
1© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Mapping Models to Java Code

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

Introduction into Software Engineering
Lecture 16

2© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Lecture Plan

• Part 1
• Operations on the object model:

• Optimizations to address performance requirements
• Implementation of class model components:

• Realization of associations
• Realization of operation contracts

• Part 2
• Realizing entity objects based on selected storage

strategy
• Mapping the object model to a storage schema
• Mapping class diagrams to tables

3© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Characteristics of Object Design Activities

• Developers try to improve modularity and
performance

• Developers need to transform associations into
references, because programming languages do
not support associations

• If the programming language does not support
contracts, the developer needs to write code for
detecting and handling contract violations

• Developers need to revise the interface
specification whenever the client comes up with
new requirements.

4© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

State of the Art:
Model-based Software Engineering

• The Vision
• During object design we build an object design model

that realizes the use case model and which is the basis
for implementation (model-driven design)

• The Reality
• Working on the object design model involves many

activities that are error prone
• Examples:

• A new parameters must be added to an operation.
Because of time pressure it is added to the source
code, but not to the object model

• Additional attributes are added to an entity object,
but not handled by the data management system
(thus they are not persistent).

5© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Other Object Design Activities

• Programming languages do not support the
concept of a UML association

• The associations of the object model must be
transformed into collections of object references

• Many programming languages do not support
contracts (invariants, pre and post conditions)

• Developers must therefore manually transform contract
specification into source code for detecting and handling
contract violations

• The client changes the requirements during
object design

• The developer must change the interface specification of
the involved classes

• All these object design activities cause problems,
because they need to be done manually.

6© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

• Let us get a handle on these problems
• To do this we distinguish two kinds of spaces

• the model space and the source code space

• and 4 different types of transformations
• Model transformation
• Forward engineering
• Reverse engineering
• Refactoring.

7© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

4 Different Types of Transformations

Source code space

Forward
engineering

Refactoring

Reverse
engineering

Model space

Model
transformation

System Model
(in UML)

Another
System Model

Program
(in Java)

Another
Program

Yet Another
System Model

8© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Model Transformation Example

Object design model before transformation:

Object design model
after transformation:

Advertiser

+email:Address

Player

+email:Address
LeagueOwner

+email:Address

PlayerAdvertiserLeagueOwner

User

+email:Address

9© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

4 Different Types of Transformations

Source code space

Forward
engineering

Refactoring

Reverse
engineering

Model space

Model
transformation

System Model
(in UML)

Another
System Model

Program
(in Java)

Another
Program

Yet Another
System Model

10© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Refactoring Example: Pull Up Field

public class Player {

private String email;

//...

}

public class LeagueOwner {

private String eMail;

//...

}

public class Advertiser {

private String
email_address;

//...

}

public class User {
private String email;

}

public class Player extends User {

//...

}

public class LeagueOwner extends
User {

//...

}

public class Advertiser extends
User {

//...

}

11© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Refactoring Example: Pull Up Constructor Body
public class User {

private String email;
}

public class Player extends User {
public Player(String email) {

this.email = email;
}

}
public class LeagueOwner extends

User{
public LeagueOwner(String email) {

this.email = email;
}

}
public class Advertiser extendsUser{

public Advertiser(String email) {
this.email = email;

}
}

public class User {
public User(String email) {

this.email = email;
}

}

public class Player extends User {
public Player(String email)

{
super(email);

}
}
public class LeagueOwner extends
User {

public LeagueOwner(String
email) {

super(email);
}

}
public class Advertiser extends User
{

public Advertiser(String
email) {

super(email);
}

}

12© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

4 Different Types of Transformations

Source code space

Forward
engineering

Refactoring

Reverse
engineering

Model space

Model
transformation

System Model
(in UML)

Another
System Model

Program
(in Java)

Another
Program

Yet Another
System Model

13© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Forward Engineering Example

public class User {
private String email;
public String getEmail() {

return email;
}
public void setEmail(String value){

email = value;
}
public void notify(String msg) {

//
}

}

public class LeagueOwner extends User {

private int maxNumLeagues;

public int getMaxNumLeagues() {

return maxNumLeagues;

}

public void setMaxNumLeagues

(int value) {

maxNumLeagues = value;

}

}

User

Object design model before transformation:

Source code after transformation:

-email:String
+getEmail():String
+setEmail(e:String)
+notify(msg:String)

LeagueOwner
-maxNumLeagues:int
+getMaxNumLeagues():int
+setNaxNumLeagues(n:int)

14© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

More Examples of Model Transformations
and Forward Engineering

• Model Transformations
• Goal: Optimizing the object design model

• Collapsing objects
• Delaying expensive computations

• Forward Engineering
• Goal: Implementing the object design model in a

programming language
• Mapping inheritance
• Mapping associations
• Mapping contracts to exceptions
• Mapping object models to tables

15© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Collapsing Objects

Person SocialSecurity

number:String

Person

SSN:String

Object design model before transformation:

Object design model after transformation:

Turning an object into an attribute of another object is usually
done, if the object does not have any interesting dynamic behavior
 (only get and set operations).

16© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Examples of Model Transformations and
Forward Engineering

• Model Transformations
• Goal: Optimizing the object design model

• Collapsing objects
• Delaying expensive computations

• Forward Engineering
• Goal: Implementing the object design model in a

programming language
• Mapping inheritance
• Mapping associations
• Mapping contracts to exceptions
• Mapping object models to tables

17© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Delaying expensive computations
Object design model before transformation:

Object design model after transformation:

Image

filename:String

paint()
data:byte[]

Image

filename:String

RealImage

data:byte[]

ImageProxy

filename:String

image

1 0..1

paint()

paint() paint()

Proxy Pattern!

18© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Examples of Model Transformations and
Forward Engineering

• Model Transformations
• Goal: Optimizing the object design model

• Collapsing objects
• Delaying expensive computations

• Forward Engineering
• Goal: Implementing the object design model in a

programming language
• Mapping inheritance
• Mapping associations
• Mapping contracts to exceptions
• Mapping object models to tables

19© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Forward Engineering: Mapping a UML
Model into Source Code

• Goal: We have a UML-Model with inheritance.
We want to translate it into source code

• Question: Which mechanisms in the
programming language can be used?

• Let’s focus on Java

• Java provides the following mechanisms:
• Overwriting of methods (default in Java)
• Final classes
• Final methods
• Abstract methods
• Abstract classes
• Interfaces.

20© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Realizing Inheritance in Java

• Realisation of specialization and generalization
• Definition of subclasses
• Java keyword: extends

• Realisation of simple inheritance
• Overwriting of methods is not allowed
• Java keyword: final

• Realisation of implementation inheritance
• Overwriting of methods
• No keyword necessary:

• Overwriting of methods is default in Java

• Realisation of specification inheritance
• Specification of an interface
• Java keywords: abstract, interface

See Slide 13

21© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Example for the use of Abstract Methods:
Cryptography

• Problem: Delivery a general encryption method
• Requirements:

• The system provides algorithms for existing encryption
methods (e.g. Caesar, Transposition)

• New encryption algorithms, when they become
available, can be linked into the program at runtime,
without any need to recompile the program

• The choice of the best encryption method can also be
done at runtime.

22© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Object Design of Chiffre

• We define a super class
Chiffre and define
subclasses for the existing
existing encryption methods

• 4 public methods:
• encrypt() encrypts a text of

words
• decrypt() deciphers a text of

words
• encode() uses a special

algorithm for encryption of a
single word

• decode() uses a special
algorithm for decryption of a
single word.

Chiffre

+encrypt()
+decrypt()
+encode()
+decode()

Caesar

+encode()
+decode()

Transpose

+encode()
+decode()

23© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Chiffre

Caesar Transpose

Object

Implementation of Chiffre in Java
• The methods encrypt() and
decrypt() are the same for each
subclass and can therefore be
implemented in the superclass
Chiffre

• Chiffre is defined as subclass of
Object, because we will use some
methods of Object

• The methods encode() and
decode() are specific for each
subclass

• We therefore define them as abstract
methods in the super class and expect
that they are implemented in the
respective subclasses.

Exercise: Write
the corresponding Java

Code!

24© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Examples of Model Transformations and
Forward Engineering

• Model Transformations
• Goal: Optimizing the object design model

Collapsing objects
Delaying expensive computations

• Forward Engineering
• Goal: Implementing the object design model in a

programming language
Mapping inheritance
• Mapping associations
• Mapping contracts to exceptions
• Mapping object models to tables

25© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Mapping Associations

1. Unidirectional, one-to-one association
2. Bidirectional one-to-one association
3. Bidirectional, one-to-many association
4. Bidirectional qualified association
5. Mapping qualification.

26© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Unidirectional, one-to-one association

AccountAdvertiser
11

Object design model before transformation:

Source code after transformation:

public class Advertiser {
private Account account;
public Advertiser() {

account = new Account();
}
public Account getAccount() {

return account;
}

}

27© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Bidirectional one-to-one association

public class Advertiser {

/* account is initialized

 * in the constructor and never

 * modified. */

private Account account;

public Advertiser() {

account = new
Account(this);

}

public Account getAccount() {

return account;

}

}

AccountAdvertiser 11

Object design model before transformation:

Source code after transformation:

public class Account {

/* owner is initialized

 * in the constructor and

 * never modified. */

private Advertiser owner;

publicAccount(owner:Advertiser) {

this.owner = owner;

}

public Advertiser getOwner() {

return owner;

}

}

28© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Bidirectional, one-to-many association

public class Advertiser {

private Set accounts;

public Advertiser() {

accounts = new HashSet();
}
public void addAccount(Account a) {

accounts.add(a);

a.setOwner(this);
}
public void removeAccount(Account a)
{

accounts.remove(a);
a.setOwner(null);

}
}

public class Account {
private Advertiser owner;
public void setOwner(Advertiser
newOwner) {

if (owner != newOwner) {
Advertiser old = owner;
owner = newOwner;
if (newOwner != null)

newOwner.addAccount(this);
if (oldOwner != null)

old.removeAccount(this);
}

}
}

Advertiser Account
1 *

Object design model before transformation:

Source code after transformation:

29© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Bidirectional, many-to-many association

public class Tournament {
private List players;
public Tournament() {

players = new ArrayList();
}
public void addPlayer(Player p)
{

if (!players.contains(p)) {
players.add(p);
p.addTournament(this);

}
}

}

public class Player {
private List tournaments;
public Player() {

tournaments = new
ArrayList();
}
public void
addTournament(Tournament t) {

if
(!tournaments.contains(t)) {

tournaments.add(t);
t.addPlayer(this);
}

}
}

Tournament Player* *

Source code after transformation

{ordered}

Object design model before transformation

30© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Bidirectional qualified association

Object design model after model transformation

PlayernickName
0..1*League

Player
**

Object design model before model transformation

League
nickName

Source code after forward engineering (see next slide 31)

31© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Bidirectional qualified association (2)

public class League {

 private Map players;

 public void addPlayer
 (String nickName, Player p) {

if
(!players.containsKey(nickName)) {

players.put(nickName, p);

p.addLeague(nickName, this);

 }

}

}

public class Player {

private Map leagues;

public void addLeague

(String nickName, League l) {

if (!leagues.containsKey(l)) {

 leagues.put(l, nickName);

 l.addPlayer(nickName, this);

}

}

}

Object design model before forward engineering

PlayernickName
0..1*League

Source code after forward engineering

32© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Examples of Model Transformations and
Forward Engineering

• Model Transformations
• Goal: Optimizing the object design model

Collapsing objects
Delaying expensive computations

• Forward Engineering
• Goal: Implementing the object design model in a

programming language
Mapping inheritance
Mapping associations
• Mapping contracts to exceptions
• Mapping object models to tables

33© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Implementing Contract Violations

• Many object-oriented languages do not have
built-in support for contracts

• However, if they support exceptions, we can use
their exception mechanisms for signaling and
handling contract violations

• In Java we use the try-throw-catch mechanism
• Example:

• Let us assume the acceptPlayer() operation of
TournamentControl is invoked with a player who is
already part of the Tournament

• UML model (see slide 34)
• In this case acceptPlayer() in TournamentControl

should throw an exception of type KnownPlayer
• Java Source code (see slide 35).

34© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

UML Model for Contract Violation Example

TournamentControl

Player

players*

Tournament

1

1

+applyForTournament()

Match

+playMove(p,m)
+getScore():Map

matches

*
+start:Date
+status:MatchStatus

-maNumPlayers:String
+start:Date
+end:Date

1
1

*

matches *

TournamentForm

*

*

+acceptPlayer(p)
+removePlayer(p)
+isPlayerAccepted(p)

Advertiser

sponsors *
*

*

*

*

+selectSponsors(advertisers):List
+advertizeTournament()
+acceptPlayer(p)
+announceTournament()
+isPlayerOverbooked():boolean

35© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Implementation in Java

public class TournamentForm {
 private TournamentControl control;
 private ArrayList players;
 public void processPlayerApplications() {
 for (Iteration i = players.iterator(); i.hasNext();) {
 try {

 control.acceptPlayer((Player)i.next());
 }

 catch (KnownPlayerException e) {
 // If exception was caught, log it to console
 ErrorConsole.log(e.getMessage());
 }
 }
}

}

TournamentControl

Player
players*

Tournament

1

1

+applyForTournament()

Match

+playMove(p,m)
+getScore():Map

matches
*

+start:Date
+status:MatchStatus

-maNumPlayers:String
+start:Date
+end:Date

1 1

*

matches*

TournamentForm

*

*

+acceptPlayer(p)
+removePlayer(p)
+isPlayerAccepted(p)

Advertiser
sponsors*

*
*

*

*

+selectSponsors(advertisers):List
+advertizeTournament()
+acceptPlayer(p)
+announceTournament()
+isPlayerOverbooked():boolean

36© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

The try-throw-catch Mechanism in Java
public class TournamentControl {

private Tournament tournament;
public void addPlayer(Player p) throws KnownPlayerException
{

if (tournament.isPlayerAccepted(p)) {
throw new KnownPlayerException(p);

}
//... Normal addPlayer behavior

}
}
public class TournamentForm {
 private TournamentControl control;
 private ArrayList players;
 public void processPlayerApplications() {
 for (Iteration i = players.iterator(); i.hasNext();) {
 try {

 control.acceptPlayer((Player)i.next());
 }

 catch (KnownPlayerException e) {
 // If exception was caught, log it to console
 ErrorConsole.log(e.getMessage());
 }
 }
}

}

37© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

TournamentControl

Player

players*

Tournament

1

1

+applyForTournament()

Match

+playMove(p,m)
+getScore():Map

matches

*
+start:Date
+status:MatchStatus

-maNumPlayers:String
+start:Date
+end:Date

1
1

*

matches *

TournamentForm

*

*

+acceptPlayer(p)
+removePlayer(p)
+isPlayerAccepted(p)

Advertiser

sponsors *
*

*

*

*

+selectSponsors(advertisers):List
+advertizeTournament()
+acceptPlayer(p)
+announceTournament()
+isPlayerOverbooked():boolean

38© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Implementing a Contract
• Check each precondition:

• Before the beginning of the method with a test to check
the precondition for that method

• Raise an exception if the precondition evaluates to false

• Check each postcondition:
• At the end of the method write a test to check the

postcondition
• Raise an exception if the postcondition evaluates to
false. If more than one postcondition is not satisfied,
raise an exception only for the first violation.

• Check each invariant:
• Check invariants at the same time when checking

preconditions and when checking postconditions

• Deal with inheritance:
• Add the checking code for preconditions and postconditions

also into methods that can be called from the class.

39© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

A complete implementation of the
Tournament.addPlayer() contract

«precondition»
!isPlayerAccepted(p)

«invariant»
getMaxNumPlayers() > 0

«precondition»
getNumPlayers() <

getMaxNumPlayers()

Tournament

+isPlayerAccepted(p:Player):boolean
+addPlayer(p:Player)

+getMaxNumPlayers():int

-maxNumPlayers: int
+getNumPlayers():int

«postcondition»
isPlayerAccepted(p)

40© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Heuristics: Mapping Contracts to Exceptions

• Executing checking code slows down your
program

• If it is too slow, omit the checking code for private and
protected methods

• If it is still too slow, focus on components with the
longest life

• Omit checking code for postconditions and
invariants for all other components.

41© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Heuristics for Transformations

• For any given transformation always use the
same tool

• Keep the contracts in the source code, not in the
object design model

• Use the same names for the same objects
• Have a style guide for transformations (Martin

Fowler)

42© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Summary

• Four mapping concepts:
• Model transformation
• Forward engineering
• Refactoring
• Reverse engineering

• Model transformation and forward engineering
techniques:

• Optiziming the class model
• Mapping associations to collections
• Mapping contracts to exceptions
• Mapping class model to storage schemas

43© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Backup and Additional Slides

44© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Transformation of an Association Class

Tournament Player
* *

Object design model before transformation

Object design model after transformation:
 1 class and 2 binary associations

Statistics

+getAverageStat(name)
+getTotalStat(name)
+updateStats(match)

Tournament Player
* *

1 1

Statistics

+getAverageStat(name)
+getTotalStat(name)
+updateStats(match)

45© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

More Terminology

• Roundtrip Engineering
• Forward Engineering + reverse engineering
• Inventory analysis: Determine the Delta between

Object Model and Code
• Together-J and Rationale provide tools for reverse

engineering

• Reengineering
• Used in the context of project management:
• Provding new functionality (customer dreams up new

stuff) in the context of new technology (technology
enablers)

46© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Specifying Interfaces
• The players in object design:

• Class User
• Class Implementor
• Class Extender

• Object design: Activities
• Adding visibility information
• Adding type signature information
• Adding contracts

• Detailed view on Design patterns
• Combination of delegation and inheritance

47© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Statistics as a product in the Game
Abstract Factory

Game

createStatistics()

ChessGameTicTacToeGame

TTTStatisticsChessStatistics

Tournament

Statistics

update()
getStat()

DefaultStatistics

48© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

N-ary association class Statistics

Tournament

0..10..10..1

1 *

1

LeagueGame Player

Statistics

0..1
1

Statistics relates League, Tournament, and Player

49© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Realization of the Statistics Association

TournamentControl

Statistics

update(match,player)
getStatNames()

StatisticsVault

update(match)
getStatNames(game)
getStat(name,game,player)
getStat(name,league,player)
getStat(name,tournament,player)

StatisticsView

Game

createStatistics()

getStat(name)

50© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

StatisticsVault as a Facade

TournamentControl

Statistics

update(match,player)
getStatNames()

StatisticsVault

update(match)
getStatNames(game)

getStat(name,game,player)
getStat(name,league,player)

getStat(name,tournament,player)

StatisticsView

Game

createStatistics()

getStat(name)

51© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Public interface of the StatisticsVault class

public class StatisticsVault {
public void update(Match m)

throws InvalidMatch, MatchNotCompleted {...}

public List getStatNames() {...}

public double getStat(String name, Game g, Player p)
throws UnknownStatistic, InvalidScope {...}

public double getStat(String name, League l, Player
p)

throws UnknownStatistic, InvalidScope {...}

public double getStat(String name, Tournament t,
Player p)

throws UnknownStatistic, InvalidScope {...}
}

52© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Database schema for the Statistics
Association

scope:long

Statistics table

player:longscopetype:longid:long

id:long
StatisticCounters table

name:text[25] value:double

id:long
League table

...id:long
Game table

... id:long
Tournament table

...

53© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Restructuring Activities

• Realizing associations
• Revisiting inheritance to increase reuse
• Revising inheritance to remove implementation

dependencies

54© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

 Realizing Associations
• Strategy for implementing associations:

• Be as uniform as possible
• Individual decision for each association

• Example of uniform implementation
• 1-to-1 association:

• Role names are treated like attributes in the classes
and translate to references

• 1-to-many association:
• "Ordered many" : Translate to Vector
• "Unordered many" : Translate to Set

• Qualified association:
• Translate to Hash table

55© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Unidirectional 1-to-1 Association

MapAreaZoomInAction

Object design model before transformation

ZoomInAction

Object design model after transformation
MapArea

-zoomIn:ZoomInAction
+getZoomInAction()
+setZoomInAction(action)

56© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Bidirectional 1-to-1 Association

MapAreaZoomInAction
11

Object design model before transformation

MapAreaZoomInAction

-targetMap:MapArea -zoomIn:ZoomInAction
+getZoomInAction()
+setZoomInAction(action)

+getTargetMap()
+setTargetMap(map)

Object design model after transformation

57© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

1-to-Many Association

Layer LayerElement
1 *

Object design model before transformation

LayerElement

-containedIn:Layer
+getLayer()
+setLayer(l)

Layer

-layerElements:Set
+elements()
+addElement(le)
+removeElement(le)

Object design model after transformation

58© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Qualification

SimulationRunsimname 0..1*

Object design model before transformation
Scenario

Scenario

-runs:Hashtable
+elements()
+addRun(simname,sr:SimulationRun)
+removeRun(simname,sr:SimulationRun)

-scenarios:Vector
+elements()
+addScenario(s:Scenario)
+removeScenario(s:Scenario)

Object design model after transformation

SimulationRun

59© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Increase Inheritance

• Rearrange and adjust classes and operations to
prepare for inheritance

• Abstract common behavior out of groups of
classes

• If a set of operations or attributes are repeated in 2
classes the classes might be special instances of a
more general class.

• Be prepared to change a subsystem (collection
of classes) into a superclass in an inheritance
hierarchy.

60© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Building a super class from several classes

• Prepare for inheritance. All operations must
have the same signature but often the
signatures do not match

• Abstract out the common behavior (set of
operations with same signature) and create a
superclass out of it.

• Superclasses are desirable. They
• increase modularity, extensibility and reusability
• improve configuration management

• Turn the superclass into an abstract interface if
possible

• Use Bridge pattern

61© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Object Design Areas

1. Service specification
• Describes precisely each class interface

2. Component selection
• Identify off-the-shelf components and additional

solution objects

3. Object model restructuring
• Transforms the object design model to improve its

understandability and extensibility

4. Object model optimization
• Transforms the object design model to address

performance criteria such as response time or memory
utilization.

62© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Design Optimizations

• Design optimizations are an important part of
the object design phase:

• The requirements analysis model is semantically
correct but often too inefficient if directly implemented.

• Optimization activities during object design:
1. Add redundant associations to minimize access cost
2. Rearrange computations for greater efficiency
3. Store derived attributes to save computation time

• As an object designer you must strike a balance
between efficiency and clarity.

• Optimizations will make your models more obscure

63© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Design Optimization Activities
1. Add redundant associations:

• What are the most frequent operations? (Sensor data
lookup?)

• How often is the operation called? (30 times a month,
every 50 milliseconds)

2. Rearrange execution order
• Eliminate dead paths as early as possible (Use

knowledge of distributions, frequency of path traversals)
• Narrow search as soon as possible
• Check if execution order of loop should be reversed

3. Turn classes into attributes

64© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Implement Application domain classes
• To collapse or not collapse: Attribute or

association?
• Object design choices:

• Implement entity as embedded attribute
• Implement entity as separate class with associations to

other classes

• Associations are more flexible than attributes but
often introduce unnecessary indirection.

• Abbott's textual analysis rules
• Every student receives a number at the first day

in in the university.

65© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Optimization Activities: Collapsing Objects

Student
Matrikelnumber

ID:String

Student

Matrikelnumber:String

66© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

To Collapse or not to Collapse?

• Collapse a class into an attribute if the only
operations defined on the attributes are Set()
and Get().

67© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Design Optimizations (continued)

Store derived attributes
• Example: Define new classes to store information

locally (database cache)

• Problem with derived attributes:
• Derived attributes must be updated when base values

change.
• There are 3 ways to deal with the update problem:

• Explicit code: Implementor determines affected
derived attributes (push)

• Periodic computation: Recompute derived attribute
occasionally (pull)

• Active value: An attribute can designate set of
dependent values which are automatically updated
when active value is changed (notification, data
trigger)

68© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Optimization Activities: Delaying Complex
Computations Image

filename:String

width()
height()
paint()

Image

filename:String
width()
height()
paint()

RealImage

width()
height()
paint()

data:byte[]

data:byte[]

ImageProxy

filename:String
width()
height()
paint()

image

1 0..1

69© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Increase Inheritance

• Rearrange and adjust classes and operations to
prepare for inheritance

• Generalization: Finding the base class first, then the
sub classes.

• Specialization: Finding the the sub classes first, then
the base class

• Generalization is a common modeling activity. It
allows to abstract common behavior out of a
group of classes

• If a set of operations or attributes are repeated in 2
classes the classes might be special instances of a
more general class.

• Always check if it is possible to change a
subsystem (collection of classes) into a
superclass in an inheritance hierarchy.

70© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Generalization: Finding the super class
• You need to prepare or modify your classes for

generalization.
• All operations must have the same signature but

often the signatures do not match
• Superclasses are desirable. They

• increase modularity, extensibility and reusability
• improve configuration management

• Many design patterns use superclasses
• Try to retrofit an existing model to allow the use of a

design pattern

71© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

 Implement Associations
• Two strategies for implementing associations:

1. Be as uniform as possible
2. Make an individual decision for each association

• Example of a uniform implementation (often used
by CASE tools)

• 1-to-1 association:
• Role names are treated like attributes in the classes

and translate to references
• 1-to-many association:

• Always Translate into a Vector
• Qualified association:

• Always translate into to Hash table

