Methodologies

Introduction into Software Engineering
Lecture 21

Bernd Bruegge
Applied Software Engineering
Technische Universitaet Muenchen

Ovultline

A mountaineering example

Project context
* Goals, client types
 Environment, methods, tools, methodology

Methodology spectrum

* Planning, design reuse, modeling, process,
control&monitoring, redefinition

Different types of planning
Different ways to use models
Use of processes in software development

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Key Decisions in an Expedition

* A leader must answer several key TN
questions to create a successful expedition

« What mountain should be climbed?
 What types of tools should be used?
« Who should be member of the team?
* Does the expedition need a leader?

* Different answers to these questions
lead to different styles:

Siege style Fixed—ropeﬂ Free Solo Alpine style

‘~ e

e
~ \ S \
& ;

939 High Poin

Key Decisions in a Software Project

* Project goals

 Schedule

e Cost

e Project organization

e Software life cycle model

e Tools

e Methods

e Team members and organization

—> Influenced by Methodology

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Methodology

Definition:
» Collection of and for
developing and managing a software system
to achieve a specific goal in a given

—

e Defined by the client and current state of the development
organization. Constrains the project manager
(Example: Hierarchical or project-based organization)

 Techniques to choose from in a given project environment
(Example:Object-Oriented Analysis, waterfall model)

* Devices or programs that support the development and
management activities (Example: CASE Tool, IDE)

A methodology specifies for a specific project environment
1) when methods or tools should be used and when not
2) what to do when unexpected events occur.

wraro Enoinaoring
vvvvvvvvvvvvvvvvv v < Tl

Sl avvuy 94

Project Environment

o Participants’ expertise
e Beginner, expert, slow learner, fast learner

= Type of Client

« Domain knowledge, decision power

End user access

« No end user available, end user participates in
requirements elicitation, end user participates in
usability tests

Technological climate (“technology enablers”)
Geographical distribution

Project duration

Rate of change

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Client Type

Domain Knowledge

High Low
Decision Power
High ==} Local King Client | Pseudo Client
Low Proxy Client No Client

© 2007 Bernd Bruegge

Introduction into Software Engineering Summer 2007

Local King Client

A client who can answer developer questions
and make decisions without having to ask
anybody else

Has deep knowledge of the application domain
(and/or the solution domain)

Usually collocated with the project

Does not have report to anybody else

« Can effectively collaborate with the project manager
and often even with the the developers.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Proxy Client

* Proxy clients are sent for the “real client”

Reasons:
« Real client has no time

* Physical distance would make collaboration of the real
client with the project organization difficult

* Proxy clients have sufficient knowledge of the
application domain

e They can answer clarification questions from the
developers

* Proxy clients do not have sufficient power

« They cannot make major decisions, they have to ask
somebody else => time delay!

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 9

Pseudo Client

« The pseudo client is a member of the
development organization

« Often even developers act as pseudo clients

» If the system is targeted at a new market segment,
the pseudo client often comes from marketing

 Pseudo clients can make decisions within a short
time

 Pseudo clients have a limited knowledge of the
application domain.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 10

“No Client”

* A project can start without a client

« Example: A visionary product is developed before a
market segment is opened

e In these cases the project manager should still
select a client, usually a pseudo client who acts
as an end user

 The stakes of the developers can be balanced against
the stakes of the future user.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 11

End User Access

Clients and end users usually do not have the
same interests

Clients are interested in
« an early delivery date
« as much functionality as possible
e low cost

End users are interested in

« a familiar user interface
* an easy to learn user interface
« a system that supports their specific task well

If the project success depends on the usability
of the product, then

* end users should be included in the project

« usability tests should be conducted with the end users.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 12

Project Environment

o Participants’ expertise
e Beginner, expert, slow learner, fast learner

 Type of Client

« Domain knowledge, decision power

e End user access

 No end user available, end user participates in
requirements elicitation, end user participates in
usability tests

—) Technological climate (“technology enablers”)
e Geographical distribution
e Project duration
 Rate of change

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

13

Technological climate

 Depending on the requirements expressed by
the client, a project may be constrained in the
technological components it has to use.
Examples:
* A project needs to improve a legacy system

o It deals with well-known and mature technology
but the technology might be out of date

» A project develops a first-of-a-kind prototype
e based on a new technology enabler
 Examples: RFID, GPS

» Usually has to deal with preliminary versions of
components and immature technology

* GPS in a mobile phone

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 14

Geographical Distribution

» "Single room” projects: Participants in a single room

 Reasons for distributed projects:
* Organization may have resulted from the merger

* Organization is a consortium, located in different
geographical locations

» Part of the organization must be collocated with client

 Geographical distribution has advantages and
disadvantages:

A Promise of low cost labor

A Increases the availability of skill

AN May take advantage of different time zones

WV Slows down communication and decision making
V Lowers awareness among teams

WV Leads to loss of information between sites

¥ High communication cost.

© 2007 Bernd Bregge Introduction into Software Engineering Summer 2007 15

Methodology Issues

« Methodologies provide general principles and
strategies for selecting methods and tools in a
given project environment

 Key questions for which methodologies provide
guidance:

« How much involvement of the customer?
=) How much planning?

« How much reuse?
:> How much modeling before coding?
:> How much process?

¢ How much control and monitoring?

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 16

How much Planning?

 Two styles of navigation [Gladwin 1964]
e European navigation:
e Current Location and Desired Location
 Planned Route
 Route Deviation and Route Correction
e “Polynesian navigation”

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

17

“European Navigation” (Plan-based)

gV Lima
> > ~“(Current Location)

A Mariana
Trench

Auckland
(Desired Location)

Event: Course deviation.

Action: Course correction

—

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 18

Polynesian Navigation (Situation-based)

Lima
Current location)

=<

Event: “Birds seen”
“Follow the birds”’

Action:

Tabhiti
(Empty island, great
place for Living)

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 19

Situated action 7 11 2007

Context-dependent action [Suchman 1990]

» Selection of action depends on the type of event, the
situation and the skill of the developer

Event: “"Course deviation in the morning”

o Action: “Course correction towards planned route”
Event: “"Course deviation in the evening”

o Action: “Course correction towards planned route”

Event: "Birds seen”, Context: Morning

« Action: "“Sail opposite to the direction of the birds
Event: “"Birds seen”, Context: Evening

» Action: “Sail in the direction of the birds”.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 20

Outline for Today

Finishing up this lecture on Methodologies
Last Lecture: Agile Methods XP and Scrum
Comments on the Evaluation

Final:
* Organizational Issues
« How to prepare for the Final.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 21

Pros and Cons of Software Project Plans

e Plus
* Very useful to kick off a software project

« Useful also if the outcome is predictable or if no major
change occurs

e Con:
» Of limited value to control the project when
* the outcome is unpredictable

« when unexpected events occur that change the
project environment, tools or methods

« Examples of unexpected events:
« Appearance of new technology unknown at project start
e A visionary scenario turns out to be unimplementable
« Company is merged with another one during the project.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 22

How much Modeling?

 Modeling enables developers to deal with complexity

 Modeling makes implicit knowledge about the system
explicit

* Modeling formalizes knowledge so that a number of
participants can share it

» If one is not careful, models can become as complex as
the system being modeled.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 23

Managerial Challenges of Modeling

 Formalizing knowledge is expensive
» Takes time and effort from developers
« Requires validation and consensus

« Models introduce redundancy
» If the system is changed, the models must be changed

» If several models depict the same aspects of the
system, all of them must be updated

» If one model becomes out of sync, it loses its value

« Models become complex

e As the model complexity becomes similar to the
complexity of the system, the benefit of having a
model is reduced significantly.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 24

Model of a Software Project

Project

¢

%k

y

*

Work Product

Schedule

Task

Participant

© 2007 Bernd Bruegge

Introduction into Software Engineering Summer 2007

25

Models can become complex

Outcome

A

o

Set of Work
Products

© 2007 Bernd Bruegge

I Equipment
P - t l - -
<:>| — * Facility
Resource Fund
* Organi-
o zation
Breakdown
Schedule Structure
con-
—‘* sumes *
] Organizational
Work respo Unit »
* [— | sibl Tovs
A depends__fo / play Ax
Role
I | |
Work T
Proo;u‘:t | |ACthlty Task Participant||StaffF—

Introduction into Software Engineering Summer 2007

26

Use Patterns to Reduce Complexity

|

Equipment
<> Project S>5—
* Facility
Resource <} Fund
s Organi-
Composite Patfterns Work zation
Breakdown
\ ::::“‘~\~~§Sggg§ule Structure
N %n_
sume
preduc

Organizational
Unit

Outcome Work

* -
I stb
4 /. \ depends §ql‘

—<>| Activity || Task Participant |[[Staff>—

| Products Product
7\ N /\
P

\I‘nter::lal Progect _ -/ \L/
£ Project Function Department “Team

Work Produc Deliverable

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 27

Reducing the Complexity of Models

 To reduce the complexity of large model we use
navigation and abstraction

e Start with a simplified model and then decorate
it incrementally

o Start with key abstractions (use animation)
e Then decorate the model with the additional classes

 To reduce the complexity of the model even
further

« Use inheritance (taxonomies, design patterns)

» If the model is still too complex, show the subclasses
on a separate page

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 28

Where do we need Models?

 Models support three different types of
activities:
° The model provides a common

vocabulary. An informal model is often used to
communicate an idea

. Models enable developers to reason
about the future system
. |: Compact representation for storing the design

and rationale of an existing system.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 29

Models to support Communication

e Also called

 Most often used in the early phases of a project
and during informal communications.
« The model does not have to be consistent or complete
 The notation does not even have to be correct

« The model is used only to communicate an idea
to a person

« If the idea is understood, the model has served its
purpose

« UML is our preferred notation for models to
support communication

« Communication Media:
A Whiteboard, a slide or even a napkin.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 30

“Napkin Design'’

| F’itt:--sbur_o]h

=

l r
0 P

-

<

© 2007 Bernd Bruegge

Geographic Environmental Modeling Syster

Zoom FunecTion
CLICK ([oRNER. OF Bo
PrAG To Deswep Size

Introduction into Software Engineering Summer 2007

31

Models to support Analysis and Design

e Also called

e The model provides a representation that
enables developers to reason about the system
e The model is used to communicate the idea to a
computer
« The model needs to be made consistent and complete

« The notation must be correct so the model can be
entered into a CASE tool

« UML is our preferred notation for models to
models that support analysis and design.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 32

Methodology Issues

« Methodologies provide guidance, general
principles and strategies for selecting methods
and tools in a given project environment.

 Key questions for which methodologies provide
guidance:

« How much involvement of the customer
v"How much planning?
« How much reuse?
v "How much modeling?
:> How much process?
¢ How much control and monitoring?

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 33

Problems with linear Models

Each edge describes 2 types of

(et th dependencies
e e Temporal dependency:

(m?%i%%'?orh / ,must be finished before"
Process

e Logical dependency

Ge ‘;%,‘;%“;%“% »,The API depends on the
C subsystem decomposition®
PDreOSCiegSnS

anlementat%
Process
Verification
& Validation
Process
Installation
Process
Operation &
upport Proce

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 34

Waterfall Model

The Waterfall Model is a Dinosaur

Copyright @ 1336 Joe¢ Tucciarone and Jeff Poling

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 35

© 2007 Bernd Bruegge

Introduction into Software Engineering Summer 2007

36

© 2007 Bernd Bruegge

Introduction into Software Engineering Summer 2007

37

Controlling Software Development with a
Process

How do we control software development? Two
opinions:

 Through (Humphrey)
» Use a defined process, Capability Maturity Model
(CMM)
 Through (Schwaber):

* Large parts of software development is empirical in
nature; they cannot be modeled with a defined process

« Use an empirical process

« How can software development be controled?
——>Humphrey: with a control model
——>Schwaber: with an control model.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 38

Defined Process Control Model

 Requires that every piece of work is completely
understood

e Deviations are seen as errors that need to be
corrected

 Given a well-defined set of inputs, the same
outputs are generated every time when the
defined process is applied

 Precondition to apply this model:

» All the activities and tasks are well defined to provide
repeatability and predictability

o If the preconditions are not satisfied:

» Lot of surprises, loss of control, incomplete or wrong
work products.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 39

Empirical Process Control Model

The process is imperfectly defined, not all pieces
of work need to be completely understood

Deviations are seen as opportunities that need
to be investigated

« The empirical process “expects the unexpected”
Control is exercised through frequent inspection

Conditions when to apply this model:

 There are frequent changes in the project,
unpredictable inputs and unrepeatable outputs.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 40

Summary

A project has many contexts
* Goals, client types
 Environment, methods, tools, methodology

Methodology issues

* Planning, design reuse, modeling, process,
control&monitoring

Different types of planning

 European vs. Polynesian navigation
Different types of models

 For communication, specification and archival

Different ways to control processes
» Defined vs. empirical process control models.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 41

Additional References

« W. Humphrey

e Managing the Software Process, Addison-Wesley,
Reading MA, 1989

« K. Schwaber, M. Beedle, R. C. Martin

» Agile Software Development with Scrum, Prentice Hall,
Upper Saddle River, NJ, 2001.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 42

Backup and Additional Slides

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 43

Model for Bus Stops (used in Slide
Presentation)

Street Segments

Bus Stop

© 2007 Bernd Bruegge

Adresses, length
Street Bus Route
name name

Schedule

Ll Bus

Introduction into Software Engineering Summer 2007

44

A UML Model for Bus Stops

next to

located on * Bus Stop
| Street Segment —
ocation
Addresses(left, right) =
length Day
% number
\ %
line id line id Schedule
Street Bus Route - Time
—_— name
name
type traverses
stops at
{exactly 2} N
Intersection | Bus
. *
id
X,y

© 2007 Bernd Bruegge

Introduction into Software Engineering Summer 2007

45

For many people, moving away from
defined processes means
descending into chaos.

However, a process can be controlled
even if it cannot be defined

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 46

Auckland Project Plan (European Navigation)

 Project Goal: Auckland

e Desired Outcome: Auckland is found
e Team: Captain and 50 sailors
 Organization: Hierarchical

 Tools: Compass, speed meter, map

« Methods: Determine planned course, write planned course
before departure.

e Work breakdown structure

« Task T1: Determine current direction of ship

« Task T2: Determine deviation from desired course

« Task T3: Bring ship back on course
 Process:

 Execute T1 and T2 hourly. If there is a deviation, execute T3

 Schedule: 50 days, if the wind is good; 85 days, if
doldrums are encountered.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 47

Auckland Project Plan (Polynesian Navigation)

 Project Goal: Auckland

 Desired Outcome: A new place for living is found

e Team: Captain and 50 sailors Organization: Flat
e Tools: Stars and water temperature for navigation

e Methods: A set of event-action rules. Execution of actions is
determined by the given context.

« Work breakdown structure
« Task T1: Set direction of ship to a certain course
 Task T2: Look for clouds in the distance
 Task T3: Look for birds and determine their direction
o Task T4: Determine new course for ship

e Process: Start with T1. Execute Tasks T2 and T3 regularly.
The result (cloud detected, birds detected) is interpreted in
the current context. Depending on the interpretation
execute task T4 and T1.

e Schedule: None

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 48

Enabling Technologies for Light-Weight
Processes

e Internet

Self-Organizing Teams
Peer-to-Peer Communication
Ability to Change Plans
Situated Actions

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 49

What type of process do we need?

e Big vs Small Systems

» Space-Shuttle, fly-by-wire

 OS kernels, searching, sendmail
e Embedded Systems

e Airbag controllers
 Brake systems

“Blue Collar” Applications

Mobile Systems
Mobile Maintenance, Mobile Health care

Augmented Reality Systems
Overlay of virtual information on real objects in real time

lyingiBridged
50

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Local King Client
o Can make decisions
e Deep knowledge of application
domain
e Usually collocated with the project.
e Does not report to anybody else
e Can answer developer questions
e Can effectively collaborate with
developers and project manager.

I 11611

Pseudo Client
e Often member of the development
organization (e.g. marketing)
e The system is targeted at new market
segment.

Proxy Client
» Stands in for real client, who has no
time or physical distance makes
collaboration with the organization
difficult.
* Has sufficient knowledge of application
domain
e Cannot make major decisions.

WWW&EM

No Client
e Many projects start without a client.
e Example: A visionary product is

e Can make decisions in a short time
e Collaborates well with developers
e Limited knowledge of application
domain.

| I

oxy|developed before a market segment is
~ opened.

L

© 2007 Bernd Bruegge

Introduction into Software Engineering Summer 2007 51

Input for User Interface Generator

© 2007 Bernd Bruegge

— |:|| ¥ ip Helvetica 12 mag 1x é\}

i
<§> P

Mowe Resize Examine Relat.e1 Edit Hagnify MNarrow
q z

[0} : 1 9

File Edit Composition Font Border Fglolor BgColor Align YWiew

—_

i

=Magnification
=1

Cetail
=Show Mames
= Bus Stop
= Building
S0 attraction

Showe &l

Hilue YGlue Menultem [push | Ovradio Ccheck — | {f¥ 52 i Panner Message StringEditor GraphicBlack
FileBrowser TextEditor StringBrowser Q@ © G D &£ w2 MarginFrame PulldownMenu PullrightMenu
CommandContraol HPatelControl YPanelContral Yiewer

Introduction into Software Engineering Summer 2007

52

Screen Snapshot of Graphical User
Inferface

Forbes_RAwve

Tetail

1.0

Hagnification

Show Mames
£1 Bus Stop

£1 Building

Help
Information
Vizit
Utilities
!E‘ |!E Exit
Where is E Trawvel by Bus I Show All I Find All Bus Routes Find Mearest I Find All Within I
© 2007 Bernd Bruegge

Introduction into Software Engineering Summer 2007

UML can model more than Software
Systems

« UML has been designed to model software
artifacts.

e However, UML is a modeling language that can
be used to model a variety of phenomena
e projects and processes, even philosophical systems.
« The models for projects and processes used in

the book are models intended for
communication.

© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007 54

