
1© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Software Project Management
Part 1: Organization

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

Introduction into Software Engineering
Lecture 19

2© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Software Engineering is Problem Solving

• Analysis: Understand the nature of the problem
and break the problem into pieces

• Synthesis: Put the pieces together into a large
structure that prepares for the solution

• Technical aspects of the problem solving process:
• Techniques
• Methodologies
• Tools

• Where does project management come in?
• When the available resources to solve the problem are

limited (time, people, budget), or
• When we allow the problem to change.

3© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Software Engineering: Definition

• Software Engineering is a collection of
techniques, methodologies and tools that
support the development of a high quality
software system

• within a given budget
• before a given deadline
• while change occurs.

4© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

A quiet river We are on our way…
Then suddenly

Desired
Location

Current Location
How could this happen to us?

Our Plan

Example: Running a rapid

5© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Change

• Something becomes clear (“it crystalizes”)
• Something new appears (“technology enabler”)
• Something becomes important (“change of

requirements”)
• A process can also change (“process change”)

• Examples:
• Developers have the power to make decisions

(“agile teams”)
• Work is performed where it makes sense:

(“outsourcing”).

6© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

 Change can happen fast

• Most of the important changes are unexpected
• Frederick Brooks, The Mythical Man Month.

• Manager must anticipate and react to unusual
technology happenings

• Wayne Gretzky: “ I go where the puck is going to be,
not where it is”

• Hammer (Reengineering): “Change is the only thing
that is constant”.

7© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Changes in the Business of Software
Development
• Combination of several jobs into one job
• Developers have the power to make decisions
• Processes have multiple versions
• Checks and controls reduced
• Work performed where it makes sense

• Outsourcing.

8© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Iteration 1 Iteration 2 Iteration 3

Project Time PT = (tn - to)

Time between Changes = t2 - t1

Change

t1

Change

t2to tn t

 MTBC = Mean Time Between Changes

 TBC = Time Between Changes (Requirements, Technology)

 PT = Project Time
Project Duration vs. Rate of Change

9© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Rate of Change determines the Process

MTBC >> Project Time

Change is rare

Sequential process: Waterfall, V-model

Iteration 1 Iteration 2 Iteration 3

MTBC << Project Time
Change is frequent

 Entity-based process: agile, empirical process control model.

MTBC ≈ Project Time
 Change will happen during the project

Iterative process: Spiral model, unified process

10© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Management vs. Project Management

Management: Getting a task done through people
Management is usually defined in terms of functions:
• Planning, organizing, directing, controlling and

communicating are typical management functions
• No specific context (going on vacation, flying a plane)

• Project management: Activities in the context of a
project

• Project management tries to accomplish a specific task
within a time frame and limited resources

• Software project management: Activities in the
context of a software project

• Activities to develop a software system within a given
time frame and with limited resources.

11© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Outline of the lecture 7 04 2007

• Basic definitions: Project, Project Plan
• Status of a Project
• Software Project Management Plan

• Project Organization
• Managerial Processes
• Technical Processes
• Work Packages

• Typical Project Management Problems.

12© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Basic Definitions
• Software Project:

• All technical and managerial activities required to produce
a set of deliverables for a client

• A software project has a specific duration, consumes
resources and produces work products

• Management categories to produce work products in a
software project:

• Tasks, Activities, Project Functions

• Software Project Management Plan (SPMP):
• The controlling document for a software project
• Specifies the technical and managerial approaches to

develop the software product
• Companion document to requirements analysis document

• Changes in either may imply changes in the other
document.

13© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Work Categories in a Software Project:
Functions, Activities and Tasks

Task

*
Work

Activity

Project Function

Performance
Criteria
:Task

Cost
Criteria
:Task

Maintenance
Criteria:

Task

End User
Criteria
:Task

Instance Diagram for Work
in an Example Project

Subsystem
Decomposition

:Activity

Determine
Design Goals
:Activity

Access Control
:Activity

Planning:Function

Testing:Function
:Work

Analysis
:Activity

Design
:Activity

Implementation
:Activity

15© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Project Function

• Definition Project Function: An activity or set of
activities that span the duration of the project

:Work

a1:Activity a2:Activity a3:Activity

a21:Activity a22:Activity a23:Activity

t221:Task t222:Task t223:Task t224:Task

f1:Function

f2:Function

16© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

• Project function is the official name in the IEEE
1058 standard.Different names:

• Integral processes (in the IEEE 1074 standard)
• Sometimes also called cross-development processes.

• Examples:
• Configuration Management
• Documentation
• Quality Control (V&V: Verification and validation)
• Training
• Testing
• Project management activities Slide 48-49

Examples of Management activities

Examples of Project Functions

17© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

:Work

a1:Activity a2:Activity a3:Activity

a21:Activity a22:Activity a23:Activity

t221:Task t222:Task t223:Task t224:Task

f1:Function

f2:Function

Tasks
• Smallest unit of work subject to management
• Small enough for adequate planning and

tracking
• Large enough to avoid micro management

18© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Tasks
• Smallest unit of management accountability

• Atomic unit of planning and tracking
• Tasks have finite duration, need resources, produce

tangible result (documents, code)

• Specification of a task: Work package
• Name, description of work to be done
• Preconditions for starting, duration, required resources
• Work product to be produced, acceptance criteria for it
• Risk involved

• Completion criteria
• Includes the acceptance criteria for the work products

(deliverables) produced by the task.

19© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Determining Task Sizes

• Finding the appropriate
task size is difficult:

• During initial planning a
task is necessarily large

• You may not know how
to decompose the
problem into tasks at
first

• Each software
development activity
identifies more tasks
and modifies existing
ones

Reuse Todo lists from
previous projects

• Tasks must be
decomposed into sizes
that allow monitoring

• Decomposition depends
on nature of work and
how well the task is
understood.

• Should correspond to a
well defined work
assignment for one
participant for a week
Action item.

20© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

 Action Item
• Definition Action Item: A task assigned to a

person to be done by a certain time
• What?, Who?, When?
• Heuristics for duration: One week

• Definition Todo: An action item that is missing
either the person or the deadline

• Examples of Todos:
• Unit test class Foo, develop project plan

• Example of Action Items:
• Bob posts the next agenda for the context team meeting

before Sep 10, 12 noon
• The testing team develops the test plan by Oct 21.

21© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

:Work

a1:Activity a2:Activity a3:Activity

a21:Activity a22:Activity a23:Activity

t221:Task t222:Task t223:Task t224:Task

f1:Function

f2:Function

Activities • Major unit of work with precise dates
• Consists of smaller activities or tasks
• Culminates in project milestone.

22© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Activities

• Major unit of work
• Culminates in major

project milestone:
• Internal checkpoint should

not be externally visible
• Scheduled event used to

measure progress

• Milestone often
produces project
baselines:

• formally reviewed work
product

• under change control
(change requires formal
procedures)

• Activities may be
grouped into larger
activities:

• Establishes hierarchical
structure for project
(phase, step, ...)

• Allows separation of
concerns

• Precedence relations
often exist among
activities.

23© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Work package, Product, Deliverable,
Baseline

• Work Package:
• A description (specification) for the work to be

accomplished in an activity or task

• Work Product:
• Any tangible item that results from a project function,

activity or task.

• Deliverable:
• A work product to be delivered to the customer

• Baseline:
• A work product that has been formally reviewed and

agreed upon
• A project baseline can only be changed through a

change request and a formal change procedure.

24© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Work package, Product, Deliverable

produced-by*

Task

*
Work

Activity

Project FunctionProject DeliverableInternal Work Product

Work ProductSet of Work Products

Outcome*

Work Package describes

25© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Project Agreement

• Project Agreement: Document written for a
client that defines:

• the scope, duration, cost and deliverables for the
project

• the exact items, quantities, delivery dates, delivery
location.

• The form of a project agreement can be a
contract, a statement of work, a business plan,
or a project charter.

26© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Software Project Management Plan (SPMP)

• IEEE Std 1058
• What it does:

• Specifies the format and contents of software project
management plans

• Provides a standard set of abstractions for a project
manager or a whole organization for developing
software project management plans

• Abstractions: Project, Function, Activities, Tasks

• What it does not do:
• It does not specify the procedures or techniques to be

used in the development of the plan.

27© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Problem Statement, SPMP, Project Agreement

Client
(Sponsor)

Project Manager Project Team

Project
Agreement

Problem
Statement Software Project

Management Plan
(SPMP)

28© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Software Project Management Plan

0. Front Matter
1. Introduction
2. Project Organization
3. Managerial Process
4. Technical Process
5. Work Elements, Schedule, Budget
Optional Inclusions

29© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

SPMP Part 0: Front Matter

• Title Page
• Revision sheet (update history)
• Preface: Scope and purpose
• Tables of contents, figures, tables

30© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

SPMP Part 1: Introduction

1.1 Project Overview
• Executive summary: description of project,

product summary
1.2 Project Deliverables

• All items to be delivered, including delivery
dates and location

1.3 Evolution of the SPMP
• Plans for anticipated and unanticipated

change
1.4 Reference Materials

• Complete list of materials referenced in SPMP

1.5 Definitions and Acronyms

31© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

SPMP Part 2: Project Organization

2.1 Process Model
• Relationships among project elements

2.2 Organizational Structure
• Internal management, organization chart

2.3 Organizational Interfaces
• Relations with other entities (subcontractors,

commercial software)
2.4 Project Responsibilities

• Description of major functions and activities;
nature of each; who’s in charge

• Matrix of project functions/activities vs.
responsible individuals.

Example
Slide 52

Example
Slide 61

32© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

SPMP Part 3: Managerial Process

3.1 Management Objectives and Priorities
• Describes management philosophy, priorities among

requirements, schedule and budget

3.2 Assumptions, Dependencies and Constraints
• External events the project depends on, constraints

under which the project is to be conducted

3.3 Risk Management
• Identification and assessment of risk factors,

mechanism for tracking risks, implementation of
contingency plans

3.4 Monitoring and Controlling Mechanisms
• Frequency and mechanisms for reporting

3.5 Staffing Plan
• Number and types of personnel required for the project

Examples
See Slide 53.

33© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

SPMP Part 4: Technical Process

2.1 Methods, Tools and Techniques
• Specify the methods, tools and techniques to be used on

the project

2.2 Software Documentation
• Describe the documentation plan

2.3 Project Support Functions
• Plans for (at least) the following project support

functions.
• Quality assurance
• Configuration management (IEEE Std 1042)
• Verification and validation

• The plans can be included in this section or there is a
reference to a separate document.

34© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

SPMP Part 5: Description of Work Packages

5.1 Work Breakdown Structure (WBS)
• Hierarchical decomposition of the project into activities

and tasks

5.2 Dependencies between tasks
• Temporal relationship between tasks: “must be

preceded by”
• Structural relationships

• A dependency graph visualizes the temporal
dependencies

• Nodes are activities
• Lines represent temporal dependencies

Example
Slide 58.

Example
Slides 46-47

35© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Work Breakdown Structure

*

Task

*
Work

Activity

Work Breakdown Structure

Work Breakdown Structure: The aggregation of all the work
to be performed in a project.

36© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Time estimates for establishing a WBS

• Establishing an WBS in terms of percentage of
total effort:
• Small project (7 person-month): at least 7% or 0.5

Person Months (PM)
• Medium project (300 person-month): at least 1% or

3 PMs
• Large project (7000 person-month): at least 0.2 %

or 15 PMs

Source: Barry Boehm, Software Economics.

37© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Creating Work Breakdown Structures
• Two major approaches

• Activity-oriented decomposition („functional
decomposition“)

• Write the book, get it reviewed, do the suggested
changes, get it published

• Result-oriented decomposition („Object-oriented
decomposition“)

• Chapter 1, Chapter 2, Chapter 3

• Which one is better? Depends on project type:
• Development of a prototype
• Development of a product
• Project team consist mostly of inexperienced beginners
• Project team consists of experienced developers

38© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Should you mix the WBS Approaches?

• Consider a WBS for the activity „Prepare report“
• Activity-oriented approach:

• Write draft report (Joe)
• Review draft report (Ann)
• Write final report (Joe)

• Result-oriented approach:
• Chapter 1 (Joe)
• Chapter 2 (Ann)

• Mixed approach:
• Chapter 1 (Joe)
• Chapter 2 (Ann)
• Review draft report (Ann)
• Write final report (Joe)

Why is
this bad?

“Write the final version of Chapter 2”
can be included Ann’s task:
“Chapter 2” or in Joe’s task

“Write final report”.

39© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

SPMP 5: Description of Work Packages (cont‘d)

5.3 Resource Requirements
• Estimates of the resources required to complete the project

• Numbers and types of personnel
• Computers, office and laboratory facilities, travel

• Maintenance and training requirements

5.4 Budget
5.5 Schedule

• Estimates the duration of each task
• Often used notation: PERT Chart (Performance Evaluation

Review Technique, invented in 1958 for managing the
development of the Polaris rocket)

• Dependency graph labeled with time estimates
• Allows computation of critical paths.

Example Slide 61

40© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

How much planning should you do?

• Two styles of navigation [Gladwin 1964]
• “European navigation”

• Current Location and Desired Location
• Planned Route
• Route Deviation and Route Correction

• “Polynesian navigation”
• Goal
• Reaction to unexpected: Change the route

The main difference is the reaction to events
This leads us to the notion of situated action

41© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Situated action [Suchman 1990]

• Situation Action: Selection of action depends on
type of event, situation and skill of developer

• Events: Course deviation, Birds seen, Clouds seen

• European Navigation is context independent:
• Event: “Course deviation in the morning”

=> Action: “Course correction towards planned route”
• Event: “Course deviation in the evening”

=> Action: “Course correction towards planned route”

• Polynesian Navigation is context dependent:
• Event: “Birds seen”, Context: It is morning

=> Action: “Sail opposite to the direction the birds are
flying”

• Event: “Birds seen”, Context: It is evening
=> Action: “Sail in the direction the birds are flying.

46

42© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Auckland
(Desired Location)

Lima
(Current Location)

Planned Route

Actual Route

Event: Course deviation

Action: Course correction

“European Navigation”

43© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Auckland Project Plan (European
Navigation)

Project Goal: Auckland Desired Outcome:
 Auckland is found

Team: Captain and 50 sailors Organization: Flat
 hierarchy

Tools: Compass, speed meter, map
Methods: Determine course and write it before departure.

Example: Start Lima. Sail West, keep the compass constantly
at 97 degrees, stay at latitude 20 degrees

Work breakdown structure:
• Task T1 (Check direction): Determine current direction of ship
• Task T2 (Compute deviation): Determine deviation from plan
• Task T3 (Course Correction): Bring ship back on course

Process: Execute T1 and T2 hourly. If there is a deviation,
execute T3 to bring the ship back on the planned course.

Schedule: With good wind 50 days; with doldrums 85 days.

40

44© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

“We need a new place
for living.

 Let’s go to Auckland”

Tahiti
“Empty island, great

place for living”

Event: “Birds seen”

 Action: “Follow the birds”

Lima
(Current Location)

Polynesian Navigation

45© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Auckland Project Plan (Polynesian Navigation)

Project Goal: Auckland Desired Outcome: A new place
Team: Captain and 50 sailors Organization: Flat hierarchy
Tools: Stars for navigation, hand for measuring temperature
Methods: A set of event-action rules. When an event occurs,

determine action in the current context.
Work breakdown structure:

• Task T1 (Set direction): Determine new course for ship
• Task T2 (Check Clouds): Look for clouds in the distance
• Task T3 (Check Birds): Look for birds, determine their direction
• Task T4 (Change course): Change direction to follow new course

Process:
• Start with T1 and T4. Then execute T2 and T3 regularly.

Interpret task results (cloud detected, birds detected) in the
current context. If the interpretation makes a new course more
promising, execute tasks T1 and T4.

Schedule: None

46© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Pros and Cons of Project Plans
• Advantages:

• Very useful to kick off a software project (establish
goals, organize teams, and start with development)

• Also useful if the outcome is predictable or if no major
change occurs

• Disadvantages:
• Of limited value

• when outcome is unpredictable
• when events occur that change the project context

• Examples of unexpected events:
• Appearance of new technology during the project
• A visionary scenario turns out to be not implementable
• Change of requirements

Lecture on Agile Methods.

47© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Additional Readings

• [IEEE Std 1058]
• Standard for Software Project Management Plans

• Frederick Brooks
• No Silver Bullet, IEEE Computer, 20, 4 10-19, April 1987

• L.A. Suchman
• Plans and Situated Actions: The Problem of Human

Machine Communication, Cambridge University Press,
1990.

• Barry W. Boehm
• Software Engineering Economics, Prentice Hall, 1981.

• T. Gladwin
• “Culture and logical process”, in W. Goodenough (ed),

Explorations in Cultural Anthropology: Essays Presented
to George Peter Murdock, McGraw-Hill, New York, 1964.

48© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Summary
• Software engineering is a problem solving activity

• Developing quality software for a complex problem within
a limited time while things are changing

• The system models addresses the technical
aspects:

• Object model, functional model, dynamic model

• Other models address the management aspects
• SPMP, WBS, Schedule are examples
• Other models: Issue models, Cost models

• Technical terms introduced in this lecture:
• Project, Activity, Function, Task, WBS, SPMP.

49© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Backup Slides

50© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Tasks, Activities and Project Functions
(UML Class Diagram)

Task

*
Work

Activity

Project Function

51© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Project Management Activities in a
Software Project

Initial Software

Definition

Project Management Plan
Initial Software
Architecture

Start

Skill
Identification

Conception

Formulate Idea Cost-Benefit AnalysisFeasibility Study

Problem Statement
Definition

Infrastructure setupTeam assembly

Project Agreement

Project Kick-off

52© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Management activities in a software
project (cont’d)

Scope agreementProject replanning

Controlling Risk management

Installation

Steady state

Termination

Client acceptance test Postmortem

15

53© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

“Laws” of Project Management

• Projects progress quickly until they are 90%
complete. Then they remain at 90% complete
forever.

• When things are going well, something will go
wrong.

• When things just can’t get worse, they will.
• When things appear to be going better, you

have overlooked something.
• If project content is allowed to change freely,

the rate of change will exceed the rate of
progress.

• Project teams detest progress reporting
because it manifests their lack of progress.

54© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Organizational Structure Example

Client Client Liaison Management Consultants

Architecture

Documentation

User Interface

Cross Functional Teams

Subsystem 1

Subsystem 2

Subsystem 3

Client Teams

Subsystem 4

Subsystem 5

Subsystem 6

Subsystem 7

Server Teams

Development Teams

Infrastructure Team

55© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Examples of Risk Factors

• Contractual risks
• What do you do if the customer becomes bankrupt?

• Size of the project
• What do you do if you feel the project is too large?

• Complexity of the project
• What do you do if the requirements are multiplying

during analysis? („requirements creep“)

• Personal fluctuation
• How do you hire people? Is there a danger of people

leaving the project?

• Customer acceptance
• What do you do, if the customer does not like the

developed prototype?

56© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Example: Activities to Build a House

• Surveying
• Excavation
• Request Permits
• Buy Material
• Lay foundation
• Build Outside Wall
• Install Exterior Plumbing
• Install Exterior Electrical
• Install Interior Plumbing
• Install Interior Electrical

• Install Wallboard
• Paint Interior
• Install Interior Doors
• Install Floor
• Install Roof
• Install Exterior Doors
• Paint Exterior
• Install Exterior Siding
• Buy Pizza

These activities are known by a good contractor

Finding these activities may also require brainstorming
It then requires similar activities used during analysis (use case modeling).

34 57

57© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Hierarchical Organization of the Activities
(Top-Level Use Cases)

• Building the house consists of
• Prepare the building site
• Building the Exterior
• Building the Interior

• Preparing the building site consists of
• Surveying
• Excavation
• Buying of material
• Laying of the foundation
• Requesting permits

22

58© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Example of a Dependency Graph: Building
a House

START

Request

Survey
ing

Excava
tion

Buy
Material Founda

tion

Build
Outside

Wall

Install
Exterior
Plumbing

Install
Interior
Plumbing

Install
Exterior
Electrical

Install
Interior
Electrical

Install
Exterior

Siding

Install
Wallboard

Paint
Exterior

Install
Roofing

Install
Flooring

Paint
Interior

Install
Interior
Doors

Install
Exterior

Doors

FINISH

The activity
„Buy Material“ must
Precede the activity
„Lay foundation“

Lay

59© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Example of a Schedule: Building a House
(PERT Chart)

Each activity has a start time and
an estimated duration

Duration

Start Time

Slack Time

START

8/27/94

0
0

Request
Permits

8/27/94

15
0

Survey
ing

8/27/94

3
12

Excava
tion

9/17/94

10
0

Activity8/29/94

0

Buy
Material

10/1/94

10
0

Lay
Founda
tion

10/15/94

15
0

Build
Outside

Wall

11/5/94

20
0

Install
Exterior
Plumbing

12/3/94

10
12

Install
Interior
Plumbing

12/3/94

12
0

Install
Exterior
Electrical

12/17/94

10
12

Install
Interior

Electrical

12/21/94

15
0

Install
Exterior

Siding

12/31/94

8
12

Install
Wallboard

1/11/95

9
0

Paint
Exterior

1/12/95

5
12

Install
Roofing

1/19/95

9
12

Install
Flooring

1/22/95

18
0

Paint
Interior

1/22/95

11
0

Install
Interior
Doors

2/8/95

7
0

Install
Exterior

Doors

1/19/95

6
15

FINISH

2/16/95

0
0

0

Critical path: sequence of activities that
determines the shortest time possible to
complete the project. Any delay of an
activity on the critical path impacts the
planned completion date.

60© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Goals of PERT Charts

• Determination of total project time („project
duration“)

• Determination of the critical path
• Determination of slack times

61© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Software Lifecycle Activities

Subsystems

Structured By

class...
class...
class...

Source
Code

Implemented
 By

Solution
Domain
Objects

Realized By

System
Design

Object
Design

Implemen-
tation Testing

Application
Domain
Objects

Expressed in
Terms Of

Test
Cases

?

Verified
By

class....?

Requirements
Elicitation

Use Case
Model

Analysis

Structural Relationships:

