
Guest Lecture: Estimation
Wolfgang Behr, Accenture

TU München
Lecture Applied Software Engineering
Prof. Bernd Brügge
Software Engineering II, SS 2009

Lecture Schedule (Less Tentative)
  Apr 21: Introduction
  Apr 28: Basic Concepts
  May 5: Project Communication
  May 13: Configuration Management
  May 19: Build and Release Management
  May 26: Estimation (Guest Speaker: Wolfgang Behr, Accenture)
  June 02: Cancelled (Pentecost, Pfingsten)
  June 09: Scheduling (Project duration, critical path analysis)
  June 16: Guest lecture (Holger Wolff, Beck et al)
  June 23: Organization (team building, customer interaction)
  June 30: Lifecycle Models (Lifecycle models, IEEE 1074, Unified

Process)
  July 7: Agile Project Management (XP, Scrum)
  July 14 : Corporate Open Source

 (Guest Lecture, Thomas Uhl, Topalis AG)
  July 21: Knowledge Management (Acquiring and externalizing

 knowledge, dealing with conflicts and resolutions)
  July 30: Exam (14:30 – 16:30 in MW 1350)

Exercise Schedule (Less Tentative)
 April 22: Icebreaker
 April 29: Software Project Management Plan (SPMP)
 May 6: Project Agreement
 May 13: Software Configuration Management Plan (SCMP)
 May 20: Continuous Integration (Cruise Control, Maven)
  Fr. May 29: Work Breakdown structures (Jonas von Beck,

Accenture)
  Preparation: Read WBS lecture slides, Slides are posted on Lecture Portal

  Fr. June 5: Estimation (Marc Bachmann, Accenture)
  June 10: Scheduling (Inga Küffer, Accenture)
 Week of June 15-20: Project Management Day at

Accenture (Block Event) Exact date to be announced

  June 24: Rationale Management
  July 1: Student presentations of SPMP
  July 8: Agile Project Management

 (Daily Scrum, Planning Poker)

Accenture Schedule

•  Starting today with Wolfgang Behr’s lecture on
WBS

•  The following 4 exercises will be held in
cooperation with Accenture.
•  Friday May 29: Work Breakdown structures (Create a

WBS)
•  Friday June 5: Estimation (Establish Estimates)
•  Wednesday June 10: Scheduling (Set up a project

schedule)
•  Week of June 15-20:

•  Project Management Day at Accenture
 (Block Event) Exact date to be announced

•  Exercises on Fridays take place from 2 - 3:30
pm in room 01.07.014

Continuous Integration Exercise Post-
Mortem

•  What went right?
•  27 highly motivated students in 4 teams
•  All team were able to set up the Hudson project correctly
•  Great communication and teamwork

Continuous Integration Exercise Post-
Mortem

Continuous Integration Exercise Post-
Mortem

•  What went wrong?
•  Ad hoc network infrastructure (DHCP Problems)
•  Bad planning (teams ran out of time)
•  Tests provided by management were underspecified or even

without any specification
•  But, the teams found the problems

Continuous Integration Exercise Post-
Mortem

•  Who won the ice-cream?
•  All the teams managed well for the short time available
•  One team configured all the metrics plug-ins correctly

and managed to eliminate all PMD warnings and at
least some of the other warnings.

•  The winner is:

TEAM 4

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 2

Objectives for Today

Build an understanding of

Importance
Challenges
Approaches
Pros and Cons
Pitfalls

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 3

What is a Project Estimate ?

A declaration about needed

effort and
time,
for delivering the project scope

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 4

Importance of Estimations

Ressource allocation decisions
Basis for the decision to start (or not to start) a project
Foundation for project planning and set-up (business
case)
Foundation for project controlling
If project time is a given, number of ressources can be
determined
Owner of an estimate is an indication about who is

taking the project risk
Decision and ressource allocation implications =>
Estimates are often part of political games

Estimating is a core task of project management

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 5

Challenges (1/ 2)

Incomplete knowledge about:
Project scope and changes
Prospective resources and staffing
Technical and organizational environment
Infrastructure
Feasibility of functional requirements

Comparability of projects in case of new or
changing technologies, staff, methodologies
Learning curve problem
Different expectations towards project manager

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 6

Challenges (2/ 2)

Estimation is too low
Scope and tasks (WBS) incomplete / unknown

Estimation is too high
Political / human reasons
Learning curve

New technologies can make new parameters
necessary

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 7

Guiding Principles

Documentation of assumptions about
Estimation methodology
Project scope, staffing, technology,

Definition of estimation accuracy
Continuous planning and estimation over project
time (increasing accuracy with project phases)

Example: Better estimation for implementation phase
after object design is finished

Reviews by experienced colleagues
Depending on the situation, multiple methods
are to be used in combination

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 8

Components of an Estimation

Cost
Personnel (in person days or valued in personnel cost)

Person day: Effort of one person per working day
Material (PCs, software, tools etc.)
Extra costs (travel expenses etc.)

Development Time
Project duration
Dependencies

Infrastructure
Rooms, technical infrastructure, especially in offshore
scenarios.

This lecture

Lecture on Scheduling.

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 9

Estimating Development Time

Development time often estimated by formula
Duration = Effort / People

But:
A larger project team increases
communication complexity which usually
reduces productivity

Therefore it is not possible to reduce duration
arbitrarily by adding more people to a project

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 10

Estimating Personnel Cost

Staff categories (based on experience,
qualification and skills), for example:

teamlead, junior business analyst, senior business
analyst, junior programmer, senior programmer,
subject matter expert

Cost rate: Cost per person per day
2 alternatives for cost rate:

Single cost rate for all types (no differentiation
necessary)
Assign different cost rates to different categories

Personnel cost: person days x cost rate.

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 11

Estimating Effort

Most difficult part during project planning
Many planning tasks (project schedule, project
organization) depend on determination of effort

Basic principle:
Select an estimation model (or build one first)
Evaluate known information: project scope, resources,
software process (for example documentation
requirements), system components
Feed this information as parametric input data into the
model
Model converts the input into an estimate about the
effort

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 12

Parametric
Data Estimate

Examples:

Data Input Estimate

Size & Project Data Effort & Schedule

System Model Performance

Software Process Cycle Time.

Basic Use of Estimation Models

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 13

Model of Software
Lifecycle Process

Estimation
Model

Insight

How do you Build an Estimating Model?

Historical
Data

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 14

Basic
Estimation

Model

Your Data

Your
Experience

Calibrated
Estimation

Model

Your
Insight

Calibrating an Estimation Model

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 15

Top-Down and Bottom-Up Estimation

Two common approaches for estimations
Top-Down Approach

Estimate effort for the whole project
Breakdown to different project phases and work
products

Bottom-Up Approach
Start with effort estimates for tasks on the lowest
possible level
Aggregate the estimates until top activities are
reached.

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 16

Top-Down versus Bottom-Up (cont d)

Top-Down Approach
Normally used in the planning phase when little
information is available how to solve the problem
Based on experiences from similar projects
Not appropriate for project controlling (too high-level)
Risk add-ons usual as result tends to be too low

Bottom-Up Approach
Normally used after activities are broken down to task
level and estimates for the tasks are available
Result can be used for project controlling (detailed
level)
Smaller risk add-ons (tends to be too high)

Often a mixed approach with recurring
estimation cycles is used.

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 17

Estimation Techniques

Expert estimations
Lines of code
Function point analysis
COCOMO
Estimation Technique used by Accenture.

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 18

Expert Estimations

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 19

Expert Estimations

= Guess from experienced people

Mostly used top-down for the whole project, but
also for some parts of a bottom-up approach
Used for determining the calibration parameters
No better than the participants
Result justification difficult
Also suitable for:

atypical projects
in pre-project / idea phase.

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 20

Lines of Code

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 21

Lines of Code

Traditional way for estimating application size (FORTRAN
and assembler -> line-oriented languages)
Advantage: Easy to do
Disadvantages:

No standard definition for Line of Code (logical versus
physical)
Of no help given a written project scope or functional design
You get what you measure : If the number of lines of code

is the primary measure of productivity, programmers ignore
opportunities of reuse
Multi-language environments: Hard to compare mixed
language projects with single language projects

The use of lines of code metrics for productivity should be
regarded as professional malpractice (Caspers Jones).

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 22

Function Point Analysis

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 23

Function Point Analysis

Developed by Allen Albrecht, IBM Research, 1979
Technique to determine size of software projects

Size is measured from a functional point of view
Estimates are based on functional requirements

Albrecht originally used the technique to predict effort
Size is usually the primary driver of development effort

Independent of
Implementation language and technology
Development methodology
Capability of the project team

A top-down approach based on function types
Three steps: Plan the count, perform the count, estimate
the effort.

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 24

Steps in Function Point Analysis

Plan the count
Type of count: development, enhancement, application
Identify the counting boundary
Identify sources for counting information: software,
documentation and/or expert

Perform the count
Count data access functions
Count transaction functions

Estimate the effort
Compute the unadjusted function points (UFP)
Compute the Value Added Factor (VAF)
Compute the adjusted Function Points (FA)
Compute the performance factor
Calculate the effort in person days.

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 25

Function Types

Data function types
of internal logical files (ILF)
of external interface files (EIF)

Transaction function types
of external input (EI)
of external output (EO)
of external queries (EQ)

Calculate the UFP (unadjusted function points):

UFP = a · EI + b · EO + c · EQ + d · ILF + e · EIF

a-f are so-called weight factors (see slide 28)

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 26

Object Model Example

Customer
Name
Address
Amound Due

Item
Description
Pallets
Value
Storage Date
Owner
Storage Place

Place
Location
Space

owns Stored at

1
1

* *

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 27

Mapping Functions to Transaction Types

Add Customer
Change Customer
Delete Customer
Receive payment
Deposit Item
Retrieve Item
Add Place
Change Place Data
Delete Place
Print Customer item list
Print Bill
Print Item List
Query Customer
Query Customer's items
Query Places
Query Stored Items

External Inputs

External Outputs

External Inquiries

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 28

Weight Factors

Function Type simple average complex

External Input (EI) x 3 4 6 =

External Output (EO) x 4 5 7 =

External Queries (EQ) x 3 4 6 =

Internal Datasets (ILF) x 7 10 15 =

Interfaces (EIF) x 5 7 10 =

Unadjusted Function Points (UFP) =

Number

Calculate the Unadjusted Function Points

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 29

14 General System Complexity Factors

The unadjusted function points are adjusted with
general system complexity (GSC) factors

GSC1: Reliable Backup & Recovery
GSC2: Use of Data Communication
GSC3: Use of Distributed Computing
GSC4: Performance
GSC5: Realization in heavily used configuration
GSC6: On-line data entry
GSC7: User Friendliness

GSC8: On-line data change
GSC9: Complex user interface
GSC10:Complex procedures
GSC11:Reuse
GSC12:Ease of installation
GSC13:Use at multiple sites
GSC14:Adaptability and flexibility

Each of the GSC factors gets a value from 0 to 5.

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 30

Calculate the Effort

After the GSC factors are determined, compute the
Value Added Factor (VAF):

Function Points =
Unadjusted Function Points * Value Added Factor

FP = UFP · VAF

Performance factor
PF = Number of function points that can be completed per
day

Effort = FP / PF

VAF = 0.65 + 0.01 * GSCii=1

14

GSCi = 0,1,...,5

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 31

Advantages of Function Point Analysis

Independent of implementation language and
technology
Estimates are based on design specification

Usually known before implementation tasks are known

Users without technical knowledge can be
integrated into the estimation process

Incorporation of experiences from different organizations

Easy to learn
Limited time effort.

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 32

Disadvantages of Function Point Analysis

Complete description of functions necessary
Often not the case in early project stages -> especially
in iterative software processes

Internal functions (algorithms) rather
underestimated, as model is based on user-
oriented requirements and functions
Only complexity of specification is estimated

Implementation is often more relevant for estimation

High uncertainty in calculating function points:
Weight factors are usually deducted from past
experiences (environment, used technology and tools
may be out-of-date in the current project)

Not suitable for project controlling.

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 33

COCOMO

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 34

COCOMO (COnstructive COst MOdel)

Developed by Barry Boehm in 1981
Also called COCOMO I or Basic COCOMO
Top-down approach to estimate cost, effort and
schedule of software projects, based on size and
complexity of projects
Assumptions:

Derivability of effort by comparing finished projects
(COCOMO database)
System requirements do not change during
development
Exclusion of many efforts (for example administration,
training, rollout, integration).

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 35

Advantages of COCOMO

Appropriate for a quick, high-level estimation of
project costs
Fair results with smaller projects in a well known
development environment

Assumes comparison with past projects is possible

Covers all development activities (from analysis
to testing)
Intermediate COCOMO yields good results for
projects on which the model is based.

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 36

Problems with COCOMO

Model derived from the time when central batch
processing was the standard
Lines of code (software size) needed
Expert judgment required to determine the
influencing factors and their values
Experience shows that estimation results can
deviate from actual effort by a factor of 4!
Important project factors are not considered:

Skills of team members, travel, environmental factors,
user interface quality, overhead cost.

COCOMO 81 (the original model) is out of date,
COCOMO II published in 2001

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 37

Estimation Technique used by Accenture

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 38

Estimation Technique used by Accenture

Uses both top-down and bottom-up elements
Consists of 9 steps:
1. Determine essential project characteristics

Scope, infrastructure, technology, team skills, experience

2. Use factors for fixed efforts and phases:
Often derived from already finished phases (step-by-step
detailling of estimations)
Example:

10% for project management
10 % for infrastructure
50% for testing efforts.

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 39

Estimation Technique used by Accenture (2)

3. Determine work products for the system to
be developed (WBS)

5. Determine work product types (use case,
user interface, batch program,)

4. Assign a complexity factor to each of these
work products

6. Define all necessary activities or tasks that
need to be done to produce these work
products

7. Assign effort estimates (in person days) to
these tasks by using past experience

8. Aggregate the estimates to compute the
overall project effort

9. Use add-ons (contingency and risk factors).

Example of Complexity and Multipliers
(Non-exhaustive)

39Implementation

75,9Sum

3,910 %Software Architecture

51BatchLowBatch Job B

81BatchMediumBatch Job A

82User interfaceLowScreen B

181User interfaceHighScreen A

202Use CaseHighFunction C

81Use CaseMediumFunction B

51Use CaseLowFunction A

33Requirements Elicitation

Person
Days

Multiplier
/ Factor

TypeComplexity

10% of

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 41

Prerequisites for Accenture s Technique

Identical estimation approach for different
projects necessary
Lots of experience with estimating projects
necessary in order to develop good parameters
Multiple checks of top-down with bottom-up
results and vice versa
Post calculation after end of project important
for improving estimation parameters.

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 42

Estimation Technique used by Accenture (3)

There are different estimating models available for
different situations:

Top-Down Model (initial estimate for early
project phases)
Bottom-Up Model (detailed estimating model)
Custom development
Packaged development (implementation of
application software packages like SAP, Siebel,
PeopleSoft, Oracle and any other packages)
Distributed work (using off-shoring for
example)

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 43

Summary (1/ 2)

Estimation is often the basis for the decision to
start, plan and manage a project
Estimating software projects is a complex
project management function
All approaches depend very much on personal
experiences
If used properly, estimates can be a transparent
way to discuss project effort and scope
However,

Few organizations have established formal estimation
processes
Existing estimation techniques have lots of possibilities
to influence the results - must be used with care.

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 44

Summary (2/ 2)

Even more important than estimating the effort
and costs of a development effort is the
estimation of the benefits (business case)

Example: large German bank
Example: German consumer credit bank

5-10% estimation variance is usual in a more
sophisticated organization
Methods closer to agile planning and
estimation techniques are becoming more
prevalent, for example by planning quick wins
(sprints), small releases etc.

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 45

Further Readings

B. Boehm, Software Engineering Economics, Prentice-Hall,
1981
B. Boehm, Software Cost Estimation With COCOMO II,
Prentice Hall, 2000
D. Garmus, D. Herron, Function Point Analysis:
Measurement Practices for Successful Software Projects,
Addison-Wesley, 2000
International Function Point Users Group

http://www.ifpug.org/publications/case.htm
C. Jones, Estimating Software Costs, 1998
S. Whitemire, Object-Oriented Design Measurement, John
Wiley, 1997

http://www.ifpug.o
rg/publications/case.ht

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 46

Online Availability of Estimation Tools

Basic and Intermediate COCOMO I (JavaScript)
http://www1.jsc.nasa.gov/bu2/COCOMO.html
http://ivs.cs.uni-magdeburg.de/sw-
eng/us/java/COCOMO/index.shtml

COCOMO II (Unix, Windows and Java)
http://sunset.usc.edu/available_tools/index.html

Function Point Calculator (Java)
http://ivs.cs.uni-magdeburg.de/sw-eng/us/java/fp/

http://www1.js
c.nasa.gov/bu2/COCO
http://ivs.cs.uni-magdeburg.de/sw-
g/us/java/COCOMO/inde
http://sunset.usc.edu/availa
ble_tools/index.html
http://ivs.cs.uni-magdeburg.de/sw-eng/us/java/fp/

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 47

GSC Factors in Funct ion Point Analysis

1. Data communications: How many communication facilities
aid in the transfer or exchange of information with the
system?

2. Distributed data processing:How are distributed data and
processing functions handled?

3. Performance: Does the user require a specific response
time or throughput?

4. Platform usage: How heavily used is the platform where
the application will run?

5. Transaction rate: How frequently are transactions executed
(daily, weekly, monthly)?

6. On-line data entry: What percentage of the information is
entered On-Line?

7. End-user efficiency: Is the application designed for end-
user efficiency?

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 48

GSC Factors in Funct ion Point Analysis
(cont d)

8. On-line update: How many ILF s are updated on-line?
9. Complex processing: Does the application have extensive

logical or mathematical processing?
10. Reusability: Will the application meet one or many user s

needs?
11. Installation ease: How difficult is the conversion and

installation?
12. Operational ease: How automated are start-up, backup

and recovery procedures?
13. Multiple sites: Will the application be installed at multiple

sites for multiple organizations?
14. Adaptability and flexibility: Is the application specifically

designed to facilitate change?

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 49

Funct ion Points: Exam ple of a GSC Rat ing

GSC Value(0-5)
Data communications 1
Distributed data processing 1
Performance 4
Heavily used configuration 0
Transaction rate 1
On-Line data entry 0
End-user efficiency 4
On-Line update 0
Complex processing 0
Reusability 3
Installation ease 4
Operational ease 4
Multiple sites 0
Adaptability and Flexibility 0
Total 22

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 50

Calculation of Effort in COCOMO

Estimate number of instructions
KDSI = Kilo Delivered Source Instructions

Determine project complexity parameters: A, B
Regression analysis, matching project data to equation

3 levels of difficulty that characterize projects
Simple project (organic mode)
Semi-complex project (semidetached mode)
Complex project (embedded mode)

Calculate effort
Effort = A * KDSIB

Also called Basic COCOMO

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 51

Calculation of Effort in Basic COCOMO

Formula: Effort = A * KDSIB

Effort is counted in person months: 152
productive hours (8 hours per day, 19
days/month, less weekends, holidays, etc.)
A, B are constants based on the complexity of
the project

Project Complexity A B
Simple 2.4 1.05
Semi-Complex 3.0 1.12
Complex 3.6 1.20

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 52

Calculation of Development Time

Basic formula: T = C * EffortD

T = Time to develop in months
C, D = constants based on the complexity of
the project
Effort = Effort in person months (see slide
before)

Project Complexity C D
Simple 2.5 0.38
Semi-Complex 2.5 0.35
Complex 2.5 0.32

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 53

Basic COCOMO Example

Volume = 30000 LOC = 30KLOC
Project type = Simple
Effort = 2.4 * (30)1.05 = 85 PM
Development Time = 2.5 * (85)0.38 = 13.5 months

=> Avg. staffing: 85/13.5 = 6.3 persons
=> Avg. productivity: 30000/85 = 353 LOC/PM

Compare: Semi-detached: 135 PM 13.9 M 9.7 persons
Embedded: 213 PM 13.9 M 15.3 persons

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 54

Cocomo: Example of Cost Driver Rating

Cost Driver Very Low Low Nominal High Very High Extra High

Required software reliability 0.75 0.88 1.00 1.15 1.40 -
Database size - 0.94 1.00 1.08 1.16 -
Product Complexity 0.70 0.85 1.00 1.15 1.30 1.65
Execution Time Constraint - - 1.00 1.11 1.30 1.66
Main storage constraint - - 1.00 1.06 1.21 1.56
Virtual Storage volatility - 0.87 1.00 1.15 1.30 -
Computer turn around time - 0.87 1.00 1.07 1.15 -
Analyst capability 1.46 1.19 1.00 0.86 0.71 -
Applications experience 1.29 1.13 1.00 0.91 0.82 -
Programmer Capability 1.42 1.17 1.00 0.86 0.70 -
Virtual machine experience 1.21 1.10 1.00 0.90 - -
Prog. language experience 1.14 1.07 1.00 0.95 - -
Use of modern Practices 1.24 1.10 1.00 0.91 0.82 -
Use of software tools 1.24 1.10 1.00 0.91 0.83 -
Required schedule 1.23 1.08 1.00 1.04 1.10 -

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 55

Other COCOMO Models

Intermediate COCOMO
15 cost drivers yielding a multiplicative correction
factor
Basic COCOMO is based on value of 1.00 for each of
the cost drivers

Detailed COCOMO
Multipliers depend on phase: Requirements; System
Design; Detailed Design; Code and Unit Test; Integrate
& Test; Maintenance

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 56

Steps in Intermediate COCOMO

Basic COCOMO steps:
Estimate number of instructions
Determine project complexity parameters: A, B
Determine level of difficulty that characterizes the
project

New step:
Determine cost drivers

15 cost drivers c1 , c1 . c15

Calculate effort
Effort = A * KDSIB * c1 * c1 . * c15

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 57

Calculation of Effort in Intermediate
COCOMO

Basic formula:
Effort = A * KDSIB * c1 * c1 .* c15

Effort is measured in PM (person months, 152
productive hours (8 hours per day, 19 days/month,
less weekends, holidays, etc.)

A, B are constants based on the complexity of
the project

Project Complexity A B
Simple 2.4 1.05
Semi-Complex 3.0 1.12
Complex 3.6 1.20

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 58

Intermediate COCOMO: 15 Cost drivers

Product Attributes
Required reliability
Database size
Product complexity

Computer Attributes
Execution Time constraint
Main storage constraint
Virtual Storage volatility
Turnaround time

Personnel Attributes
Analyst capability
Applications experience
Programmer capability
Virtual machine
experience
Language experience

Project Attributes
Use of modern
programming practices
Use of software tools
Required development
schedule

Rated on a qualitative scale
between very low and
extra high

Associated values are
multiplied with each other.

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 59

COCOMO II

Revision of COCOMO I in 1997
Provides three models of increasing detail

Application Composition Model
Estimates for prototypes based on GUI builder tools
and existing components

Early Design Model
Estimates before software architecture is defined
For system design phase, closest to original
COCOMO, uses function points as size estimation

Post Architecture Model
Estimates once architecture is defined
For actual development phase and maintenance;
Uses FPs or SLOC as size measure

Estimator selects one of the three models based
on current state of the project.

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 60

COCOMO II (cont d)

Targeted for iterative software lifecycle models
Boehm s spiral model
COCOMO I assumed a waterfall model

30% design; 30% coding; 40% integration and test

COCOMO II includes new costs drivers to deal
with

Team experience
Developer skills
Distributed development

COCOMO II includes new equations for reuse
Enables build vs. buy trade-offs

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 61

COCOMO II: Added Cost drivers

Development flexibility
Team cohesion
Developed for reuse
Precedent
Architecture & risk resolution
Personnel continuity
Documentation match life cycle needs
Multi-Site development.

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 62

How w ould you reply to this post?

Post on www.ifpug.org:
Our organization has just started to use function point
analysis for estimation.

We have no internal metrics from the past we are not
sure what productivity (hours/FP) to use for Cobol
projects and for Java projects, in the financial industry.

Can anyone tell me their experiences with hours/FP for
this platform or a place to go where to find this
industry metrics?

Wolfgang Behr, Accenture Software Engineering II, Lecture Estimation 63

L.W.F Factor

