
1© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Methodologies:
Extreme Programming

and Scrum

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

Introduction into Software Engineering
Lecture 23

2© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Outline of the Lecture

• Examples of Methodologies
• Extreme Programming
• Scrum

3© 2006 Bernd Bruegge Software Engineering WS 2006/2007

XP (Extreme Programming)

• XP is an agile software methodology
• Higher priority on adaptability (“empirical process control

model”) than on predictability (“defined process control model”)
• Change in the requirements is normal during software

development
• Software developer must be able react to changing

requirements at any point during the project
• XP prescribes a set of day-to-day practices for managers and

developers to address this problem.

4© 2006 Bernd Bruegge Software Engineering WS 2006/2007

History of XP

• Original cast
• Kent Beck, Ron Jeffries, Ward Cunningham (also

created Wiki)

• Application of XP in the Chrysler Comprehensive
Compensation project (C3 Project) in 1995

• Lots of initial excitement but later a lot of
problems:

• Daimler actually shut down the C3 Project in 2000 and
even banned XP for some time

• (See Additional References).

5© 2006 Bernd Bruegge Software Engineering WS 2006/2007

XP Day-to-Day Practices (“XP Mantras”)

1. Get Rapid feedback for open issues
• Confronting issues early results in more time for

resolving issues. This applies both to client feedback
and feedback from testing

2. Focus on simplicity, in particular in the design
• The design should focus on the current requirements
• Simple designs are easier to understand and change

than complex ones

3. Incremental change
• One change at the time instead of many concurrent

changes
• One change at the time should be integrated with the

current baseline.

6© 2006 Bernd Bruegge Software Engineering WS 2006/2007

XP Mantras (continued)

4. Embracing change
• Change is inevitable and frequent in XP projects
• Change is normal and not an exception that needs to

be avoided

5. Quality work
• Focus on rapid projects where progress is

demonstrated frequently
• Each change should be implemented carefully and

completely.

7© 2006 Bernd Bruegge Software Engineering WS 2006/2007

How much planning in XP?

• Planning is driven by requirements and their
relative priorities

• Requirements are elicited by writing stories with the
client (called user stories)

• User stories are high-level scenarios or use cases
that encompass a set of coherent features

• Developers decompose each user story in terms of
development tasks that are needed to realize the
features required by the story

• Developers estimate the duration of each task in terms
of days

• If a task needs more than a couple of weeks, it is
further decomposed into smaller tasks.

8© 2006 Bernd Bruegge Software Engineering WS 2006/2007

How much planning in XP?

• Ideal weeks
• Number of weeks estimated by a developer to

implement the story if all work time was dedicated for
this single purpose

• Project velocity
• Inverse of ideal weeks

• i.e., how many ideal weeks can be accomplished in
fixed time

• Fudge Factor
• Factor to reflect overhead activities (meetings,

holidays, sick days...)
• Also takes into account uncertainties associated with

planning.

9© 2006 Bernd Bruegge Software Engineering WS 2006/2007

How much planning in XP?

• Stacks
• The user stories are organized into stacks of related

functionality

• Prioritization of stacks
• The client prioritizes the stacks so that essential

requirements can be addressed early and optional
requirements last

• Release Plan
• Specifies which story will be implemented for which

release and when it will be deployed to the end user

• Schedule
• Releases are scheduled frequently (e.g., every 1–2

months) to ensure rapid feedback from the end users.

10© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Team Organization in XP

• Individual developers may write experimental
prototypes experiments or proof of concepts,
but not production code

• Production code is written in pairs (pair
programming)

• Moreover, pairs are often rotated to enable a
better distribution of knowledge throughout the
project.

11© 2006 Bernd Bruegge Software Engineering WS 2006/2007

How much modeling in XP?

• No explicit analysis/design models
• “Minimizes the amount of documentation”
• “Fewer deliverables reduce the duplication of issues”

• Models are only communicated among
participants

• The client is the “walking specification”

• Source code is the only external model
• The system design is made visible in the source code

by using descriptive naming schemes

• Refactoring is used to improve the source code
• Coding standards are used to help developers

communicate using only the source code.

12© 2006 Bernd Bruegge Software Engineering WS 2006/2007

How much process in XP?

• Iterative life cycle model with 5 activities:
Planning, design, coding, testing and integration

• Planning occurs at the beginning of each iteration
• Design, coding, and testing are done incrementally
• Source code is continuously integrated into the main

branch, one contribution at the time
• Unit tests for all integrated units; regression testing

• Constraints on these activities
• Test first. Unit tests are written before the component

is written. They are written by the developer
• When defects are discovered, a unit test is created to

reproduce the defect
• Refactor before extending the source code.

13© 2006 Bernd Bruegge Software Engineering WS 2006/2007

How much control in XP?

• Reduced number of formal meetings
• Daily stand up meeting for status communication
• No discussions to keep the meeting short

• No inspections and no peer reviews
• Pair programming is used instead
• Production code is written in pairs

• Self-organizing teams with a leader:
• The Leader communicates the vision of the system
• The leader does not plan, schedule or budget
• The leader establishes an environment based on

collaboration, shared information, and mutual trust
• The leader ensures that a product is shipped.

14© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Summary of the XP Methodology
Planning Collocate the project with the client,write user stories

with the client, frequent small releases (1-2 months),
create schedule with release planning, kick off an
iteration with iteration planning, create programmer
pairs, allow rotation of pairs

Modeling Select the simplest design that addresses the current
story; Use a system metaphor to model difficult
concepts; Use CRC cards for the initial object
identification; Write code that adheres to standards;
Refactor whenever possible

Process Code unit test first, do not release before all unit tests
pass, write a unit test for each uncovered bug, integrate
one pair at the time

Control Code is owned collectively. Adjust schedule, Rotate
pairs, Daily status stand-up meeting, Run acceptance
tests often and publish the results.

15© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Scrum

• What is Scrum?
• History of Scrum
• Agile Alliance
• Agile Project Management
• Functionality of Scrum
• Components of Scrum

• Scrum Roles
• The Process
• Scrum Artifacts

• Scaling Scrum
• Evolution of Scrum
• Conclusion

16© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Introduction

• Classical software development methodologies
have some disadvantages:

• Huge effort during the planning phase
• Poor requirements conversion in a rapid changing

environment
• Treatment of staff as a factor of production

• Agile software development methodologies
• Minimize risk by making iterations very short
• Focus on real-time communication, preferably face-to-

face. This allows to minimize written documentation
• www.agilealliance.org

17© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Scrum
• Definition (Rugby): A Scrum is a way to restart

the game after an interruption,
• The forwards of each side come together in a tight

formation and struggle to gain possession of the
ball when it is tossed in among them

• Definition (Software Development): Scrum is an
agile, lightweight process

• To manage and control software development when
change occurs rapidly (changing requirements,
changing technology)

• Based on improved communication and maximizing
cooperation.

18© 2006 Bernd Bruegge Software Engineering WS 2006/2007

History of Scrum

• 1995:
• Jeff Sutherland and Ken Schwaber analyze common

software development processes
• Conclusion: not suitable for empirical,

unpredictable and non-repeatable processes
• Proposal of Scrum
• Enhancement of Scrum by Mike Beedle

• Combination of Scrum with Extreme Programming

• 1996: Introduction of Scrum at OOPSLA
• 2001: Publication “Agile Software Development

with Scrum” by Ken Schwaber & Mike Beedle
• Founders are also members in the Agile Alliance.

19© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Manifesto for Agile Software Development

• http://www.agilemanifesto.org/
• Individuals and interactions are preferred over

processes and tools
• Working software is preferred over

comprehensive documentation
• Customer collaboration is preferred over

contract negotiation
• Responding to change is preferred over following

a plan.

20© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Methodology Issues

• Methodologies provide guidance, general
principles and strategies for selecting methods
and tools in a given project environment

• Key questions for which methodologies provide
guidance:

• How much involvement of the customer?
• How much planning?
• How much reuse?
• How much modeling before coding?
• How much process?
• How much control and monitoring?

21© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Scrum as Methodology

• Involvement of the customer
• Onsite customer

• Planning
• Checklists and incremental daily plans

• Reuse
• Checklists from previous projects

• Modeling
• Models may or may not be used

• Process
• Iterative, incremental process

• Control and Monitoring
• Daily meetings.

22© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Overview of Scrum

23© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Components of Scrum

• 3 Scrum Roles
• Scrum Master, Scrum Team, Product Owner

• 5 Process Activities
• Sprint Planning Meeting
• Kickoff Meeting
• Sprint (~~ Iteration in a Unified Process)
• Daily Scrum Meeting
• Sprint Review Meeting

• 3 Scrum Artifacts
• Product Backlog, Sprint Backlog
• Burndown Charts

24© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Scrum Master

• Represents management to the project
• Typically filled by a project manager or team

leader
• Responsible for enacting scrum values and

practices
• Main job is to remove impediments.

25© 2006 Bernd Bruegge Software Engineering WS 2006/2007

The Scrum Team

• Typically 5-6 people
• Cross-functional (contains programmers, UI

designers, testers, etc)
• Members are working full-time on the project
• The team has no leader, but is self-organizing
• Team membership can change only between

sprints.

26© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Product Owner

• Knows what needs to be build and in
what sequence this should be done

• Typically a product manager

27© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Scrum Process Activities

• Project-Kickoff Meeting
• Sprint Planning Meeting
• Sprint
• Daily Scrum Meeting
• Sprint Review Meeting

28© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Project-Kickoff Meeting

• A collaborative meeting in the beginning of the
project

• Participants: Product Owner, Scrum Master
• Takes 8 hours and consists of 2 parts (“before lunch

and after lunch”)

• Goal: Create the Product Backlog.

29© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Sprint Planning Meeting

• A collaborative meeting in the beginning of each
Sprint

• Participants: Product Owner, Scrum Master and Scrum
Team

• Takes 8 hours and consists of 2 parts (“before
lunch and after lunch”)

• Goal: Create the Sprint Backlog.

30© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Sprint

• A month-long iteration, during which is
incremented a product functionality

• No outside influence can interference with the
Scrum team during the Sprint

• Each day in a Sprint begins with the Daily Scrum
Meeting.

31© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Daily Scrum Meeting

• A short (15 minutes long) meeting, which is held
every day before the team starts working

• Participants:
• Scrum Master (which is the chairperson), Scrum Team

• Every Team member should answer on 3
questions:

32© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Questions for each Scrum Team Member

1. Status:
What did I do since the last Scrum meeting?

2. Issues:
What is stopping me getting on with the work?

3. Action items:
What am I doing until the next Scrum meeting?

33© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Summary

• XP and Scrum are agile software development
methodologies with focus on

• Empirical process control model
• Changing requirements are the norm
• Controlling conflicting interests and needs

• Very simple processes with clearly defined rules
• Self-organizing teams, where each team

member carries a lot of responsibility
• No extensive documentation

• Possibility for “undisciplined hacking”.

34© 2006 Bernd Bruegge Software Engineering WS 2006/2007

The end of the Tunnel

• Evaluation
• Final:

• Organizational Issues
• How to prepare for the final

35© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Organizational Issues

• Admission requirements for final exam changed
• Attendance criteria was dropped
• Due to data loss in grundstudium tool

• Results of mini project available in the
grundstudium tool

• List of students who have passed the admission
requirements is available in the glass display in
the waiting area opposite of my office
(01.07.52/54)

36© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Evaluation
 Examples and stories in the lecture
 The reverse engineering challenge
 Invited Talk
 The lectures were given in English
 The lectures were given in English
 Sound volume, audio problems in MW0001
 Structure of the lecture
 Don´t blame somebody for talking during the lecture;-)
 Exercises and mini-project too difficult (especially without

Java experience)
 Other suggestions:

Publish slides in advance
Praktikum along with the lecture

37© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Final Exam

• Date and Time:
• 21st July 2007
• 13:00-15:00

• Location: MW0001 und MW2001
• Check the lecture portal for changes

• Resources:
• No electronic devices allowed (Notebooks, etc.)
• Closed Book

38© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Preparing for the Final

• Review the lectures:
• If a lecture takes 90 minutes, you should spend

another 90 min to review the material
• Read the text book, browse in the additional

references, use Web search engines to search for
terms

• Prepare with others, work in a team:
• Practice the following categories of questions:

1. Define a specific technical term introduced in the
lectures.

2. What is the difference between concept A and
concept B?

3. What are the pros and cons of concept A?
4. Given a problem statement, create the

corresponding UML model

39© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Technical Term Questions

• Question: What is a methodology?
• Answer: Lecture 21, Slide 5

• What is the spiral model?
• What is dynamic polymorphism?
• Define the strategy pattern:

• Provide a textual answer and/or draw the pattern

• How do you map a UML class diagram into a
table for a relational database?

• What is requirements engineering?
• What are the sub-activities of system design?

40© 2006 Bernd Bruegge Software Engineering WS 2006/2007

What is the difference between concept A
and concept B?

1.What is the difference between defined process
control and empirical process control?

2.What is the difference between a phase and an
iteration in the unified process?

3.What is the difference between implementation
and specification inheritance?

4.What is the difference between unit, integration
and system testing?

5.What is the difference between Scrum and XP?
6.What is the difference between analysis, system

design and object design?
7.What is the difference between requirements

elicitation and analysis?

41© 2006 Bernd Bruegge Software Engineering WS 2006/2007

What are the pros and cons of concept A?

• What are the pros and cons of modeling?
• What are the properties of the waterfall model?
• What are the pros and cons of the empirical

process control model?

42© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Given a problem statement, create the
corresponding UML model

• Hints:
• Extract the use cases from the problem statement
• Find the participating objects
• Draw the class diagram
• Use Abbot’s technique

• If you run out of time, be pragmatic what you
can do:

• Provide us with a description or initial sketch of the
model

• Iterate on it a couple of minutes later again (maybe
after having answered another question)

• Don’t waste your time on “cosmetic engineering”

• If you still run out of time, focus on one type of
model, usually the class diagram.

43© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Wanted: Web Designer in the Chair of
Applied Software Engineering

• We are looking for a student who
• has strong skills in web design
• has basic experience with web programming-
• is flexible and willing to learn about new technologies
• can work 10 hours a week

• We offer
• a fun job in a relaxed team
• flexible working hours
• great technical Apple based infrastructure

• Availability: Immediately
• If you are interested, contact Helma Schneider

(helma.schneider@in.tum.de).

