
1© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

System Modeling

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

Introduction into Software Engineering
Lecture 5

2 May 2007

2© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Outline of the next lectures

System Modeling =
Functional Modeling

 Object Modeling
 Dynamic Modeling

3© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Outline of this lecture

Functional Modeling
• Scenarios

• Use Cases
• Finding Use Cases
• Flow of Events
• Use Case Associations
• Use Case Refinement

• Object Modeling:
• From use cases to class diagrams
• Activities during object modeling
• Object identification
• Object types: Entity, boundary and control objects
• Object naming
• Abott’s technique helps in object identification
• Users of class diagrams

• Summary

4© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Software lifecycle activities

Application
Domain
Objects

SubSystems

class...
class...
class...

Solution
Domain
Objects

Source
Code

Test
Cases

?

Expressed in
Terms Of

Structured By

Implemented
 By

Realized By Verified
By

System
Design

Object
Design

Implemen-
tation Testing

class....?

Requirements
Elicitation

Use Case
Model

Analysis

5© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Scenarios

• Scenario: “A narrative description of what
people do and experience as they try to make
use of computer systems and applications” [M.
Carroll, Scenario-Based Design, Wiley, 1995]

• A concrete, focused, informal description of a
single feature of the system used by a single
actor.

• Scenarios can have many different uses during
the software lifecycle

• Requirements Elicitation: As-is scenario, visionary
scenario

• Client Acceptance Test: Evaluation scenario
• System Deployment: Training scenario

6© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Types of Scenarios

• As-is scenario:
• Describes a current situation. Usually used in re-

engineering projects. The user describes the system
• Example: Description of Letter-Chess

• Visionary scenario:
• Describes a future system. Usually used in greenfield

engineering and reengineering projects
• Can often not be done by the user or developer alone

• Example: Description of an interactive internet-
based Tic Tac Toe game tournament

• Example: Description - in the year 1954 - of the
Home Computer of the Future.

7© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Example of A Visionary Scenario

• Published in the Popular Mechanic, 1954
• Vision of the The Home Computer in 2004

8© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

9© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

It is a Hoax!

• Source of original picture:
• A Smithsonian Institution exhibit

Fast Attacks and Boomers:
Submarines in the Cold War on
April 11, 2000.

• http://www.chinfo.navy.mil/navpali
b/cno/n87/usw/issue_8/smithsoni
an.html

• The orginal shows the
maneuvering room of the USS
Batfish SSN-681.

• The control display was replaced
with an old plotter, the TV was
"aged” with Photoshop,

• The RAND scientist is probably
really from 1954.

10© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Lessons learned

1. Trust your sources
• Talk to the Application domain expert, not to You

Tube

2. Use can use scetches and tools to create a
visionary scenario
• Photos

• Touchup with tools such as Photoshop
• Movies

• Software Cinema: A technique to illustrate
scenarios with a a film (Oliver Creighton, 2005)

3. Be honest when you create a visionary scenario
• Name your sources.

11© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Types of Scenarios (2)

• Evaluation scenario:
• User tasks against which the system is to be

evaluated.
• Example: Four users (two novice, two experts) play

in a TicTac Toe tournament in ARENA.

• Training scenario:
• Step by step instructions that guide a novice user

through a system
• Example: How to play Tic Tac Toe in the ARENA

Game Framework.

12© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

How do we find scenarios?

• Don’t expect the client to be verbal if the system
does not exist

• Client understands problem domain, not the solution
domain.

• Don’t wait for information even if the system
exists

• “What is obvious does not need to be said”

• Engage in a dialectic approach
• You help the client to formulate the requirements
• The client helps you to understand the requirements
• The requirements evolve while the scenarios are being

developed

13© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Scenario example: Warehouse on Fire

• Bob, driving down main street in his patrol car notices
smoke coming out of a warehouse. His partner, Alice,
reports the emergency from her car.

• Alice enters the address of the building into her wearable
computer , a brief description of its location (i.e., north
west corner), and an emergency level.

• She confirms her input and waits for an acknowledgment.
• John, the dispatcher, is alerted to the emergency by a

beep of his workstation. He reviews the information
submitted by Alice and acknowledges the report. He
allocates a fire unit and sends the estimated arrival time
(ETA) to Alice.

• Alice received the acknowledgment and the ETA.

14© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Observations about Warehouse on Fire
Scenario

• Concrete scenario
• Describes a single instance of reporting a fire

incident.
• Does not describe all possible situations in

which a fire can be reported.

• Participating actors
• Bob, Alice and John

15© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Heuristics for finding scenarios
• Ask yourself or the client the following questions:

• What are the primary tasks that the system needs to
perform?

• What data will the actor create, store, change, remove or
add in the system?

• What external changes does the system need to know
about?

• What changes or events will the actor of the system need
to be informed about?

• However, don’t rely on questions alone
• Insist on task observation if the system already

exists (interface engineering or reengineering)
• Ask to speak to the end user, not just to the client
• Expect resistance and try to overcome it.

16© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

After the scenarios are formulated

• Find all the use cases in the scenario that
specify all instances of how to report a fire

• Example: “Report Emergency“ in the first paragraph of
the scenario is a candidate for a use case

• Describe each of these use cases in more detail
• Participating actors
• Describe the entry condition
• Describe the flow of events
• Describe the exit condition
• Describe exceptions
• Describe nonfunctional requirements

17© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Use Case Model for Incident Management

ReportEmergency

FieldOfficer Dispatcher
OpenIncident

AllocateResources

<<initiates>>
<<initiates>>

<<initiates>>

18© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

How to find Use Cases

• Select a narrow vertical slice of the system (i.e.
one scenario)

• Discuss it in detail with the user to understand the
user’s preferred style of interaction

• Select a horizontal slice (i.e. many scenarios) to
define the scope of the system.

• Discuss the scope with the user

• Use illustrative prototypes (mock-ups) as visual
support

• Find out what the user does
• Task observation (Good)
• Questionnaires (Bad)

19© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Use Case Example: ReportEmergency

• Use case name: ReportEmergency
• Participating Actors:

• Field Officer (Bob and Alice in the Scenario)
• Dispatcher (John in the Scenario)

• Exceptions:
• The FieldOfficer is notified immediately if the

connection between terminal and central is lost.
• The Dispatcher is notified immediately if the connection

between a FieldOfficer and central is lost.

• Flow of Events: on next slide.
• Special Requirements:

• The FieldOfficer’s report is acknowledged within 30
seconds. The selected response arrives no later than
30 seconds after it is sent by the Dispatcher.

20© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Use Case Example: ReportEmergency
Flow of Events

1. The FieldOfficer activates the “Report Emergency”
function of her terminal. FRIEND responds by
presenting a form to the officer.

2. The FieldOfficer fills the form, by selecting the
emergency level, type, location, and brief
description of the situation. The FieldOfficer also
describes a response to the emergency situation.
Once the form is completed, the FieldOfficer
submits the form, and the Dispatcher is notified.

3. The Dispatcher creates an Incident in the database
by invoking the OpenIncident use case. He selects
a response and acknowledges the report.

4. The FieldOfficer receives the acknowledgment and
the selected response.

21© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Order of steps when formulating use cases

• First step: Name the use case
• Use case name: ReportEmergency

• Second step: Find the actors
• Generalize the concrete names (“Bob”) to participating

actors (“Field officer”)
• Participating Actors:

• Field Officer (Bob and Alice in the Scenario)
• Dispatcher (John in the Scenario)

• Third step: Concentrate on the flow of events
• Use informal natural language

22© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Use Case Associations

• Dependencies between use cases are
represented with use case associations

• Associations are used to reduce complexity
• Decompose a long use case into shorter ones
• Separate alternate flows of events
• Refine abstract use cases

• Types of use case associations
• Includes
• Extends
• Generalization

23© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

<<include>>: Functional Decomposition

• Problem:
• A function in the original problem statement is too

complex

• Solution:
• Describe the function as the aggregation of a set of

simpler functions. The associated use case is
decomposed into shorter use cases

ManageIncident

CreateIncident HandleIncident CloseIncident

<<include>>

24© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

<<include>>: Reuse of Existing Functionality
• Problem: There are overlaps among use cases.

How can we reuse flows of events instead of
duplicating them?

• Solution: The includes association from use case
A to use case B indicates that an instance of use
case A performs all the behavior described in use
case B (“A delegates to B”)

• Example: Use case “ViewMap” describes behavior
that can be used by use case “OpenIncident”
(“ViewMap” is factored out)

ViewMap
OpenIncident

AllocateResources

<<include>>

<<include>>

Base Use
Case

Supplier
Use Case

25© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

<<extend>> Association for Use Cases

• Problem: The functionality in the original
problem statement needs to be extended.

• Solution: An extend association from use case A
to use case B

• Example: “ReportEmergency” is complete by
itself, but can be extended by use case “Help” for
a scenario in which the user requires help

ReportEmergency

FieldOfficer
Help

<<extend>>

26© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Generalization in Use Cases
• Problem: We want to factor out common (but not

identical) behavior.
• Solution: The child use cases inherit the behavior

and meaning of the parent use case and add or
override some behavior.

• Example: “ValidateUser” is responsible for verifying
the identity of the user. The customer might require
two realizations: “CheckPassword” and
“CheckFingerprint”

ValidateUser
Parent
Case

Child
Use Case

CheckPassword

CheckFingerprint

27© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Another Use Case Example

Actor Bank Customer
• Person who owns one or more Accounts in the

Bank.
Withdraw Money
• The Bank Customer specifies a Account and

provides credentials to the Bank proving that
s/he is authorized to access the Bank Account.

• The Bank Customer specifies the amount of
money s/he wishes to withdraw.

• The Bank checks if the amount is consistent with
the rules of the Bank and the state of the Bank
Customer’s account. If that is the case, the Bank
Customer receives the money in cash.

28© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Use Case Attributes

Use Case Withdraw Money Using ATM

Initiatiating actor:
• Bank Customer

Preconditions:
• Bank Customer has opened a Bank Account with

the Bank and
• Bank Customer has received an ATM Card and PIN

Postconditions:
• Bank Customer has the requested cash or
• Bank Customer receives an explanation from the

ATM about why the cash could not be dispensed

29© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

7. The Bank Customer inputs an
amount.

3. The Bank Customer types in
PIN.

5. The Bank Customer selects an
account.

Use Case Flow of Events

1.The Bank Customer inputs the
card into the ATM.

8.The ATM outputs the money and a
receipt and stops the interaction.

4. If several accounts are recorded
on the card, the ATM offers a choice
of the account numbers for selection
by the Bank Customer

6.If only one account is recorded on
the card or after the selection, the
ATM requests the amount to be
withdrawn.

System steps

2.The ATM requests the input of
a four-digit PIN.

Actor steps

30© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Use Case Exceptions

Actor steps
1.The Bank Customer inputs

her card into the
ATM.[Invalid card]

3.The Bank Customer types
in PIN. [Invalid PIN]

5. The Bank Customer
selects an account .

7. The Bank Customer inputs
an amount. [Amount
over limit]

[Invalid card]
The ATM outputs the card and
stops the interaction.

[Invalid PIN]
The ATM announces the failure
and offers a 2nd try as well as
canceling the whole use case.
After 3 failures, it announces
the possible retention of the
card. After the 4th failure it
keeps the card and stops the
interaction.

[Amount over limit]
The ATM announces the failure
and the available limit and
offers a second try as well as
canceling the whole use case.

31© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

From Use Cases to Objects
Top Level Use Case

A and B
are called

Participating
Objects

 Level 1

A B

Level 3 Use Cases Level 3 Level 3 Level 3

Operations Level 4 Level 4

Level 2 Use Cases Level 2 Level 2

32© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Use Cases used by more than one Object

Top Level Use Case

Level 2 Use Cases

Level 3 Use Cases

Operations

Participating
Objects

 Level 2

 Level 1

 Level 2

 Level 3 Level 3

 Level 4 Level 4

 Level 3

A B

33© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Guidelines for Formulation of Use Cases (1)

• Name
• Use a verb phrase to name the use case.
• The name should indicate what the user is trying to

accomplish.
• Examples:

• “Request Meeting”, “Schedule Meeting”, “Propose
Alternate Date”

• Length
• A use case description should not exceed 1-2 pages. If

longer, use include relationships.
• A use case should describe a complete set of

interactions.

34© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Guidelines for Formulation of Use Cases (2)

Flow of events:
• Use the active voice. Steps should start either

with “The Actor” or “The System …”.
• The causal relationship between the steps

should be clear.
• All flow of events should be described (not only

the main flow of event).
• The boundaries of the system should be clear.

Components external to the system should be
described as such.

• Define important terms in the glossary.

35© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Example of a badly written Use Case

“The driver arrives at the parking gate, the driver
receives a ticket from the distributor, the gate is
opened, the driver drives through.”

• What is wrong with this use case?

36© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Example of a badly written Use Case

“The driver arrives at the parking gate, the driver
receives a ticket from the distributor, the gate is
opened, the driver drives through.”

•It contains no actors
•It is not clear which action triggers the ticket
being issued
•Because of the passive form, it is not clear who
opens the gate

• The driver? The computer? A gate keeper?
•It is not a complete transaction.

•A complete transaction would also describe
the driver paying for the parking and driving
out of the parking lot.

37© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

How to write a use case (Summary)

• Name of Use Case
• Actors

• Description of Actors involved in use case

• Entry condition
• “This use case starts when…”

• Flow of Events
• Free form, informal natural language

• Exit condition
• “This use cases terminates when…”

• Exceptions
• Describe what happens if things go wrong

• Special Requirements
• Nonfunctional Requirements, Constraints

38© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Summary

• Scenarios:
• Great way to establish communication with client
• Different types of scenarios: As-Is, visionary,

evaluation and training

• Use cases
• Abstractions of scenarios

• Use cases bridge the transition between
functional requirements and objects.

39© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

From Use Cases to Objects
Level 1 Use Case

Level 2 Use Cases

Level 3 Use Cases

Operations

Participating
Objects

 Level 2

 Level 1

 Level 2

 Level 3 Level 3

 Level 4 Level 4

 Level 3

A B

40© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

From Use Cases to Objects: Why Functional
Decomposition is not Enough

Scenarios

Level 1 Use Cases

Level 2 Use Cases

Operations

Participating
Objects

 Level 2

 Level 1

 Level 2

 Level 3 Level 3

 Level 4 Level 4

 Level 3

A B

41© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Activities during Object Modeling
Main goal: Find the important abstractions
• Steps during object modeling

1. Class identification
• Based on the fundamental assumption that we can

find abstractions
2. Find the attributes
3. Find the methods
4. Find the associations between classes

• Order of steps
• Goal: get the desired abstractions
• Order of steps secondary, only a heuristic

• What happens if we find the wrong abstractions?
• We iterate and revise the model

42© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Class Identification

Class identification is crucial to object-oriented
modeling

• Helps to identify the important entities of a system

• Basic assumption:
• 1. We can find the classes for a new software system

(Forward Engineering)
• 2. We can identify the classes in an existing system

(Reverse Engineering)

• Why can we do this?
• Philosophy, science, experimental evidence

43© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Class identification is an ancient problem

• Objects are not just found by taking a picture of
a scene or domain

• The application domain has to be analyzed.
• Depending on the purpose of the system

different objects might be found
• How can we identify the purpose of a system?
• Scenarios and use cases

• Another important problem: Define system
boundary.

• What object is inside, what object is outside?

44© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

What is This?

45© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

What is This?

Face

Eye

1..2

46© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Modeling in Action

• Face
• Sad
• Happy
• Is it one Face or two?
• Mask
• Who is using it?

• Person at Carneval?
• Bankrobber?
• Painting collector

• How is it used?

47© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Pieces of an Object Model

• Classes
• Associations (Relations)
• Attributes
• Operations

48© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Associations

• Types of Associations
• Canonical associations

• Part-of Hierarchy (Aggregation)
• Kind-of Hierarchy (Inheritance)

• Generic associations

49© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Attributes

• Detection of attributes is application specific
• Attributes in one system can be classes in

another system
• Turning attributes to classes and vice versa

50© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Operations

• Source of operations
• Use cases in the functional model
• General world knowledge
• Generic operations: Get/Set
• Design Patterns
• Application domain specific operations
• Actions and activities in the dynamic model

51© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Object vs Class

• Object (instance): Exactly one thing
• This lecture on object modeling

• A class describes a group of objects with similar
properties

• Game, Tournament, mechanic, car, database

• Object diagram: A graphical notation for
modeling objects, classes and their relationships

• Class diagram: Template for describing many instances
of data. Useful for taxonomies, patters, schemata...

• Instance diagram: A particular set of objects relating to
each other. Useful for discussing scenarios, test cases
and examples

52© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Class Identification

• Approaches
• Application domain approach

• Ask application domain experts to identify relevant
abstractions

• Syntactic approach
• Start with use cases
• Analyze the text to identify the objects
• Extract participating objects from flow of events

• Design patterns approach
• Use reusable design patterns

• Component-based approach
• Identify existing solution classes.

53© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

There are different types of Objects

• Entity Objects
• Represent the persistent information tracked by the

system (Application domain objects, also called
“Business objects”)

• Boundary Objects
• Represent the interaction between the user and the

system

• Control Objects
• Represent the control tasks performed by the system.

54© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Example: 2BWatch Modeling

Year

Month

Day

ChangeDate
Button

LCDDisplay

Entity Objects Control Object Boundary Objects

To distinguish these different object types
in the model we can use the
UML Stereotype mechanism

55© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Naming Object Types in UML

• UML provides the stereotype mechanism to introduce new
types of modeling elements

• UML is an extensible language

<<Entity>>
Year

<<Entitity>>
Month

<<Entity>>
Day

<<Control>>
ChangeDate

<<Boundary>>
Button

<<Boundary>>
LCDDisplay

Entity Objects Control Objects Boundary Objects

56© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Object Types and Change

• Having three types of object leads to models
that are more resilient to change

• The interface of a system changes more likely than the
control

• The way the system is controlled changes more likely
than the application domain

• Object types originated in Smalltalk:
• Model, View, Controller (MVC)
• Entity, Boundary, Control Objects

• Next topic: Finding objects.

57© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Finding Participating Objects in Use Cases

• Pick a use case and look at flow of events
• Do a textual analysis (noun-verb analysis)

• Nouns are candidates for objects/classes
• Verbs are candidates for operations
• Also called Abbott’s Technique

• After objects/classes are found, identify their types
• Identify real world entities that the system needs to keep

track of (FieldOfficer  entity object)
• Identify real world procedures that the system needs to

keep track of (EmergencyPlan  control object)
• Identify interface artifacts (PoliceStation  boundary object)

58© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Example for using the Technique

• The customer enters the store to buy a toy.
• It has to be a toy that his daughter likes and it
must cost less than 50 Euro.

• He tries a videogame, which uses a data glove and
a head-mounted display. He likes it.

• An assistant helps him.
• The suitability of the game depends on the age of
the child.

• His daughter is only 3 years old.
• The assistant recommends another type of toy,
namely the boardgame “Monopoly".

Flow of Events:

59© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Mapping parts of speech to model
components (Abbot’s Technique)

 Part of speech

 Proper noun

 Improper noun

 Doing verb

 being verb

 having verb

 modal verb

 adjective

 transitive verb

 intransitive verb

Model component

object

class

operation

inheritance

aggregation

constraint

attribute

operation

Constraint, class,
 association

Example

“Monopoly”

Toy

Buy, recommend

is-a

has an

must be

dangerous

enter

depends on

videogame

• The customer enters the store to buy a
toy. It has to be a toy that his
daughter likes and it must cost less
than 50 Euro. He tries a videogame,
which uses a data glove and a head-
mounted display. He likes it.

Generating a Class Diagram from Flow of Events

An assistant helps him. The
suitability of the game depends
on the age of the child. His
daughter is only 3 years old.
The assistant recommends another
type of toy, namely a boardgame.
The customer buy the game and
leaves the store

customer enters

depends

store
Customer

?

enter()

toy

daughter

suitable

*

less than 50

store

enter()

toy

buy()

toy

age

videogame

daughter

boardgame

Flow of events:

Toy

price
buy()
like()

buy

type of toy
boardgame

daughter
age

61© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Ways to find Objects

• Syntactical investigation with Abbot‘s technique:
• Flow of events in use cases
• Problem statement

• Use other knowledge sources:
• Application knowledge: End users and experts know

the abstractions of the application domain
• Design knowledge: Abstractions in the solution domain
• General world knowledge: Your generic knowledge and

intution

62© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Order of Activities for Object Identification

1. Formulate a few scenarios with help from an
end user or application domain expert

2. Extract the use cases from the scenarios, with
the help of an application domain expert

3. Then proceed in parallel with the following:
• Analyse the flow of events in each use case

using Abbot's textual analysis technique
• Generate the UML class diagram.

63© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Steps in Generating Class Diagrams

• Class identification (textual analysis, domain
experts)

• Identification of attributes and operations
(sometimes before the classes are found!)

• Identification of associations between classes
• Identification of multiplicities
• Identification of roles
• Identification of inheritance

64© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Who uses Class Diagrams?

• Purpose of class diagrams
• The description of the static properties of a system

• The main users of class diagrams:
• The application domain expert

• uses class diagrams to model the application
domain (including taxonomies)

• during requirements elicitation and analysis
• The developer

• uses class diagrams during the development of a
system

• during analysis, system design, object design
and implementation.

65© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Who does not use Class Diagrams?

• The client and the end user are often not
interested in class diagrams

• Clients usually focus more on project management
issues

• End users usually focus on the functionality of the
system.

66© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Developers have different Views on Class
Diagrams

• According to the development activity, a
developer plays different roles:

• Analyst
• System Designer
• Object Designer
• Implementor

• Each of these roles has a different view about
the class diagram (the object model).

67© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

The View of the Analyst

• The analyst is interested
• in application classes: The associations between

classes are relationships between abstractions in the
application domain

• operations and attributes of the application classes
(difference to E/R models!)

• The analyst uses inheritance in the model to
reflect the taxonomies in the application domain

• Taxonomy: An is-a-hierarchy of abstractions in an
application domain

• The analyst is not interested
• in the exact signature of operations
• in solution domain classes

68© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

The View of the Designer
• The designer focuses on the solution of the

problem, that is, the solution domain
• The associations between classes are now

references (pointers) between classes in the
application or solution domain

• An important design task is the specification of
interfaces:

• The designer describes the interface of classes and the
interface of subsystems

• Subsystems originate from modules (term often used
during analysis):

• Module: a collection of classes
• Subsystem: a collection of classes with an interface

• Subsystems are modeled in UML with a package.

69© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Goals of the Designer

• The most important design goals for the
designer are design usability and design
reusability

• Design usability: the interfaces are usable from
as many classes as possible within in the
system

• Design reusability: The interfaces are designed
in a way, that they can also be reused by other
(future) software systems

=> Class libraries
=> Frameworks
=> Design patterns.

70© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

The View of the Implementor

• Class implementor
• Must realize the interface of a class in a programming

language
• Interested in appropriate data structures (for the

attributes) and algorithms (for the operations)

• Class extender
• Interested in how to extend a class to solve a new

problem or to adapt to a change in the application
domain

• Class user
• The class user is interested in the signatures of the

class operations and conditions, under which they can
be invoked

• The class user is not interested in the implementation
of the class.

71© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Why do we distinguish different Users of
Class Diagrams?

• Models often don‘t distinguish between
application classes and solution classes

• Reason: Modeling languages like UML allow the use of
both types of classes in the same model

• “address book“, “array"
• Preferred: No solution classes in the analysis model

• Many systems don‘t distinguish between the
specification and the implementation of a class

• Reason: Object-oriented programming languages allow
the simultaneous use of specification and
implementation of a class

• Preferred: We distinguish between analysis model and
object design model. The analysis design model does
not contain any implementation specification.

72© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Analysis model vs. object design model

• The analysis model is constructed during the
analysis phase

• Main stake holders: End user, customer, analyst
• The class diagrams contains only application domain

classes

• The object design model (sometimes also called
specification model) is created during the object
design phase

• Main stake holders: class specifiers, class
implementors, class users and class extenders

• The class diagrams contain application domain as well
as solution domain classes.

73© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Analysis model vs object design model (2)

• The analysis model is the basis for
communication between analysts, application
domain experts and end users.

• The object design model is the basis for
communication between designers and
implementors.

74© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Summary

• System modeling
• Functional model, object model, dynamic model

• From scenarios to use cases to objects
• Object modeling is the central activity

• Class identification is a major activity of object
modeling

• Easy syntactic rules to find classes and objects
• Abbot’s Technique

• Analysts, designers and implementors have
different modeling needs

• There are three types of implementors with
different roles during

• Class user, class implementor, class extender.

