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Reverse Engineering Challenge:
Post Mortem Thoughts

• 5 teams had a solution when the project started!
• Lesson learned 1 (For developers): When you reuse a

design or source code, make sure the requirements have
not changed:-)

• First handed-in solution
• Seemed to have passed the client acceptance test
• But it was not correct:

• It did not reduce the speed by 50%
• Lesson learned 2 (for Management): Make sure the client

acceptance test covers all the requirements.
• Consolation prize: Jakob Mund

• We have a winner: Team „Philip Lorenz“
• Lottery for second prize (>40 submissions!)
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Miscellaneous

• The "Prüfungsauschuß" requires most students to register in
HISQIS for their exams until May 25
=> Please see our website for more details
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Is this a good Model?
public interface SeatImplementation {
  public int GetPosition();
  public void SetPosition(int newPosition);
}
public class Stubcode implements SeatImplementation {
  public int GetPosition() {
    // stub code for GetPosition
  }
  ...
}
public class AimSeat implements SeatImplementation {
  public int GetPosition() {
    // actual call to the AIM simulation system
  }
  ….
}
public class SARTSeat implements SeatImplementation {
  public int GetPosition() {
    // actual call to the SART seat simulator
 }
  ...
}

It depends!
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A Game:  Get-15
• Start with the nine numbers 1,2,3,4, 5, 6, 7, 8 and 9.
• You and your opponent take alternate turns, each

taking a number
• Each number can be taken only once: If you opponent

has selected a number, you cannot also take it.
• The first person to have any three numbers that total

15 wins the game.
• Example:

You: 

Opponent: 

1 5 83

6 9 27 Opponent
Wins!
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Characteristics of Get-15

• Hard to play,
• The game is especially hard,  if you are not allowed

to write anything done.

• Why?
• All the numbers need to be scanned to see if you have

won/lost
• It is hard to see what the opponent will take if you take a

certain number
• The choice of the number depends on all the previous

numbers

• Not easy to devise an simple strategy
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Another Game: Tic-Tac-Toe

Source: http://boulter.com/ttt/index.cgi
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A Draw Sitation
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Strategy for determining a winning move
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Winning Situations for Tic-Tac-Toe

Winning
Patterns
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Tic-Tac-Toe is “Easy”
• Why?   Reduction of complexity through patterns and

symmetry
• Patterns: Knowing the following two  patterns, the

player can anticipate the opponents move

• Symmetry:
• The player needs to remember only these  three
patterns to deal with 8 different game situations

• The player needs to memorize only 3 opening
moves and their responses
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Get-15 and Tic-Tac-Toe are identical problems

• Any Get-15 solution is a solution to a tic-tac-toe problem
• Any tic-tac-toe solution is a solution to a Get-15 problem
• To see the relationship between the two games, we

simply arrange the 9 digits into the following pattern

8 1 6

3 5 7

4 9 2
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8 1 6

3 5 7

4 9 2

1 5 83

6 9 27

You: 

Opponent: 

8 1 6

3 5 7

4 9 2
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• During object modeling we do many transformations
and changes to the object model

• It is important to make sure the object model stays
simple!

• Design patterns are used to keep system models
simple (and reusable).
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Modeling Heuristics

• Modeling must address our mental limitations:
• Our short-term memory has only limited capacity (7+-2)

• Good Models deal with this limitation, because they
• Do not tax the mind

• A good model requires a small mental effort
• Reduce complexity

• Turn complex tasks into easy ones (choice of representation)
• Use of symmetries

• Use abstractions
• Taxonomies

• Have organizational structure:
• Memory limitations are overcome with an appropriate

representation (“natural model”).
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Outline
• Design Patterns

• Usefulness of design patterns
• Design Pattern Categories

• Patterns already covered: Proxy, Strategy
• Patterns covered in this lecture

• Composite: Modeling of dynamic aggregates
• Facade: Interfacing to subsystems
• Adapter: Interfacing to existing systems  (legacy systems)
• Bridge: Interfacing to existing and future systems

• Patterns covered next week and in the exercises
• Command, Observer, Template Method, Abstract Factory,

Builder.
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What is common between these definitions?

• Definition Software System
• A software system consists of subsystems which are either

other subsystems or collection of classes

• Definition Software Lifecycle
• A software lifecycle consists of a set of development

activities which are either other activities or collection of
tasks.

Recursion



20© 2007 Bernd Bruegge                                    Introduction into Software Engineering  Summer 2007

Recursion

• Recursion
• An abstraction being defined is used within  its own

definition
• More general: Description of an  abstraction based on

self-similarity.
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What is common between these definitions?

• Definition Software System
• A software system consists of subsystems which are either

other subsystems or collection of classes
• Composite: Subsystem

• A software system consists of subsystems which consists
of subsystems, which consists of subsystems, which...

• Base case: Class

• Definition Software Lifecycle
• The software lifecycle consists of a set of development

activities which are either other activities or collection of
tasks

• Composite: Activity
• The software lifecycle consists of activities which consist

of  activities, which consist of activities, which....
• Base case:  Task.
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Modeling a Software System      

Software
System

Class
Subsystem Children

*
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Modeling the Software Lifecycle

Software
Lifecycle

Task
Activity Children

*
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Introducing the Composite Pattern
• Models tree structures that represent part-whole

hierarchies with arbitrary depth and width
• The Composite Pattern lets a client treat individual

objects and compositions of these  objects uniformly

Client Component

Leaf

Operation()

Composite

Operation()
AddComponent

RemoveComponent()
GetChild()

Children

*
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The Composite Patterns models dynamic
aggregates

University School Department

Organization Chart (variable aggregate):

Dynamic tree (recursive aggregate):

CarFixed Structure:

Doors Wheels Battery Engine

Compound  
Statement

Simple  
Statement

Program

Block

* *

* *

* *
Dynamic tree (recursive aggregate):

Composite
Pattern
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Client Graphic

Square

Draw()

Picture

Draw()
Add(Graphic g)

RemoveGraphic)
GetChild(int)

Children
Line

Draw()

• The Graphic  Class represents both primitives (Line,
Square) and their containers (Picture)

Graphic Applications also Composite Patterns

*



27© 2007 Bernd Bruegge                                    Introduction into Software Engineering  Summer 2007



28© 2007 Bernd Bruegge                                    Introduction into Software Engineering  Summer 2007

Adapter Pattern

• Adapter Pattern: Converts the interface of a
component into another interface expected by the
calling component

• Used to provide a new interface to existing legacy
components (Interface engineering, reengineering)

• Also known as a wrapper
• Two adapter patterns:

• Class adapter:
• Uses multiple inheritance to adapt one interface to

another
• Object adapter:

• Uses single inheritance and delegation.
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Apollo 13: “Houston, we’ve had a Problem!”

Service Module (SM)
Command  Module (CM):

Living quarters for 3
astronauts during the trip

to and from the moon

Lunar Module (LM):
Living quarters for 2 

astronauts on the moon

The LM was designed for 60 hours for 2 astronauts (2 days on the moon)
Could its resources be used for 12 man-days (2 1/2 days until reentry)?

Source: http://www1.jsc.nasa.gov/er/seh/apollo13.pdf

Available  Lithium 
Hydride in LM: 

60 hours for 2
Astronauts

Available Lithium 
Hydride (for breathing)

 in CM:  “Plenty”
But: only 15 min power left

Needed: 
88 hours for 3

Astronauts

Failure!
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Apollo 13: “Fitting a square peg in a round hole”
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A Typical Object Design Challenge:
Connecting Incompatible Components

Source: http://www.hq.nasa.gov/office/pao/History/SP-350/ch-13-4.html

Lithium Hydride Canister
 from Command Module System 

(square openings)
connected to  Lunar Module 

System (round openings)
To Lunar Module 

Command Module 
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Adapter Pattern

ClientInterface

Request()

LegacyClass

ExistingRequest()

adaptee

Adapter

Request()

Client

Old System
(“Legacy System”) 

New System 

Delegation
Inheritance
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Adapter for Scrubber in Lunar Module

• Using a carbon monoxide scrubber (round opening) in the
lunar module with square cartridges from the command
module (square opening)

Scrubber

ObtainOxygen()

adaptee

Round_To_Square_Adapter

ObtainOxygen()

Astronaut

Opening: Round

CM_Cartridge

ScrubCarbonMonoxide()

Opening: Square
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Motivation for the Bridge Pattern

• Decouple an abstraction from its implementation so
that the two can vary independently

• This allows to bind one from many different
implementations of an interface to a client
dynamically

• Design decision that can be realized any time during
the runtime of the system

• However, usually the binding occurs at start up time of the
system (e.g. in the constructor of the interface class)
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Using a Bridge

• The bridge pattern is used to provide multiple
implementations under the same interface.

• Examples: Interface to a component that is
incomplete, not yet known or unavailable during
testing

• Example Smardcard Project: if seat data is required to
be read, but the seat is not yet implemented, known,
or only available by a simulation, provide a bridge:

Stub Code

VIP
Seat 

(in Vehicle Subsystem) SeatImplementation
imp

GetPosition()
SetPosition()

SARTSeatAIMSeat
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Seat Implementation
public interface SeatImplementation {
  public int GetPosition();
  public void SetPosition(int newPosition);
}
public class Stubcode implements SeatImplementation {
  public int GetPosition() {
    // stub code for GetPosition
  }
  ...
}
public class AimSeat implements SeatImplementation {
  public int GetPosition() {
    // actual call to the AIM simulation system
  }
  ….
}
public class SARTSeat implements SeatImplementation {
  public int GetPosition() {
    // actual call to the SART seat simulator
 }
  ...
}
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Bridge Pattern

Taxonomy in
Application  Domain

Taxonomy in
Solution Domain
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Why the Name Bridge Pattern?

Taxonomy in
Application  Domain

Taxonomy in
Solution Domain
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Using the Bridge Pattern to support multiple
Database Vendors

LeagueStoreImplementorLeagueStore
imp

XML Store
Implementor

Stub Store
Implementor

JDBC Store
Implementor

Arena
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Adapter vs Bridge

• Similarities:
• Both are used to hide the details of the underlying

implementation.

• Difference:
• The adapter pattern is geared towards making unrelated

components work together
• Applied to systems after they’re designed

(reengineering, interface engineering).
• “Inheritance followed by delegation”

• A bridge, on the other hand, is used up-front in a design to
let abstractions and implementations vary independently.

• Green field engineering of an “extensible system”
• New “beasts” can be added to the “object zoo”, even if

these are not known at analysis or system design time.
• “Delegation followed by inheritance”
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Facade Pattern

• Provides a unified interface to a set of objects in a
subsystem.

• A facade defines a higher-level interface that makes
the subsystem easier to use (i.e. it abstracts out the
gory details)

• Facades allow us to provide  a closed architecture
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Design Example
• Subsystem 1 can look into the

Subsystem 2 and call any
class operation at will

• This is “Ravioli Design”
• Why is this good?

• Efficiency

• Why is this bad?
• Can’t expect the calling

subsystem to understand how
the called subsystem works or
the complex relationships
within the subsystem.

• We can be assured that the
access to subsystem 2 will be
misused, leading to non-
portable code.

Subsystem 2

Subsystem 1

AIM

Card

SA/RT

Seat
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Realizing an Opaque Architecture with a
Facade

• The subsystem decides
exactly how it is
accessed.

• No need to worry about
misuse by callers

• If a façade is used the
subsystem can be used
in an early integration
test

• We need to write only a
driver

VIP Subsystem

AIM

Card

SA/RT

Seat

Vehicle  Subsystem API
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Subsystem Design with Façade, Adapter,
Bridge

• The ideal structure of a subsystem consists of
• an interface object
• a set of application domain objects (entity objects) modeling

real entities or existing systems
• Some of the application domain objects are interfaces to

existing systems
• one or more  control objects

• We can use design patterns to realize this subsystem
structure

• Realization of the Interface Object: Facade
• Provides the interface to  the subsystem

• Interface to existing systems: Adapter or Bridge
• Provides the interface to  existing system (legacy system)
• The existing system is not necessarily object-oriented!
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When should you use these Design Patterns?
• The façade design pattern should be used by all subsystems in a

software system. The façade defines the services of a subsystem
• The facade will delegate requests to the appropriate components

within the subsystem. Most of the time the façade does not need to
be changed,  when the component is changed

• The adapter design pattern should be used to interface to existing
components

• For example, a smart card software system should provide an
adapter for a smart card reader from a particular manufacturer

• The bridge design pattern should be used to interface to a set of
objects

• where the full set is not completely known at analysis or design time.
• when the subsystem must be extended later after the system has

been deployed and client programs are in the field.
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Definitions

• Extensibility (Expandibility)
• A system is extensible, if new functional requirements can

easily be added to the existing system

• Customizability
• A system is customizable, if new nonfunctional requirements

can be addressed in the existing system

• Scalability
• A system is scalable, if existing components can easily be

multiplied in the system

• Reusability
• A system is reusable, if it can be used by another system

without requiring major changes in the existing system
model (design reuse)  or code base (code reuse).
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Recall: Why are reusable Designs important?

A design…
…enables flexibility to change (Reusability)
…minimizes the introduction of new problems when

fixing old ones
…allows the delivery of more functionality after an

initial delivery (Extensibility).
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The Proxy Pattern is a reusable design

• Caching of information (“Remote Proxy”)
• The Proxy object is a local representative for an object in a

different address space
• Good if information does not change too often

• Standin  (“Virtual Proxy”)
• Object is too expensive to create or too expensive to

download.
• Good if the real object is not accessed  too often

• Access control  (“Protection Proxy”)
• The proxy object provides protection for the real object
• Good when different actors should have different access and

viewing rights for the same object
• Example: Grade information accessed by administrators,

teachers and students.
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√
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Command Pattern: Motivation

• You want  to build a user interface
• You want to provide menus
• You want to make the menus reusable across many

applications
• The applications only know what has to be done when a

command from the menu is selected
• You don’t want to hardcode the menu commands for the

various applications

• Such a user interface can easily be implemented
with the Command Pattern.



Command pattern

• Client (in this case a user interface builder) creates a ConcreteCommand and binds it to
an action operation in Receiver

• Client hands the ConcreteCommand over to the Invoker which stores it (for example in a
menu)

• The Invoker has the responsibility to execute or undo a command (based on a string
entered by the user)

Command

execute()

Receiver

action1()
action2()

Client

Invoker

ConcreteCommand1

execute()

«binds»

ConcreteCommand2

execute()

«binds»
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Comments to the Command Pattern

• The Command abstract class declares the interface
supported by all ConcreteCommands.

• The client is a class in a user interface builder or in a
class executing during startup  of the application to
build the user interface.

• The client creates concreteCommands and binds
them to specific Receivers, this can be strings like
“commit”, “execute”, “undo”.

• So all user-visible commands are sub classes of the
Command abstract class.

• The invoker - the class in the application program
offering the menu of commands or buttons - invokes
theconcreteCommand based on the string entered
and the binding between action and
ConcreteCommand.
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Decouples boundary objects from control
objects

• The command pattern can be nicely used to
decouple boundary objects from control objects:

• Boundary objects such as menu items and buttons, send
messages to the command objects (I.e. the control objects)

• Only the command objects modify entity objects

• When the user interface is changed (for example, a
menu bar is replaced by a tool bar), only the
boundary objects are modified.
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Command Pattern  Applicability

• Parameterize clients with different requests
• Queue or log requests
• Support undoable operations

• Uses:
• Undo queues
• Database transaction buffering
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Applying the Command Pattern to Command
Sets

GameBoard

«binds»
TicTacToeMove

execute()

ChessMove

execute()

Move

execute()

Match *

replay()
play()
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Applying the Command design pattern to
Replay Matches in ARENA

replay()

«binds»

play()

TicTacToeMove

ChessMove

Move

execute()

Match *

GameBoard

nextMove()

ReplayedMatch

previousMove()



Observer Pattern Motivation 5 16 2007

• Problem:
• We have an object that changes its state quite often

• Example: A Portfolio of stocks
• We want to provide multiple views of the current state

of the portfolio
• Example:Histogram view, pie chart view, time line

view, alarm

• Requirements:
• The system should maintain consistency across the

(redundant) views, whenever the state of the
observed object changes

• The system design should be highly extensible
• It should be possible to add new views without

having to recompile the observed object or the
existing views.

Portfolio

Stock
*
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Miscellaneous Announcements

1. Next week
• Monday is a holiday
• No lecture on Tuesday
• No exercises next week

2. Lecture on Wednesday as planned!
3. Mid-term

• Time: 2 June 2007
• Optional
• If you want to participate in the midterm, you have to

register with the „Grundstudiumstool“.
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Example: The File Name of a Presentation

InfoView

Powerpoint
View

List View3 Possibilities to change the File Name

What happens
if I change

the file name of this
presentation in List View

 to foo?



Observer Pattern: Decouples an Abstraction from its Views

Subject

subscribe(subscriber)
unsubscribe(subscriber)
notify()

• The Subject (“Publisher”) represents the entity object
• Observers (“Subscribers”) attach to the Subject by calling subscribe()
• Each Observer has a different view of the state of the entity object

• The state is contained in the subclass ConcreteSubject
• The state can be obtained and set by subclasses of type ConcreteObserver.

update()

Observer
*observers

ConcreteSubject
state

getState()
setState()

ConcreteObserver
observeState

update()



61© 2007 Bernd Bruegge                                    Introduction into Software Engineering  Summer 2007

Observer Pattern

• Models a 1-to-many dependency between objects
• Connects the state of an observed object, the subject with

many observing objects, the observers

• Usage:
• Maintaining consistency across redundant states
• Optimizing a batch of changes to maintain consistency

•  Three variants for maintaining the consistency:
• Push Notification: Every time the state of the subject changes,
all the observers are notified of the change

• Push-Update Notification: The subject also sends the state
that has been changed to the observers

• Pull Notification: An observer inquires about the state the of
the subject

• Also called Publish and Subscribe.



Modeling the event flow:
Change FileName to “foo”

getName()
“foo”

update()
update()

getState()

subscribe()

setState(“foo”)

subscribe()
“L9_DesignPatterns2.ppt”

getName()
“foo”

          update()

subscribe()

Subject
subscribe(subscriber)
unsubscribe(subscriber)
notify()

update()

Observer*observers

ConcreteSubject
state
getState()
setState()

ConcreteObserver
observeState
update()

FileName:
Subject

PowerpointView:
ConcreteObserver

FileName:
ConcreteSubject

Pull-
Notification update()

notify() Is this a correct model
of the reality?

ListView:
ConcreteObserver

Push-
Notification

InfoView:
ConcreteObserver

Push-Update
Notification

update(“foo”))
update(“foo”)

       update(“foo”)
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InfoView
update()

Observer
update()

*Subject
subscribe()
unsubscribe()
notify()

getState()
setState()

File
-filename

ListView
update()

PowerpointView
update()

Applying the Observer Pattern to maintain
Consistency across Views
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Applying the Observer Design Pattern to
maintain Consistency across MatchViews

GameBoard

state
getState()
playMove()

Observer

update()

MatchView

gameBoard
update()

observers

*1
Subject

subscribe(Subscriber)
unsubscribe(Subscriber)
notify()

Push, Pull or Push-Update Notification?
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Strategy Pattern

• Different algorithms exists for a specific task
• We can switch between the algorithms at run time

• Examples of tasks:
• Different collision strategies for objects in video games
• Parsing a set of tokens into an abstract syntax tree (Bottom up,

top down)
• Sorting a list of customers (Bubble sort, mergesort, quicksort)

• Different algorithms will be appropriate at different
times

• First build, testing the system, delivering the final product

• If we need a new algorithm, we can add it without
disturbing the application or the other algorithms.



66© 2007 Bernd Bruegge                                    Introduction into Software Engineering  Summer 2007

Strategy Pattern

Context

ContextInterface()
Strategy

AlgorithmInterface

*

ConcreteStrategyC

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

Policy decides which ConcreteStrategy is best in the current Context.

Policy
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Using a Strategy Pattern to Decide between
Algorithms at Runtime

              Database

SelectSortAlgorithm()
Sort()

*             SortInterface

Sort()

           BubbleSort

Sort()

             QuickSort

Sort()

                MergeSort

Sort()

                Policy
TimeIsImportant
SpaceIsImportant

           Client
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Supporting Multiple implementations of a
Network Interface

NetworkInterface

open()
close()
send()
receive()

NetworkConnection

send()
receive()
setNetworkInterface()

Application

Ethernet

open()
close()
send()
receive()

WaveLAN

open()
close()
send()
receive()

UMTS

open()
close()
send()
receive()

 LocationManager

Context =
{Mobile, Home, Office}
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√

√

√

√
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Template Method Motivation

• Several subclasses share the same algorithm but
differ on the specifics

• Common steps should not be duplicated in the
subclasses

• Examples:
• Executing a test suite of test cases
• Opening, reading, writing documents of

different types

• Approach
• The common steps of the algorithm are factored out into an

abstract class
• Abstract methods are specified for each of these steps

• Subclasses provide different realizations for each of these
steps.

step1();
…

step2();
…

step3();
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Template Method

AbstractClass

templateMethod()
step1()
step2()
step3()

ConcreteClass

step1()
step2()
step3()

step1();
…

step2();
…

step3();
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Template Method Example: Test Cases

setUp();
try {
  runTest();
} catch (Exception e){
  recordFailure(e);
}
tearDown();

TestCase

run()
setUp()
runTest()
tearDown()

MyTestCase

setUp()
runTest()
tearDown()
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Template Method Example:
Opening Documents

Application

openDocument()
canOpenFile(f:File)
createDocument(f:File):Doc
aboutToOpenDocument(d:Doc)

MyApplication

canOpenFile(f: File)
createDocument(f:File):Doc
aboutToOpenDocument(d:Doc)

if (canOpenFile(f)) {
  Doc d;
  d = createDocument(f);
  aboutToOpenDocument(d);
  d.open();
}
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Template Method Pattern Applicability

• Template method pattern uses inheritance to vary
part of an algorithm

• Strategy pattern uses delegation to vary the entire
algorithm

• Template Method is used in frameworks
• The framework implements the invariants of the algorithm
• The client customizations provide specialized steps for the

algorithm

• Principle: “Don’t call us, we’ll call you”.
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√ √
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Abstract Factory Pattern Motivation

• Consider a user interface toolkit that supports
multiple looks and feel standards for different
operating systems:

• How can you write a single user interface and make it
portable across the different look and feel standards for
these window managers?

• Consider a facility management system for an
intelligent house that supports different control
systems:

• How can you write a single control system that is
independent from the manufacturer?



77© 2007 Bernd Bruegge                                    Introduction into Software Engineering  Summer 2007

Abstract Factory

Initiation Assocation:
Class ConcreteFactory2 initiates the

associated classes ProductB2 and ProductA2

AbstractProductA

ProductA1 ProductA2

AbstractProductB

ProductB1 ProductB2

AbstractFactory

CreateProductA
CreateProductB

Client

 

CreateProductA
CreateProductB

ConcreteFactory1

 

CreateProductA
CreateProductB

ConcreteFactory2
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Applicability  for Abstract Factory Pattern

• Independence from Initialization or Representation
• Manufacturer Independence
• Constraints on related products
• Cope with upcoming change
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Example: A Facility Management System for a House

LightBulb

EIBBulb LuxmateBulb

Blind

EIBBlind LuxmateBlind

IntelligentHouse HouseFactory

createBulb()
createBlind()

LuxmateFactoryEIBFactory

createBulb()
createBlind()

createBulb()
createBlind()
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Applying the Abstract Factory Pattern to
Games

Game

Match

TTTMatch ChessMatch

ChessTicTacToe

createMatch()
createStats()

Statistics

TTTStats ChessStats

Tournament

createMatch()
createStatistics()

createMatch()
createStats()
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Builder Pattern Motivation 5 22 2007

• The construction of a complex object is common
across several representations

• Example
• Converting a document to a number of different formats

• the steps for writing out a document are the same
• the specifics of each step depend on the format

• Approach
• The construction algorithm is specified by a single class (the

“director”)
• The abstract steps of the algorithm (one for each part) are

specified by an interface (the “builder”)
• Each representation provides a concrete implementation of the

interface (the “concrete builders”)
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Builder Pattern

Construct()
Director

For all objects in  Structure {
         Builder->BuildPart()
}

BuildPart()
  Builder

BuildPart()
GetResult()

ConcreteBuilderB Represen-
tation B

BuildPart()
GetResult()

ConcreteBuilderA

Represen-
tation A
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Applicability of Builder Pattern

• The creation of a complex product must be
independent of the particular parts that make up the
product

• The creation process must allow different
representations for the object that is constructed.



Example: Converting an RTF Document into
different representations

Parse()
RTFReader

while (t = GetNextToken()) {
switch t.Type {
  CHAR: Builder->ConvertCharacter(t)
  FONT: Builder->ConvertFontChange(t)
  PARA: Builder->ConvertParagraph(t) }
}

AsciiText

ConvertCharacter()
ConvertFontChange()
ConvertParagraph()

         Builder

TeXText HTMLText

ConvertCharacter()
ConvertFontChange()
ConvertParagraph()

GetASCIIText()

AsciiConverter
ConvertCharacter()

ConvertFontChange()
ConvertParagraph()

GetTeXText()

TexConverter
ConvertCharacter()

ConvertFontChange()
ConvertParagraph()

GetHTMLText()

HTMLConverter
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Comparison: Abstract Factory vs Builder

• Abstract Factory
• Focuses on product family
• Does not hide the creation process

• Builder
• The underlying product needs to be constructed as part of

the system, but the creation is very complex
• The construction of the complex product changes from time

to time
• Hides the creation process from the user

• Abstract Factory and Builder work well together for a
family of multiple complex products
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Clues in Nonfunctional Requirements for the
Use of Design Patterns

• Text: “manufacturer independent”,
         “device independent”,

   “must support a family of products”
=> Abstract Factory Pattern

• Text: “must interface with an existing object”
=> Adapter Pattern

• Text: “must interface to several systems, some
          of them to be developed in the future”,

“ an early prototype must be demonstrated”
=>Bridge  Pattern

• Text:  “must interface to existing set of objects”
=> Façade Pattern
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Clues in Nonfunctional Requirements for  use of
Design Patterns (2)

• Text: “complex structure”,
   “must have variable depth and width”

=> Composite Pattern
• Text:  “must be location transparent”

=> Proxy  Pattern
• Text: “must be extensible”,

   “must be scalable”
=> Observer Pattern

• Text: “must provide a policy independent from
          the mechanism”
=> Strategy Pattern
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Summary

• Composite, Adapter, Bridge, Façade, Proxy
(Structural Patterns)

• Focus: Composing objects to form larger structures
• Realize new functionality  from old functionality,
• Provide flexibility and extensibility

• Command, Observer, Strategy, Template (Behavioral
Patterns)

• Focus: Algorithms and assignment of responsibilities to
objects

• Avoid tight coupling to a particular solution

• Abstract Factory, Builder (Creational Patterns)
• Focus: Creation of complex objects

• Hide how complex objects are created and put together
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Conclusion

• Design patterns
• Provide solutions to common problems
• Lead to extensible models and code
• Can be used as is or as examples of interface inheritance

and delegation
• Apply the same principles to structure and to behavior

• Design patterns solve all your software engineering
problems

• Pattern-oriented development

• My favorites: Composite, Strategy, Builder and
Observer.


