
1© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Design Patterns II

Bernd Bruegge
 Applied Software Engineering

Technische Universitaet Muenchen

Introduction into Software Engineering
Lecture 9

2© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Reverse Engineering Challenge:
Post Mortem Thoughts

• 5 teams had a solution when the project started!
• Lesson learned 1 (For developers): When you reuse a

design or source code, make sure the requirements have
not changed:-)

• First handed-in solution
• Seemed to have passed the client acceptance test
• But it was not correct:

• It did not reduce the speed by 50%
• Lesson learned 2 (for Management): Make sure the client

acceptance test covers all the requirements.
• Consolation prize: Jakob Mund

• We have a winner: Team „Philip Lorenz“
• Lottery for second prize (>40 submissions!)

3© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Miscellaneous

• The "Prüfungsauschuß" requires most students to register in
HISQIS for their exams until May 25
=> Please see our website for more details

4© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Is this a good Model?
public interface SeatImplementation {
 public int GetPosition();
 public void SetPosition(int newPosition);
}
public class Stubcode implements SeatImplementation {
 public int GetPosition() {
 // stub code for GetPosition
 }
 ...
}
public class AimSeat implements SeatImplementation {
 public int GetPosition() {
 // actual call to the AIM simulation system
 }
 ….
}
public class SARTSeat implements SeatImplementation {
 public int GetPosition() {
 // actual call to the SART seat simulator
 }
 ...
}

It depends!

5© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Reverse Engineering Challenge:
Post Mortem Thoughts

• 5 teams had a solution when the project started!
• Lesson learned 1 (For developers): When you reuse a

design or source code, make sure the requirements have
not changed:-)

• First handed-in solution
• Seemed to have passed the client acceptance test
• But it was not correct:

• It did not reduce the speed by 50%
• Lesson learned 2 (for Management): Make sure the client

acceptance test covers all the requirements.
• Consolation prize: Jakob Mund

• We have a winner: Team „Philip Lorenz“
• Lottery for second prize (>40 submissions!)

6© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Miscellaneous

• The "Prüfungsauschuß" requires most students to register in
HISQIS for their exams until May 25
=> Please see our website for more details

7© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

A Game: Get-15
• Start with the nine numbers 1,2,3,4, 5, 6, 7, 8 and 9.
• You and your opponent take alternate turns, each

taking a number
• Each number can be taken only once: If you opponent

has selected a number, you cannot also take it.
• The first person to have any three numbers that total

15 wins the game.
• Example:

You:

Opponent:

1 5 83

6 9 27 Opponent
Wins!

8© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Characteristics of Get-15

• Hard to play,
• The game is especially hard, if you are not allowed

to write anything done.

• Why?
• All the numbers need to be scanned to see if you have

won/lost
• It is hard to see what the opponent will take if you take a

certain number
• The choice of the number depends on all the previous

numbers

• Not easy to devise an simple strategy

9© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Another Game: Tic-Tac-Toe

Source: http://boulter.com/ttt/index.cgi

10© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

A Draw Sitation

11© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Strategy for determining a winning move

12© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Winning Situations for Tic-Tac-Toe

Winning
Patterns

13© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Tic-Tac-Toe is “Easy”
• Why? Reduction of complexity through patterns and

symmetry
• Patterns: Knowing the following two patterns, the

player can anticipate the opponents move

• Symmetry:
• The player needs to remember only these three
patterns to deal with 8 different game situations

• The player needs to memorize only 3 opening
moves and their responses

14© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Get-15 and Tic-Tac-Toe are identical problems

• Any Get-15 solution is a solution to a tic-tac-toe problem
• Any tic-tac-toe solution is a solution to a Get-15 problem
• To see the relationship between the two games, we

simply arrange the 9 digits into the following pattern

8 1 6

3 5 7

4 9 2

15© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

8 1 6

3 5 7

4 9 2

1 5 83

6 9 27

You:

Opponent:

8 1 6

3 5 7

4 9 2

16© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

• During object modeling we do many transformations
and changes to the object model

• It is important to make sure the object model stays
simple!

• Design patterns are used to keep system models
simple (and reusable).

17© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Modeling Heuristics

• Modeling must address our mental limitations:
• Our short-term memory has only limited capacity (7+-2)

• Good Models deal with this limitation, because they
• Do not tax the mind

• A good model requires a small mental effort
• Reduce complexity

• Turn complex tasks into easy ones (choice of representation)
• Use of symmetries

• Use abstractions
• Taxonomies

• Have organizational structure:
• Memory limitations are overcome with an appropriate

representation (“natural model”).

18© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Outline
• Design Patterns

• Usefulness of design patterns
• Design Pattern Categories

• Patterns already covered: Proxy, Strategy
• Patterns covered in this lecture

• Composite: Modeling of dynamic aggregates
• Facade: Interfacing to subsystems
• Adapter: Interfacing to existing systems (legacy systems)
• Bridge: Interfacing to existing and future systems

• Patterns covered next week and in the exercises
• Command, Observer, Template Method, Abstract Factory,

Builder.

19© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

What is common between these definitions?

• Definition Software System
• A software system consists of subsystems which are either

other subsystems or collection of classes

• Definition Software Lifecycle
• A software lifecycle consists of a set of development

activities which are either other activities or collection of
tasks.

Recursion

20© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Recursion

• Recursion
• An abstraction being defined is used within its own

definition
• More general: Description of an abstraction based on

self-similarity.

21© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

What is common between these definitions?

• Definition Software System
• A software system consists of subsystems which are either

other subsystems or collection of classes
• Composite: Subsystem

• A software system consists of subsystems which consists
of subsystems, which consists of subsystems, which...

• Base case: Class

• Definition Software Lifecycle
• The software lifecycle consists of a set of development

activities which are either other activities or collection of
tasks

• Composite: Activity
• The software lifecycle consists of activities which consist

of activities, which consist of activities, which....
• Base case: Task.

22© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Modeling a Software System

Software
System

Class
Subsystem Children

*

23© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Modeling the Software Lifecycle

Software
Lifecycle

Task
Activity Children

*

24© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Introducing the Composite Pattern
• Models tree structures that represent part-whole

hierarchies with arbitrary depth and width
• The Composite Pattern lets a client treat individual

objects and compositions of these objects uniformly

Client Component

Leaf

Operation()

Composite

Operation()
AddComponent

RemoveComponent()
GetChild()

Children

*

25© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

The Composite Patterns models dynamic
aggregates

University School Department

Organization Chart (variable aggregate):

Dynamic tree (recursive aggregate):

CarFixed Structure:

Doors Wheels Battery Engine

Compound
Statement

Simple
Statement

Program

Block

* *

* *

* *
Dynamic tree (recursive aggregate):

Composite
Pattern

26© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Client Graphic

Square

Draw()

Picture

Draw()
Add(Graphic g)

RemoveGraphic)
GetChild(int)

Children
Line

Draw()

• The Graphic Class represents both primitives (Line,
Square) and their containers (Picture)

Graphic Applications also Composite Patterns

*

27© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

28© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Adapter Pattern

• Adapter Pattern: Converts the interface of a
component into another interface expected by the
calling component

• Used to provide a new interface to existing legacy
components (Interface engineering, reengineering)

• Also known as a wrapper
• Two adapter patterns:

• Class adapter:
• Uses multiple inheritance to adapt one interface to

another
• Object adapter:

• Uses single inheritance and delegation.

29© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Apollo 13: “Houston, we’ve had a Problem!”

Service Module (SM)
Command Module (CM):

Living quarters for 3
astronauts during the trip

to and from the moon

Lunar Module (LM):
Living quarters for 2

astronauts on the moon

The LM was designed for 60 hours for 2 astronauts (2 days on the moon)
Could its resources be used for 12 man-days (2 1/2 days until reentry)?

Source: http://www1.jsc.nasa.gov/er/seh/apollo13.pdf

Available Lithium
Hydride in LM:

60 hours for 2
Astronauts

Available Lithium
Hydride (for breathing)

 in CM: “Plenty”
But: only 15 min power left

Needed:
88 hours for 3

Astronauts

Failure!

30© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Apollo 13: “Fitting a square peg in a round hole”

31© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

A Typical Object Design Challenge:
Connecting Incompatible Components

Source: http://www.hq.nasa.gov/office/pao/History/SP-350/ch-13-4.html

Lithium Hydride Canister
 from Command Module System

(square openings)
connected to Lunar Module

System (round openings)
To Lunar Module

Command Module

32© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Adapter Pattern

ClientInterface

Request()

LegacyClass

ExistingRequest()

adaptee

Adapter

Request()

Client

Old System
(“Legacy System”)

New System

Delegation
Inheritance

33© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Adapter for Scrubber in Lunar Module

• Using a carbon monoxide scrubber (round opening) in the
lunar module with square cartridges from the command
module (square opening)

Scrubber

ObtainOxygen()

adaptee

Round_To_Square_Adapter

ObtainOxygen()

Astronaut

Opening: Round

CM_Cartridge

ScrubCarbonMonoxide()

Opening: Square

34© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Motivation for the Bridge Pattern

• Decouple an abstraction from its implementation so
that the two can vary independently

• This allows to bind one from many different
implementations of an interface to a client
dynamically

• Design decision that can be realized any time during
the runtime of the system

• However, usually the binding occurs at start up time of the
system (e.g. in the constructor of the interface class)

35© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Using a Bridge

• The bridge pattern is used to provide multiple
implementations under the same interface.

• Examples: Interface to a component that is
incomplete, not yet known or unavailable during
testing

• Example Smardcard Project: if seat data is required to
be read, but the seat is not yet implemented, known,
or only available by a simulation, provide a bridge:

Stub Code

VIP
Seat

(in Vehicle Subsystem) SeatImplementation
imp

GetPosition()
SetPosition()

SARTSeatAIMSeat

36© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Seat Implementation
public interface SeatImplementation {
 public int GetPosition();
 public void SetPosition(int newPosition);
}
public class Stubcode implements SeatImplementation {
 public int GetPosition() {
 // stub code for GetPosition
 }
 ...
}
public class AimSeat implements SeatImplementation {
 public int GetPosition() {
 // actual call to the AIM simulation system
 }
 ….
}
public class SARTSeat implements SeatImplementation {
 public int GetPosition() {
 // actual call to the SART seat simulator
 }
 ...
}

37© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Bridge Pattern

Taxonomy in
Application Domain

Taxonomy in
Solution Domain

38© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Why the Name Bridge Pattern?

Taxonomy in
Application Domain

Taxonomy in
Solution Domain

39© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Using the Bridge Pattern to support multiple
Database Vendors

LeagueStoreImplementorLeagueStore
imp

XML Store
Implementor

Stub Store
Implementor

JDBC Store
Implementor

Arena

40© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Adapter vs Bridge

• Similarities:
• Both are used to hide the details of the underlying

implementation.

• Difference:
• The adapter pattern is geared towards making unrelated

components work together
• Applied to systems after they’re designed

(reengineering, interface engineering).
• “Inheritance followed by delegation”

• A bridge, on the other hand, is used up-front in a design to
let abstractions and implementations vary independently.

• Green field engineering of an “extensible system”
• New “beasts” can be added to the “object zoo”, even if

these are not known at analysis or system design time.
• “Delegation followed by inheritance”

41© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Facade Pattern

• Provides a unified interface to a set of objects in a
subsystem.

• A facade defines a higher-level interface that makes
the subsystem easier to use (i.e. it abstracts out the
gory details)

• Facades allow us to provide a closed architecture

42© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Design Example
• Subsystem 1 can look into the

Subsystem 2 and call any
class operation at will

• This is “Ravioli Design”
• Why is this good?

• Efficiency

• Why is this bad?
• Can’t expect the calling

subsystem to understand how
the called subsystem works or
the complex relationships
within the subsystem.

• We can be assured that the
access to subsystem 2 will be
misused, leading to non-
portable code.

Subsystem 2

Subsystem 1

AIM

Card

SA/RT

Seat

43© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Realizing an Opaque Architecture with a
Facade

• The subsystem decides
exactly how it is
accessed.

• No need to worry about
misuse by callers

• If a façade is used the
subsystem can be used
in an early integration
test

• We need to write only a
driver

VIP Subsystem

AIM

Card

SA/RT

Seat

Vehicle Subsystem API

44© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Subsystem Design with Façade, Adapter,
Bridge

• The ideal structure of a subsystem consists of
• an interface object
• a set of application domain objects (entity objects) modeling

real entities or existing systems
• Some of the application domain objects are interfaces to

existing systems
• one or more control objects

• We can use design patterns to realize this subsystem
structure

• Realization of the Interface Object: Facade
• Provides the interface to the subsystem

• Interface to existing systems: Adapter or Bridge
• Provides the interface to existing system (legacy system)
• The existing system is not necessarily object-oriented!

45© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

When should you use these Design Patterns?
• The façade design pattern should be used by all subsystems in a

software system. The façade defines the services of a subsystem
• The facade will delegate requests to the appropriate components

within the subsystem. Most of the time the façade does not need to
be changed, when the component is changed

• The adapter design pattern should be used to interface to existing
components

• For example, a smart card software system should provide an
adapter for a smart card reader from a particular manufacturer

• The bridge design pattern should be used to interface to a set of
objects

• where the full set is not completely known at analysis or design time.
• when the subsystem must be extended later after the system has

been deployed and client programs are in the field.

46© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Definitions

• Extensibility (Expandibility)
• A system is extensible, if new functional requirements can

easily be added to the existing system

• Customizability
• A system is customizable, if new nonfunctional requirements

can be addressed in the existing system

• Scalability
• A system is scalable, if existing components can easily be

multiplied in the system

• Reusability
• A system is reusable, if it can be used by another system

without requiring major changes in the existing system
model (design reuse) or code base (code reuse).

47© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Recall: Why are reusable Designs important?

A design…
…enables flexibility to change (Reusability)
…minimizes the introduction of new problems when

fixing old ones
…allows the delivery of more functionality after an

initial delivery (Extensibility).

48© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

The Proxy Pattern is a reusable design

• Caching of information (“Remote Proxy”)
• The Proxy object is a local representative for an object in a

different address space
• Good if information does not change too often

• Standin (“Virtual Proxy”)
• Object is too expensive to create or too expensive to

download.
• Good if the real object is not accessed too often

• Access control (“Protection Proxy”)
• The proxy object provides protection for the real object
• Good when different actors should have different access and

viewing rights for the same object
• Example: Grade information accessed by administrators,

teachers and students.

49© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

√

50© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Command Pattern: Motivation

• You want to build a user interface
• You want to provide menus
• You want to make the menus reusable across many

applications
• The applications only know what has to be done when a

command from the menu is selected
• You don’t want to hardcode the menu commands for the

various applications

• Such a user interface can easily be implemented
with the Command Pattern.

Command pattern

• Client (in this case a user interface builder) creates a ConcreteCommand and binds it to
an action operation in Receiver

• Client hands the ConcreteCommand over to the Invoker which stores it (for example in a
menu)

• The Invoker has the responsibility to execute or undo a command (based on a string
entered by the user)

Command

execute()

Receiver

action1()
action2()

Client

Invoker

ConcreteCommand1

execute()

«binds»

ConcreteCommand2

execute()

«binds»

52© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Comments to the Command Pattern

• The Command abstract class declares the interface
supported by all ConcreteCommands.

• The client is a class in a user interface builder or in a
class executing during startup of the application to
build the user interface.

• The client creates concreteCommands and binds
them to specific Receivers, this can be strings like
“commit”, “execute”, “undo”.

• So all user-visible commands are sub classes of the
Command abstract class.

• The invoker - the class in the application program
offering the menu of commands or buttons - invokes
theconcreteCommand based on the string entered
and the binding between action and
ConcreteCommand.

53© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Decouples boundary objects from control
objects

• The command pattern can be nicely used to
decouple boundary objects from control objects:

• Boundary objects such as menu items and buttons, send
messages to the command objects (I.e. the control objects)

• Only the command objects modify entity objects

• When the user interface is changed (for example, a
menu bar is replaced by a tool bar), only the
boundary objects are modified.

54© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Command Pattern Applicability

• Parameterize clients with different requests
• Queue or log requests
• Support undoable operations

• Uses:
• Undo queues
• Database transaction buffering

55© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Applying the Command Pattern to Command
Sets

GameBoard

«binds»
TicTacToeMove

execute()

ChessMove

execute()

Move

execute()

Match *

replay()
play()

56© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Applying the Command design pattern to
Replay Matches in ARENA

replay()

«binds»

play()

TicTacToeMove

ChessMove

Move

execute()

Match *

GameBoard

nextMove()

ReplayedMatch

previousMove()

Observer Pattern Motivation 5 16 2007

• Problem:
• We have an object that changes its state quite often

• Example: A Portfolio of stocks
• We want to provide multiple views of the current state

of the portfolio
• Example:Histogram view, pie chart view, time line

view, alarm

• Requirements:
• The system should maintain consistency across the

(redundant) views, whenever the state of the
observed object changes

• The system design should be highly extensible
• It should be possible to add new views without

having to recompile the observed object or the
existing views.

Portfolio

Stock
*

58© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Miscellaneous Announcements

1. Next week
• Monday is a holiday
• No lecture on Tuesday
• No exercises next week

2. Lecture on Wednesday as planned!
3. Mid-term

• Time: 2 June 2007
• Optional
• If you want to participate in the midterm, you have to

register with the „Grundstudiumstool“.

59© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Example: The File Name of a Presentation

InfoView

Powerpoint
View

List View3 Possibilities to change the File Name

What happens
if I change

the file name of this
presentation in List View

 to foo?

Observer Pattern: Decouples an Abstraction from its Views

Subject

subscribe(subscriber)
unsubscribe(subscriber)
notify()

• The Subject (“Publisher”) represents the entity object
• Observers (“Subscribers”) attach to the Subject by calling subscribe()
• Each Observer has a different view of the state of the entity object

• The state is contained in the subclass ConcreteSubject
• The state can be obtained and set by subclasses of type ConcreteObserver.

update()

Observer
*observers

ConcreteSubject
state

getState()
setState()

ConcreteObserver
observeState

update()

61© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Observer Pattern

• Models a 1-to-many dependency between objects
• Connects the state of an observed object, the subject with

many observing objects, the observers

• Usage:
• Maintaining consistency across redundant states
• Optimizing a batch of changes to maintain consistency

• Three variants for maintaining the consistency:
• Push Notification: Every time the state of the subject changes,
all the observers are notified of the change

• Push-Update Notification: The subject also sends the state
that has been changed to the observers

• Pull Notification: An observer inquires about the state the of
the subject

• Also called Publish and Subscribe.

Modeling the event flow:
Change FileName to “foo”

getName()
“foo”

update()
update()

getState()

subscribe()

setState(“foo”)

subscribe()
“L9_DesignPatterns2.ppt”

getName()
“foo”

 update()

subscribe()

Subject
subscribe(subscriber)
unsubscribe(subscriber)
notify()

update()

Observer*observers

ConcreteSubject
state
getState()
setState()

ConcreteObserver
observeState
update()

FileName:
Subject

PowerpointView:
ConcreteObserver

FileName:
ConcreteSubject

Pull-
Notification update()

notify() Is this a correct model
of the reality?

ListView:
ConcreteObserver

Push-
Notification

InfoView:
ConcreteObserver

Push-Update
Notification

update(“foo”))
update(“foo”)

 update(“foo”)

63© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

InfoView
update()

Observer
update()

*Subject
subscribe()
unsubscribe()
notify()

getState()
setState()

File
-filename

ListView
update()

PowerpointView
update()

Applying the Observer Pattern to maintain
Consistency across Views

64© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Applying the Observer Design Pattern to
maintain Consistency across MatchViews

GameBoard

state
getState()
playMove()

Observer

update()

MatchView

gameBoard
update()

observers

*1
Subject

subscribe(Subscriber)
unsubscribe(Subscriber)
notify()

Push, Pull or Push-Update Notification?

65© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Strategy Pattern

• Different algorithms exists for a specific task
• We can switch between the algorithms at run time

• Examples of tasks:
• Different collision strategies for objects in video games
• Parsing a set of tokens into an abstract syntax tree (Bottom up,

top down)
• Sorting a list of customers (Bubble sort, mergesort, quicksort)

• Different algorithms will be appropriate at different
times

• First build, testing the system, delivering the final product

• If we need a new algorithm, we can add it without
disturbing the application or the other algorithms.

66© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Strategy Pattern

Context

ContextInterface()
Strategy

AlgorithmInterface

*

ConcreteStrategyC

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

Policy decides which ConcreteStrategy is best in the current Context.

Policy

67© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Using a Strategy Pattern to Decide between
Algorithms at Runtime

 Database

SelectSortAlgorithm()
Sort()

* SortInterface

Sort()

 BubbleSort

Sort()

 QuickSort

Sort()

 MergeSort

Sort()

 Policy
TimeIsImportant
SpaceIsImportant

 Client

68© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Supporting Multiple implementations of a
Network Interface

NetworkInterface

open()
close()
send()
receive()

NetworkConnection

send()
receive()
setNetworkInterface()

Application

Ethernet

open()
close()
send()
receive()

WaveLAN

open()
close()
send()
receive()

UMTS

open()
close()
send()
receive()

 LocationManager

Context =
{Mobile, Home, Office}

69© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

√

√

√

√

70© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Template Method Motivation

• Several subclasses share the same algorithm but
differ on the specifics

• Common steps should not be duplicated in the
subclasses

• Examples:
• Executing a test suite of test cases
• Opening, reading, writing documents of

different types

• Approach
• The common steps of the algorithm are factored out into an

abstract class
• Abstract methods are specified for each of these steps

• Subclasses provide different realizations for each of these
steps.

step1();
…

step2();
…

step3();

71© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Template Method

AbstractClass

templateMethod()
step1()
step2()
step3()

ConcreteClass

step1()
step2()
step3()

step1();
…

step2();
…

step3();

72© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Template Method Example: Test Cases

setUp();
try {
 runTest();
} catch (Exception e){
 recordFailure(e);
}
tearDown();

TestCase

run()
setUp()
runTest()
tearDown()

MyTestCase

setUp()
runTest()
tearDown()

73© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Template Method Example:
Opening Documents

Application

openDocument()
canOpenFile(f:File)
createDocument(f:File):Doc
aboutToOpenDocument(d:Doc)

MyApplication

canOpenFile(f: File)
createDocument(f:File):Doc
aboutToOpenDocument(d:Doc)

if (canOpenFile(f)) {
 Doc d;
 d = createDocument(f);
 aboutToOpenDocument(d);
 d.open();
}

74© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Template Method Pattern Applicability

• Template method pattern uses inheritance to vary
part of an algorithm

• Strategy pattern uses delegation to vary the entire
algorithm

• Template Method is used in frameworks
• The framework implements the invariants of the algorithm
• The client customizations provide specialized steps for the

algorithm

• Principle: “Don’t call us, we’ll call you”.

75© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

√ √

76© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Abstract Factory Pattern Motivation

• Consider a user interface toolkit that supports
multiple looks and feel standards for different
operating systems:

• How can you write a single user interface and make it
portable across the different look and feel standards for
these window managers?

• Consider a facility management system for an
intelligent house that supports different control
systems:

• How can you write a single control system that is
independent from the manufacturer?

77© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Abstract Factory

Initiation Assocation:
Class ConcreteFactory2 initiates the

associated classes ProductB2 and ProductA2

AbstractProductA

ProductA1 ProductA2

AbstractProductB

ProductB1 ProductB2

AbstractFactory

CreateProductA
CreateProductB

Client

CreateProductA
CreateProductB

ConcreteFactory1

CreateProductA
CreateProductB

ConcreteFactory2

78© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Applicability for Abstract Factory Pattern

• Independence from Initialization or Representation
• Manufacturer Independence
• Constraints on related products
• Cope with upcoming change

79© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Example: A Facility Management System for a House

LightBulb

EIBBulb LuxmateBulb

Blind

EIBBlind LuxmateBlind

IntelligentHouse HouseFactory

createBulb()
createBlind()

LuxmateFactoryEIBFactory

createBulb()
createBlind()

createBulb()
createBlind()

80© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Applying the Abstract Factory Pattern to
Games

Game

Match

TTTMatch ChessMatch

ChessTicTacToe

createMatch()
createStats()

Statistics

TTTStats ChessStats

Tournament

createMatch()
createStatistics()

createMatch()
createStats()

81© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Builder Pattern Motivation 5 22 2007

• The construction of a complex object is common
across several representations

• Example
• Converting a document to a number of different formats

• the steps for writing out a document are the same
• the specifics of each step depend on the format

• Approach
• The construction algorithm is specified by a single class (the

“director”)
• The abstract steps of the algorithm (one for each part) are

specified by an interface (the “builder”)
• Each representation provides a concrete implementation of the

interface (the “concrete builders”)

82© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Builder Pattern

Construct()
Director

For all objects in Structure {
 Builder->BuildPart()
}

BuildPart()
 Builder

BuildPart()
GetResult()

ConcreteBuilderB Represen-
tation B

BuildPart()
GetResult()

ConcreteBuilderA

Represen-
tation A

83© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Applicability of Builder Pattern

• The creation of a complex product must be
independent of the particular parts that make up the
product

• The creation process must allow different
representations for the object that is constructed.

Example: Converting an RTF Document into
different representations

Parse()
RTFReader

while (t = GetNextToken()) {
switch t.Type {
 CHAR: Builder->ConvertCharacter(t)
 FONT: Builder->ConvertFontChange(t)
 PARA: Builder->ConvertParagraph(t) }
}

AsciiText

ConvertCharacter()
ConvertFontChange()
ConvertParagraph()

 Builder

TeXText HTMLText

ConvertCharacter()
ConvertFontChange()
ConvertParagraph()

GetASCIIText()

AsciiConverter
ConvertCharacter()

ConvertFontChange()
ConvertParagraph()

GetTeXText()

TexConverter
ConvertCharacter()

ConvertFontChange()
ConvertParagraph()

GetHTMLText()

HTMLConverter

85© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Comparison: Abstract Factory vs Builder

• Abstract Factory
• Focuses on product family
• Does not hide the creation process

• Builder
• The underlying product needs to be constructed as part of

the system, but the creation is very complex
• The construction of the complex product changes from time

to time
• Hides the creation process from the user

• Abstract Factory and Builder work well together for a
family of multiple complex products

86© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Clues in Nonfunctional Requirements for the
Use of Design Patterns

• Text: “manufacturer independent”,
 “device independent”,

 “must support a family of products”
=> Abstract Factory Pattern

• Text: “must interface with an existing object”
=> Adapter Pattern

• Text: “must interface to several systems, some
 of them to be developed in the future”,

“ an early prototype must be demonstrated”
=>Bridge Pattern

• Text: “must interface to existing set of objects”
=> Façade Pattern

87© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Clues in Nonfunctional Requirements for use of
Design Patterns (2)

• Text: “complex structure”,
 “must have variable depth and width”

=> Composite Pattern
• Text: “must be location transparent”

=> Proxy Pattern
• Text: “must be extensible”,

 “must be scalable”
=> Observer Pattern

• Text: “must provide a policy independent from
 the mechanism”
=> Strategy Pattern

88© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Summary

• Composite, Adapter, Bridge, Façade, Proxy
(Structural Patterns)

• Focus: Composing objects to form larger structures
• Realize new functionality from old functionality,
• Provide flexibility and extensibility

• Command, Observer, Strategy, Template (Behavioral
Patterns)

• Focus: Algorithms and assignment of responsibilities to
objects

• Avoid tight coupling to a particular solution

• Abstract Factory, Builder (Creational Patterns)
• Focus: Creation of complex objects

• Hide how complex objects are created and put together

89© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Conclusion

• Design patterns
• Provide solutions to common problems
• Lead to extensible models and code
• Can be used as is or as examples of interface inheritance

and delegation
• Apply the same principles to structure and to behavior

• Design patterns solve all your software engineering
problems

• Pattern-oriented development

• My favorites: Composite, Strategy, Builder and
Observer.

