Object Design:
Interface Specification

Introduction into Software Engineering
Lecture 15

Bernd Bruegge
Applied Software Engineering
Technische Universitaet Muenchen

Lecture Plan
 Specifying Interfaces (Chapter 9)

» Object Design Activities Visibilities and Information
Hiding, Contracts

« Mapping Models to Java Code (Chapter 10)
» Optimizations to address performance requirements
 Implementation of class model components
» Realization of associations
» Realization of contracts

« Mapping Models to Relational Schema (Ch 10.4.4)
« Realizing entity objects
 Mapping the object model to a storage schema
 Mapping class diagrams to tables.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 2

Ouvutline of Today’s Lecture

Object Design Activities
Visibilities

Information Hiding
Contracts

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Requirements Analysis vs. Object Design

e Requirements Analysis: The functional model
and the dynamic model deliver operations for
the object model

« Object Design: Decide where to put these
operations in the object model
» Object design is the process of
* adding details to the requirements analysis
« making implementation decisions
 Thus, object design serves as the basis of
implementation

 The object designer can choose among different ways
to implement the system model obtained during
requirements analysis.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 4

Object Design: Closing the Final Gap

/ System \

/Application objects \

N

\

/ Solution objects \

\

/ Custom objects

\

=

\

/ Off-the-shelf components\

Y

\

~

© 2007 Bernd Bruegge

Introduction into Software Engineering Summer 2007 M[l Ch i ne 5

Developers play 3 different Roles during
Object Design of a Class

T >

Call the Class
Class User

Developer Class Implementor Realize the Class
(Implement 1t)

X C_ >

Refine the Class
(Implement a
subclass)

Class Extender

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 6

Class user versus Class Extende

The Developer responsible
for the implementation o
Game is a class implementor

The developer responsible
for the implementation of
League is a class user of Game

0
)

,_
()
Q)

(@]
C
()

()

)

S

(]

{>.

Tournament TicTacToe Chess

-

The developer responsible for
the implementation of TicTacToe
is a class extender of Game

© 2007 Bernd Bruegge

Specifying Interfaces

« Requirements analysis activities

» Identify attributes and operations without specifying
their types or their parameters

 Object design activities
mE) Add visibility information

» Add type signature information
« Add contracts.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Add Visibility Information)2\

A/ C1ass User Call Class
Deve1opé§7\\\\\\\fifss Implementor Realize Class

C1ass Extender Refine Class

y

y

0

Class user ("Public”): +
» Public attributes/operation can be accessed by any class

Class implementor (“Private”): -

* Private attributes and operations can be accessed only by
the class in which they are defined

« They cannot be accessed by subclasses or other classes

Class extender ("Protected”): #

» Protected attributes/operations can be accessed by the
class in which they are defined and by any descendent of
the class.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 9

Implementation of UML Visibility in Java

Tournament

axNumPlayers: 1int

gatMaxNumPlayers() :int

+ getRlayers(): List

+ accepPlayer(p:Player)

removeN ayer(p:Player)

| sPTayerAccepted(p:Player) :boolean

public : Tournament {
@ int maxNumPlayers;

public Tournament(League 1, int maxNumPlayers)
public int getMaxNumPlayers() {..};

soublic List getPlayers() {..};

dublic void acceptPlayer(Player p) {..};

odbljc void removePlayer(Player p) {..};

boo'lean 1isPlayerAccepted(Player p) {..};

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

10

Information Hiding Heuristics

Carefully define the public interface for classes
as well as subsystems

* For subsystems use a facade design pattern if possible

Always apply the "Need to know” principle:

* Only if somebody needs to access the information,
make it publicly possible

* Provide only well defined channels, so you always
know the access

The fewer details a class user has to know
» the easier the class can be changed

e the less likely they will be affected by any changes in
the class implementation

Trade-off: Information hiding vs. efficiency
» Accessing a private attribute might be too slow.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 11

Information Hiding Design Principles

 Only the operations of a class are allowed to
manipulate its attributes

» Access attributes only via operations

« Hide external objects at subsystem boundary

« Define abstract class interfaces which mediate between
the external world and the system as well as between
subsystems

Do not apply an operation to the result of
another operation

 Write a new operation that combines the two
operations.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 12

Add Type Signature Information

Hashtable
numElements:int
put()
get()
remove ()
containsKey()
size()

Hashtable

Attributes and operations

without visibility and _numElements:int

type information are ok during

: : +put(key:0bject,entry:0bject)
requirementsanalysis

get(key:0Object) :Object

+remove (key:0bject)
+containsKey(key:0bject) :boolean
+size():int

During object design, we
decide that the hash table
can handle any type of

keys, not only Strings.

Ouvutline of Today’s Lecture

 Object Design Activities
 Visibilities
e Information Hiding

==) Contracts

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

14

Modeling Constraints with Contracts

Example of constraints in Arena:

* An already registered player cannot be registered
again

« The number of players in a tournament should not be
more than maxNumPlayers

« One can only remove players that have been registered
These constraints cannot be modeled in UML
We model them with contracts
Contracts can be written in OCL.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 15

Contract

o Contract: A lawful agreement between two parties
in which both parties accept obligations and on
which both parties can found their rights

 The remedy for breach of a contract is usually an award of
money to the injured party

 Object-oriented contract: Describes the services
that are provided by an object if certain conditions
are fulfilled

» services = “obligations”, conditions = “rights”

 The remedy for breach of an OO-contract is the generation
of an exception.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 16

Object-Oriented Coniract

An object-oriented contract describes the
services that are provided by an object. For each
service, it specifically describes two things:

 The conditions under which the service will be provided
» A specification of the result of the service

Examples:

* A letter posted before 18:00 will be delivered on the next
working day to any address in Germany

e For the price of 4 Euros a letter with a maximum weight
of 80 grams will be delivered anywhere in the USA within
4 hours of pickup.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 17

Object-Oriented Coniract

« An object-oriented contract describes the
services that are provided by an object. For
each service, it specifically describes two things:

o A letter posted beforeN!8:00 will be delivered on the
next working day to any\address in Germany.

* For the price of 4 Euros a I&{ter with a maximum
weight of 80 grams will be d&livered anywhere in
Germany within 4 hours of pickup.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 18

Modeling OO-Contracts

 Natural Language
« Mathematical Notation

e Models and contracts:

A language for the formulation of constraints with the

formal strength of the mathematical notation and the
easiness of natural language:

= UML + OCL (Object Constraint Language)
» Uses the abstractions of the UML model
 OCL is based on predicate calculus

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 19

Contracts and Formal Specification

Contracts enable the caller and the provider to
share the same assumptions about the class

A contract is an exact specification of the interface
of an object

A contract include three types of constraints:

e Invariant:

» A predicate that is always true for all instances of a
class

* Precondition (“rights”):

 Must be true before an operation is invoked
o Postcondition (“obligation”):

 Must be true after an operation is invoked.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 20

Formal Specification

A contract is called a formal specification, if the
invariants, rights and obligations in the contract
are unambiguous.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 21

Expressing Consiraints in UML Models

A constraint can also be depicted as a note
attached to the constrained UML element by a
dependency relationship.

”r <<invariant>>
<<precondition>> [numElements >= OBI
lcontainsKey(key) HashTable

~
\\\ numElements:int
~
~{put(key,entry:0bject)— | <<postcondition>>D
_ _|.get(key) :0Object get(key) == entry
. —— /remove(key :0bjecty
<<precondition>> AN / contai |?s_Key(key :0bject) :boolean
containsKey(key) , |s1zeQ:int \
N\
/ N,

containsKey(key) lcontainsKey(key)

<<precondition>> RN <<postconditi0n>>|l‘

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 22

Why not use Contracts already in
Requirements Analysis?

« Many constraints represent domain level
information

« Why not use them in requirements analysis?
» Constraints increase the precision of requirements
« Constraints can yield more questions for the end user

» Constraints can clarify the relationships among several
objects

e Constraints are sometimes used during
requirements analysis, however there are trade
offs

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 23

Requirements vs. Object Design Trade-offs

Communication among stakeholders
e Can the client understand formal constraints?

Level of detail vs. rate of requirements change
» Is it worth precisely specifying a concept
that will change?
Level of detail vs. elicitation effort
« Is it worth the time interviewing the end user
» Will these constraints be discovered during object
design anyway?
Testing constraints

» If tests are generated early, do they require this level
of precision?

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 24

To be continued in Lecture on OCL

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

25

