as a binary classification (i.e. a
segment is either classified as relevant or not relevant). To validate our exercise detection procedure, we compared the
exercise labels to the detected segments as follows:

True Positive (TP). A detected segment that included a relevant exercise label.
False Positive (FP). A detected segment that did not include any relevant exercise label.
False Negative (FN). An exercise labeled as relevant that was not included in any of the detected segments.

Figure 8 shows a performance comparison of η and δ and Figure 9 presents the F-Score for different values of τ .
Our detection method achieves an F-Score of 92.2%. In total, 1424 of the 1518 exercise repetitions were detected by
our detection method (Recall = 93.8 %) whereas 148 instances of irrelevant movements were also detected as exercises
(Precision = 90.6%).

Fig. 8. Comparison of the F-Score for different values of η and δ . Red values indicate higher F-Scores. Line markers were placed at
the values leading to the highest F-Score (η = 8.2 × 106 and δ = 97).
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Fig. 9. F-Score of the exercise detection for different values of τ . τ = 39000 achieves the highest F-Score: 92.2% (Precision 90.6%,
Recall 93.8%) with the peak detection parameters: η = 8.2 × 106 and δ = 97.

The performance of our detection algorithm at detecting the different exercises is shown in Table 4.

Table 4. Amount of instances of each motion type detected by our approach and annotated in our data set.

Exercise Detected Annotated %

Re
le
va
nt

Dive Right 285 286 99.7%
Dive Left 248 251 98.8%
Catch Hand 144 146 98.6%
Catch Body 212 217 97.7%
Catch Ground 145 158 91.8%
Jump Catch 112 150 74.7%
Throw High 141 145 97.2%
Throw Low 137 165 83.0%
Other 148 1044 14.2%

4.2 Exercise Classification

The segments detected as relevant by our exercise detection method are classified into the different exercises. Table 5
shows the accuracy of the different classification algorithms we tested. The classifier that achieved the highest accuracy
is the SVM with an RBF Kernel and a box constraint c = 7 (accuracy: 96.5%). The confusion matrix and classification
performance per exercise computed with this classifier are shown in Tables 6 and 7. The kNN classifier was tested with
k = 8, which led to the maximum accuracy among the different variations of the kNN algorithm of 92.2%.
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Table 5. Performance of different classifiers at classifying goalkeeper training exercises. SVM performed best with an RBF kernel and
parameters: c = 7, дamma = 0.0095. decision_f unction_shape = ovr and tol = 0.001

Accuracy Precision Recall
Naive Bayes 74.4% 76.1% 76.8%
Decision Tree 77.9% 78.8% 79.1%
Random Forest 87.2% 88.8% 88.3%
SVM (Linear) 93.0% 94.6% 93.6%
SVM (RBF) 96.5% 96.9% 96.7%
K-Nearest Neighbors 92.1% 92.5% 93.8%
Neural Network 93.8% 93.9% 93.5%

Table 6. Confusion matrix computed using an SVM classifier with an RBF kernel and cost parameter c = 7.

Annotated
DR DL CH CB CG JC TH TL

Pr
ed
ic
te
d

DR 271 12 2 0 0 0 0 0
DL 11 236 0 0 0 1 0 0
CH 2 0 141 0 0 1 0 0
CB 0 0 1 207 3 1 0 0
CG 1 1 0 8 135 0 0 0
JC 0 1 2 0 0 108 1 0
TH 0 0 0 0 0 0 140 1
TL 0 0 0 0 0 0 1 136

Table 7. Accuracy for each training exercise computed using the SVM classifier with an RBF kernel and cost parameter c = 7.

Precision Recall F-Score
Dive Right 95.1% 95.1% 95.1%
Dive Left 94.4% 95.2% 94.8%
Catch Hand 96.6% 97.9% 97.2%
Catch Body 96.3% 97.6% 97.0%
Catch Ground 97.8% 93.1% 95.4%
Jump Catch 97.3% 96.4% 96.9%
Throw High 98.6% 99.3% 98.9%
Throw Low 99.3% 99.3% 99.3%

5 DISCUSSION

The results we presented indicate that it is possible to detect and classify goalkeeper training exercises accurately. Our
detection approach detects 93.8% of the relevant exercise instances with a precision of 90.6% and the SVM classifier
with an RBF kernel achieves a classification accuracy of 96.5%.

We focused our analysis on the most common variations of the goalkeeper training exercises performed during a
training session. In a free-training (i.e. soccer match), the amount of relevant exercises might be considerably sparser
and goalkeepers might perform other exercises such as sprints, kicking the ball with the leg or warm up exercises
which we did not consider in this study. Therefore, we expect a lower precision in a free-training than the one we
presented in this study. In the future, the wider variability of a free-training should be studied to identify new classes
and train a classifier accordingly.
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Our detection approach detected over 97% of the instances of most exercise types and filtered out most of the
irrelevant motions. Only 148 instances of irrelevant motion were wrongly detected as relevant exercises, which is a
small fraction (14.2%) of the total amount of instances of irrelevant motion we annotated (1044) and an even smaller
fraction of every irrelevant motion goalkeepers performed during the training session which we did not annotate (e.g.,
walking, running, picking up a balls from the ground, receiving balls passed at them without any specific technique,
etc.). On the other hand, only 74.2% of the jump catches and 83.0% of the low throws were detected. The reason is that
these exercises contain low frequency motion that is attenuated by the high-pass filter, which causes the peak detector
to miss the peaks produced by some of these exercise instances. These exercises could be detected by lowering the
peak threshold η, but this would also increase the false positive detection rate. The SVM classifier with an RBF kernel
produced the highest accuracy of 96.5%.

Figure 9 shows that without our Pass Elimination procedure (τ = 0), the detection procedure achieves an F-Score
of 90.9% and that our Pass Elimination procedure improves this performance to 92.2% when τ = 39000. Besides the
improvement in recognition performance, an important benefit of this procedure is that every time a pass is eliminated,
no features have to be extracted, stored in flash memory (or transmitted wirelessly) and classified, resulting in a lower
energy consumption. The procedure can detect and eliminate more pass instances by increasing the template distance
threshold τ . However, increasing τ over a value of 39000 leads to the elimination of more relevant exercise instances
than irrelevant ones. The main reason for this is that low throws have a similar signature to passes, causing low throws
executed by players with a low intensity to be incorrectly matched to the pass template. Nevertheless, the procedure
we described can be used as-is in other applications if a particular class has a consistent signature that is different
enough from other classes. Furthermore, future work could study different template selection strategies. In particular,
we have selected our template based on its similarity to other instances of the same class. In the future, the distances to
other classes could also be used as part of the optimization metric to select a template. Furthermore, additional signals
(besides only the y-axis of the accelerometer vector) could be used to compare segments to the template and different
amounts of templates could be selected per class. Finally, future work could study the recognition and computational
performance when using the distances to different templates as features within a machine learning classifier.

A possible threat to validity to our evaluation procedure is that we haven’t used a test split to assess the performance
of the Pass Elimination method. As we assessed the performance of the Pass Elimination method with the same data we
used to select the pass template, the performance we presented might be slightly higher than on unseen data. In the
future, the collection of an additional data set will make it possible to select a pass template and assess the performance
of a Pass Elimination method with different data.

In order to enable further data analysis and to improve our recognition algorithms by means of online machine
learning, it would be convenient to have access to the feature vectors produced by our algorithm outside of the wearable
device. Since streaming feature vectors would require a mobile phone nearby during a training session, we decided to
store the feature vectors on the wearable device and transmit them to a mobile device after the training over Bluetooth
Low Energy. Since we set a minimal distance between peaks of 97 samples (0,97 seconds), at most 3711 motion instances
(relevant or irrelevant) can be detected by our approach during an hour of training. The features and a timestamp for
every detected motion instance could be stored in less than 304 kB memory (3711 instances x 21 features and timestamp
x 4 bytes per feature and timestamp). Furthermore, our detection algorithm detected a total of 1572 motion instances in
our data set (computed by aggregating the values in the Detected column in Table 4). As our data set consists of 14
training sessions, our algorithm would detect an average of 112 motion instances per training session, which could be
stored in approximately 9,6 kB memory (112 instances x 21 features and timestamp represented with 4 bytes each).
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6 CONCLUSIONS

We have described a method to detect and classify goalkeeper training exercises. Detecting and classifying these
exercises represents a first step towards a virtual coach that gives goalkeepers relevant and objective feedback about
their exercise executions. A major challenge we addressed in this paper was on detecting the relevant training exercises
while avoiding other movements goalkeepers perform during a training session. We noticed that specially younger
goalkeepers tend to perform hectic movements that lead to a larger amount of false positive detections. We showed that
a careful preprocessing of the data using a high-pass filter in combination with Dynamic Time Warping can be used to
reduce the number of false positive detections. Furthermore, we achieved an exercise detection recall of 93.8% (precision:
90.6%) and a classification accuracy of 96.5%. Our segmentation approach and the methods we used to extract heuristic
features and automatically select the most relevant ones can be reused in other applications that require detecting or
classifying specific events such as strokes or shots in ball-based sports or strides in gait analysis applications.

Our work is by no means finished. An immediate next step is to investigate what performance metrics are relevant
to goalkeepers and which of those can be extracted accurately with our smart glove. Based on our discussions with
coaches and experienced goalkeepers, relevant performance metrics include: ‘the area of the goal where most balls are

missed or caught’, ‘the time needed to stand up on the feet after a dive’ and ‘the maximum height and length achieved

during a dive’. Future work should study how to compute different performance metrics with the segments detected
and classified by our algorithm.

Before goalkeepers are able to benefit from the system we propose, their needs as well as possible interaction
modalities for a user interface will have to be investigated. Some open questions are: What information are goalkeepers
interested in and how should this information be provided to them? Should the system provide goalkeepers live feedback
while in the field or should the feedback be given offline (e.g. while in the locker room or at home)? To keep the device
lightweight while exploiting the fact that most users nowadays have a smartphone, similar systems offer users an
interface over a smartphone. However, goalkeepers don’t always take their smartphone to the field and even if they did
they would have to take off their gloves to operate it via touch. An alternative would be a voice-based interaction, but a
soccer pitch is loud so goalkeepers would have to get close to the phone. Another question that raises is: where could a
smartphone be placed (e.g. behind the goal) such that it does not disturb the goalkeeper and cannot be hit by a ball?

Furthermore, a larger data set is likely to improve the accuracy and reveal corner cases. As we collect more data,
we might discover new irrelevant motions performed frequently by players (e.g. as we realized previously that some
players bounce the ball before a throw). These motions need to be considered by our algorithm (e.g. included in the
classifier). Furthermore, future work should add support for left-handed goalkeepers, which we did not consider in this
study. It might also be interesting to investigate how our recognition method could adapt itself based on data generated
after its deployment to the market (e.g. with online machine learning or with a user-dependent recognition).

We are currently investigating the suitability of a computer vision approach to recognize training exercises and
extract performance metrics from them. So far, we successfully used a pre-trained pose estimation algorithm to obtain
the body joints (wrists, hips, knees) of the goalkeeper from an image frame. These joints could be combined with a
machine learning algorithm to extract different exercise execution metrics. We believe that a computer vision approach
has a higher potential to accurately recognize exercise performance metrics relevant to goalkeepers. At the same time,
the approach would pose other challenges such as occlusion (e.g. a coach walking in front of the camera), confusion when
multiple players are detected in an image frame and would impose a higher degree of involvement from goalkeepers to
setup the camera in the field.
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