
1© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Requirements Elicitation

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

Introduction into Software Engineering
Lecture 4

25. April 2007

2© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Outline

• Motivation: Software Lifecycle
• Requirements elicitation challenges
• Problem statement
• Requirements specification

• Types of requirements

• Validating requirements
• Summary

3© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Software Lifecycle Definition

• Software lifecycle
• Models for the development of software
• Functional model:

• Set of activities and their dependency
relationships to each other to support the
development of a software system

• Examples:
• Analysis, Design, Implementation

• Typical Lifecycle questions:
• Which activities should I select when I develop

software?
• What are the dependencies between

activities?
• How should I schedule the activities?

4© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Software Lifecycle Activities

System
Design

Object
Design

Implemen-
tation TestingRequirements

Elicitation Analysis

5© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Software Lifecycle Activities

System
Design

Object
Design

Implemen-
tation TestingRequirements

Elicitation

Use Case
Model

Analysis

...and their models

6© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Software Lifecycle Activities

Application
Domain
Objects

Expressed in
terms of

Use Case
Model

System
Design

Object
Design

Implemen-
tation TestingRequirements

Elicitation Analysis

...and their models

7© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Software Lifecycle Activities

Sub-
systems

Structured
by

Application
Domain
Objects

Expressed in
terms of

Use Case
Model

System
Design

Object
Design

Implemen-
tation TestingRequirements

Elicitation Analysis

...and their models

8© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Software Lifecycle Activities

Sub-
systems

Structured
by

Solution
Domain
Objects

Realized by

Application
Domain
Objects

Expressed in
terms of

Use Case
Model

System
Design

Object
Design

Implemen-
tation TestingRequirements

Elicitation Analysis

...and their models

9© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Software Lifecycle Activities

Sub-
systems

Structured
by

class...
class...
class...

Source
Code

Implemented by

Solution
Domain
Objects

Realized by

Application
Domain
Objects

Expressed in
terms of

Use Case
Model

System
Design

Object
Design

Implemen-
tation TestingRequirements

Elicitation Analysis

...and their models

10© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Software Lifecycle Activities

Sub-
systems

Structured
by

class...
class...
class...

Source
Code

Implemented by

Solution
Domain
Objects

Realized by

Application
Domain
Objects

Expressed in
terms of

Test
Cases

?

Verified
By

class....?
Use Case

Model

System
Design

Object
Design

Implemen-
tation TestingRequirements

Elicitation Analysis

...and their models

11© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

What is the best Software Lifecycle?

• Answering this question is the topics of the
lecture on software lifecycle modeling

• For now we assume we have a set of predefined
activities which I present to you in a linear way:
• Today we focus on the activity requirements elicitation

12© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Software Lifecycle Activities

Application
Domain
Objects

Subsystems

class...
class...
class...

Solution
Domain
Objects

Source
Code

Test
Cases

?

Expressed in
Terms Of

Structured By

Implemented
 By

Realized By Verified
By

System
Design

Object
Design

Implemen-
tation Testing

class....?

Requirements
Elicitation

Use Case
Model

Analysis

13© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

What does the Customer say?

14© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

First step in identifying the Requirements:
System identification

• Two questions need to be answered:
1. How can we identify the purpose of a system?
2. What is inside, what is outside the system?

• These two questions are answered during
requirements elicitation and analysis

• Requirements elicitation:
• Definition of the system in terms understood by the

customer (“Requirements specification”)

• Analysis:
• Definition of the system in terms understood by the

developer (Technical specification, “Analysis
model”)

• Requirements Process: Contains the activities
Requirements Elicitation and Analysis.

15© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Techniques to elicit Requirements

• Bridging the gap between end user and
developer:
• Questionnaires: Asking the end user a list of pre-

selected questions
• Task Analysis: Observing end users in their

operational environment
• Scenarios: Describe the use of the system as a series

of interactions between a concrete end user and the
system

• Use cases: Abstractions that describe a class of
scenarios.

16© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Requirements Elicitation: Difficulties and
Challenges

• Communicating accurately about the domain
and the system
• People with different backgrounds must collaborate to

bridge the gap between end users and developers
• Client and end users have application domain

knowledge
• Developers have solution domain knowledge

• Identifying an appropriate system (Defining the
system boundary)

• Providing an unambiguous specification
• Leaving out unintended features
=> 3 Examples.

17© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Defining the System Boundary is difficult

What do you see here?

18© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Defining the System Boundary is difficult

What do you see now?

19© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Defining the System Boundary is difficult

What do you see now?

20© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Example of an Ambiguous Specification

During a laser experiment, a laser beam was
directed from earth to a mirror on the Space
Shuttle Discovery

The laser beam was supposed to be reflected
back towards a mountain top 10,023 feet high

The operator entered the elevation as “10023”

The light beam never hit the mountain top
What was the problem?

The computer interpreted the number in miles...

21© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

From the News: London underground train
leaves station without driver!

Example of an Unintended Feature

• He left the driver door open
• He relied on the specification that said the train

does not move if at least one door is open

• The driver left his train to close the passenger
door

• When he shut the passenger door,
 the train left the station without him

• The driver door was not treated
as a door in the source code!

What happened?
• A passenger door was stuck and did not close

22© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Requirements Process
:problem
statement

Requirements
elicitation

Analysis Model

Requirements
Specification

:dynamic model

:analysis object
model

Analysis

:nonfunctional
requirements

:functional
model

UML Activity Diagram

23© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Requirements Specification vs Analysis
Model

Both focus on the requirements from the user’s
view of the system

• The requirements specification uses natural
language (derived from the problem statement)

• The analysis model uses a formal or semi-formal
notation
• We use UML.

24© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Types of Requirements

• Functional requirements
• Describe the interactions between the system and its

environment independent from the implementation
“An operator must be able to define a new game. “

• Nonfunctional requirements
• Aspects not directly related to functional behavior.

“The response time must be less than 1 second”

• Constraints
• Imposed by the client or the environment

• “The implementation language must be Java “
• Called “Pseudo requirements” in the text book.

25© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Functional vs. Nonfunctional Requirements

Functional Requirements
• Describe user tasks

that the system needs
to support

• Phrased as actions
“Advertise a new league”
“Schedule tournament”
“Notify an interest group”

Nonfunctional Requirements
• Describe properties of the

system or the domain
• Phrased as constraints or

negative assertions
“All user inputs should be

acknowledged within 1
second”

“A system crash should not
result in data loss”.

26© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Types of Nonfunctional Requirements

Quality requirements
Constraints or

Pseudo requirements

27© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Types of Nonfunctional Requirements

• Usability
• Reliability

• Robustness
• Safety

• Performance
• Response time
• Scalability
• Throughput
• Availability

• Supportability
• Adaptability
• Maintainability

Quality requirements
Constraints or

Pseudo requirements

28© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Types of Nonfunctional Requirements

• Usability
• Reliability

• Robustness
• Safety

• Performance
• Response time
• Scalability
• Throughput
• Availability

• Supportability
• Adaptability
• Maintainability

• Implementation
• Interface
• Operation
• Packaging
• Legal

• Licensing
• Certification
• Regulation

Quality requirements
Constraints or

Pseudo requirements

Some Quality Requirements Definitions
• Usability

• The ease with which actors can use the system to perform a
function

• Must be measurable, otherwise it is not usability but marketing
(“The system is easy to use”)
• Example: Number of steps to purchase with a web browser

• Robustness: The ability of the software system to maintain
a function even if the user enters a wrong input, or if there
are changes in the environment
• Example: The system can tolerate temperatures up to 90 C

• Maintainability: The ease with which a function can be
changed in accordance with the requirements

• Availability: The ratio of the expected uptime of a system to
the aggregate of the expected up and down time
• Example: The system is down not more than 5 minutes per week.

30© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Nonfunctional Requirements: ARENA
examples

• “Spectators must be able to watch a match
without prior registration and without prior
knowledge of the match.”
Usability Requirement

• “The system must support 10 parallel
tournaments”
Performance Requirement

• “The operator must be able to add new games
without modifications to the existing system.”
Supportability Requirement

31© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

What should not be in the Requirements?

• System structure, implementation technology
• Development methodology

• Parnas, How to fake the software development process

• Development environment
• Implementation language
• Reusability

• It is desirable that none of these above are
constrained by the client.

32© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Requirements Validation

Requirements validation is a quality assurance
step, usually performed after requirements
elicitation or after analysis

• Correctness:
• The requirements represent the client’s view

• Completeness:
• All possible scenarios, in which the system can be used,

are described

• Consistency:
• There are no requirements that contradict each other.

33© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Requirements Validation (2)

• Clarity:
• Requirements can only be interpreted in one way

• Realism:
• Requirements can be implemented and delivered

• Traceability:
• Each system behavior can be traced to a set of

functional requirements

• Problems with requirements validation:
• Requirements change quickly during requirements

elicitation
• Inconsistencies are easily added with each change
• Tool support is needed!

34© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Requirements for Requirements
Management

• Tool support for managing requirements:
• Store requirements in a shared repository
• Provide multi-user access
• Automatically create a system specification

document
• Allow change management
• Provide traceability of the requirements

throughout the artifacts of the system.

35© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Tools for Requirements Management (2)

DOORS (Telelogic)

• Multi-platform requirements management tool, for
teams working in the same geographical location.
DOORS XT for distributed teams

RequisitePro (IBM/Rational)

• Integration with MS Word
• Project-to-project comparisons via XML baselines

RD-Link (http://www.ring-zero.com)

• Provides traceability between RequisitePro & Telelogic
DOORS

Sysiphus (http://sysiphus.in.tum.de/)
• Research tool for the collaborative development of

system models
• Participants can be geographically distributed.

36© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Types of Requirements Elicitation

• Greenfield Engineering
• Development starts from scratch, no prior system

exists, requirements come from end users and clients
• Triggered by user needs

• Re-engineering
• Re-design and/or re-implementation of an existing

system using newer technology
• Triggered by technology enabler

• Interface Engineering
• Provision of existing services in a new environment
• Triggered by technology enabler or new market needs

37© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Prioritizing requirements

• High priority
• Addressed during analysis, design, and implementation
• A high-priority feature must be demonstrated

• Medium priority
• Addressed during analysis and design
• Usually demonstrated in the second iteration

• Low priority
• Addressed only during analysis
• Illustrates how the system is going to be used in the

future with not yet available technology

38© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Requirements Analysis Document Template
1. Introduction
2. Current system
3. Proposed system

3.1 Overview
3.2 Functional requirements
3.3 Nonfunctional requirements
3.4 Constraints (“Pseudo requirements”)
3.5 System models

3.5.1 Scenarios
3.5.2 Use case model
3.5.3 Object model
 3.5.3.1 Data dictionary
 3.5.3.2 Class diagrams
3.5.4 Dynamic models
3.5.5 User interfae

4. Glossary

39© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Section 3.3 Nonfunctional Requirements

 3.3.1 User interface and human factors
 3.3.2 Documentation
 3.3.3 Hardware considerations
 3.3.4 Performance characteristics
 3.3.5 Error handling and extreme conditions
 3.3.6 System interfacing
 3.3.7 Quality issues
 3.3.8 System modifications
 3.3.9 Physical environment
3.3.10 Security issues
3.3.11 Resources and management issues

40© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Nonfunctional Requirements
(Questions to overcome “Writers block”)

User interface and human factors
• What type of user will be using the system?
• Will more than one type of user be using the

system?
• What training will be required for each type of

user?
• Is it important that the system is easy to learn?
• Should users be protected from making errors?
• What input/output devices are available

Documentation
• What kind of documentation is required?
• What audience is to be addressed by each

document?

41© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Nonfunctional Requirements (2)

Hardware considerations
• What hardware is the proposed system to be used on?
• What are the characteristics of the target hardware,

including memory size and auxiliary storage space?

Performance characteristics
• Are there speed, throughput, response time constraints

on the system?
• Are there size or capacity constraints on the data to be

processed by the system?

Error handling and extreme conditions
• How should the system respond to input errors?
• How should the system respond to extreme conditions?

42© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Nonfunctional Requirements (3)

System interfacing
• Is input coming from systems outside the proposed

system?
• Is output going to systems outside the proposed system?
• Are there restrictions on the format or medium that must

be used for input or output?

 Quality issues
• What are the requirements for reliability?
• Must the system trap faults?
• What is the time for restarting the system after a failure?
• Is there an acceptable downtime per 24-hour period?
• Is it important that the system be portable?

43© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Nonfunctional Requirements (4)

System Modifications
• What parts of the system are likely to be modified?
• What sorts of modifications are expected?

Physical Environment
• Where will the target equipment operate?
• Is the target equipment in one or several locations?
• Will the environmental conditions be ordinary?

Security Issues
• Must access to data or the system be controlled?
• Is physical security an issue?

44© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Nonfunctional Requirements (5)

Resources and Management Issues
• How often will the system be backed up?
• Who will be responsible for the back up?
• Who is responsible for system installation?
• Who will be responsible for system maintenance?

