
Chair for Applied Software Engineering

Software Engineering for Engineers

Lecture 1: Introduction

Software Engineering for Engineers - Lecture 1 2

Chair for Applied Software Engineering

Yesterdays News

• 40 Millon Customers without access to their T-Mobile phones
• Full blackout of the T-Mobile network from 15:45 to 22:00

– The black out took so long, because most of the technicians and service personal that
maintain the T-Mobile network could not be reached on their mobile phones

• Reason for the black out:
– Central computer responsible for mapping phone numbers to SIM cards had crashed.

Software Engineering for Engineers - Lecture 1 3

Chair for Applied Software Engineering

Bootstrapping

• Bootstrapping a network
– Bringing up a network using the network itself.

• Bootstrapping a compiler:
– Writing a compiler for a computer language using the computer language itself to code the

compiler.

• Booting a computer:
– process of a simple computer system activating a more complicated computer system.

• Bootstrap funding:
– Starting a business without external capital. Startups that fund their business and

development of their company through their own internal cash flow.

Software Engineering for Engineers - Lecture 1 4

Chair for Applied Software Engineering

Baron von Münchhausen

• "I was still a couple of miles above the clouds when it broke, and with such
violence I fell to the ground that I found myself stunned, and in a hole nine
fathoms under the grass, when I recovered, hardly knowing how to get out
again.

• Looking down, I observed that I had on a pair of boots with exceptionally
sturdy straps. Grasping them firmly, I pulled with all my might.

• Soon I had hoist myself to the top and stepped out on terra firma without
further ado.“

From R. E. Raspe, Singular Travels, Campaigns and
Adventures of Baron Munchausen, 1786.

Software Engineering for Engineers - Lecture 1 5

Chair for Applied Software Engineering

Outline

• Organizational issues
– Time and location
– Grading criteria
– Exercises

• The development challenge
• Software Engineering activities
• Lecture Schedule

• What is UML and why do we use it?

• UML Class Diagram
– Associations
– Inheritance
– UML to Java

Software Engineering for Engineers - Lecture 1 6

Chair for Applied Software Engineering

Module

• Intended Audience:
– Engineers (Physics, Mechanical Engineering, ...)
– Computer Science
– CSE

• Prerequisites:
– Modul IN1503: Introduction to Programming
– Modul IN2157: Grundlegende Algorithmen (CSE)
– Experience in Java

• Beneficial:
– You have failed a software project
– You have had practical experience with a large software system
– You have already participated in a large software project

Software Engineering for Engineers - Lecture 1 7

Chair for Applied Software Engineering

Time and location

• Lecture: Wednesday 10:15-12:00 MI 00.08.038
• Exercise: Wednesday 16:00-18:00 MI 00.08.038

• Change due to schedule collision

• Final Exam: July 30th (preliminary)

Software Engineering for Engineers - Lecture 1 8

Chair for Applied Software Engineering

Grading Criteria

• Successful participation in the exercise is an admission requirement for the
exam

• Your final grade is your final exam grade possibly improved by a bonus for
your exercise participation

• If your participation in the exercises is excellent, we will give you a bonus
of 1/3 on the final grade (For example, if your final grade is 2.3 you can
improve it to 2.0)

– The bonus cannot be granted if your grade is 4.3 or worse.
– Information on the participation is available on the exercise portal.

• You pass the course if your final grade is 4.0 or better

Software Engineering for Engineers - Lecture 1 9

Chair for Applied Software Engineering

Exercises

• Teams of 3 to 5 people (allocation today)
• Extending an existing system
• Practically teach Software Engineering activities
• Management and modeling
• Development Environment:

– Java
– Eclipse
– Unicase

• Teaching assistants: Jonas Helming
and Maximilian Kögel

– helming@in.tum.de
– koegel@in.tum.de

Software Engineering for Engineers - Lecture 1 10

Chair for Applied Software Engineering

Readings

• German Version: “Objektorientierte Softwaretechnik mit UML,
Entwurfsmustern und Java, Pearson Education, Oktober 2004.

• Spanish Version: Ingeneria De Software Orientado a Objetos

• Chinese Version also available

Bernd Bruegge, Allen H. Dutoit
Object-Oriented Software Engineering: Using UML, Patterns

and Java, 2nd Edition
Publisher: Prentice Hall, Upper Saddle River, NJ, 2003;
 ISBN: 0-13-047110-0

Software Engineering for Engineers - Lecture 1 11

Chair for Applied Software Engineering

Can you develop this system?

The impossible
Fork

Software Engineering for Engineers - Lecture 1 12

Chair for Applied Software Engineering

Can you develop this system?

The impossible
Fork

Software Engineering for Engineers - Lecture 1 13

Chair for Applied Software Engineering

Can you develop this system?

The impossible
Fork

Software Engineering for Engineers - Lecture 1 14

Chair for Applied Software Engineering

Can you develop this system?

The impossible
Fork

The impossible Fork

Software Engineering for Engineers - Lecture 1 15

Chair for Applied Software Engineering

Physical Model of the
impossible Fork (Shigeo Fukuda)

http://illusionworks.com/mod/movies/fukuda/DisappearingColumn.mov

Software Engineering for Engineers - Lecture 1 16

Chair for Applied Software Engineering

• The problem domain (also called application domain) is difficult
• The solution domain is difficult
• The development process is difficult to manage
• Software offers extreme flexibility
• Software is a discrete system

– Continuous systems have no hidden surprises
– Discrete systems can have hidden surprises! (Parnas)

David Lorge Parnas is an early pioneer in
software engineering who developed the
concepts of modularity and information hiding
in systems which are the foundation of
object oriented methodologies.

Why is software developement difficult?

Software Engineering for Engineers - Lecture 1 17

Chair for Applied Software Engineering

Computer Science vs. Engineering

Computer
Science Engineering

Software Engineering

Software Engineering for Engineers - Lecture 1 18

Chair for Applied Software Engineering

Software Engineering Activities

Requirements
Elicitation

Requirements
Analysis

System
Design

Object
Design

Implementation

Testing

Te
ch

ni
qu

es
, M

et
ho

ds
 a

nd
 T

oo
ls

class A()
class B()

TestA
TestB

Expressed in terms of

Structured by

Realized by

Implemented by

Validated by

Use Case
Model

Application
Domain Model

Subsystem
Decomposition

Test Model

Solution
Domain Model

Source Code

Software Engineering for Engineers - Lecture 1 19

Chair for Applied Software Engineering

Techniques, Methods and Tools

• Techniques or Methods :
– Formal procedures for producing results using some well-defined notation
– UML = Unified Modeling Language
– Number of repeatable steps involved in solving a specific problem

• Tools:
– Instruments or automated systems to accomplish a technique
– CASE = Computer Aided Software Engineering

• Methodology:
– Consists of techniques, methods and Tools

Software Engineering for Engineers - Lecture 1 20

Chair for Applied Software Engineering

Software Life Cycle: which activities, which dependencies?

Requirements
Elicitation

Requirements
Analysis

System
Design

Object
Design

Implementation

Testing

?
?Tailoring

Software Engineering for Engineers - Lecture 1 21

Chair for Applied Software Engineering

Sequential Model (Waterfall Model)

Requirements
Elicitation

Requirements
Analysis

System
Design

Object
Design

Implementation

Testing

Software Engineering for Engineers - Lecture 1 22

Chair for Applied Software Engineering

Iterative Model

Requirements
Elicitation

Requirements
Analysis

System
Design

Object
Design

Implementation

Testing

Iteration

Software Engineering for Engineers - Lecture 1 23

Chair for Applied Software Engineering

Lightweight Lifecycle Model (XP)

Requirements
Elicitation

TestingImplementation

Iteration

Software Engineering for Engineers - Lecture 1 24

Chair for Applied Software Engineering

Intermediate Summary

• There are different Software Engineering activities

• A lifecycle model describes:
– Which activities to perform?
– How do the different activities depend on each other?

• The activities are supported by techniques, methods and tools

• Next: Lecture Schedule

Software Engineering for Engineers - Lecture 1 25

Chair for Applied Software Engineering

Schedule (1/2)

AnalysisWeek7
3.6.2009

Requirements ElicitationWeek6
27.5.2009

Design Pattern 2Week5
20.5.2009

Design Pattern 1Week4
13.5.2009

Object DesignWeek3
6.5.2009

TestingWeek2
29.4.2009

UML Class DiagramsWeek1
22.4.2009

Software Engineering for Engineers - Lecture 1 26

Chair for Applied Software Engineering

Schedule (2/2)

Putting everything togetherWeek144
22.7.2009

XP and ScrumWeek13
15.7.2009

MethodologiesWeek12
8.7.2009

Guest SpeakerWeek11
1.7.2009

Testing 2Week10
24.6.2009

System Design 2Week9
17.6.2009

System Design 1Week8
10.6.2009

Chair for Applied Software Engineering

Software Engineering for Engineers

UML Class Diagrams

Software Engineering for Engineers - Lecture 1 28

Chair for Applied Software Engineering

Outline

 Organizational issues
 Time and location
 Grading criteria
 Exercises

 The development challenge
 Software Engineering activities
 Lecture Schedule

• What is UML and why do we use it?

• UML Class Diagram
– Associations
– Inheritance
– UML to Java

Software Engineering for Engineers - Lecture 1 29

Chair for Applied Software Engineering

UML

Where are we?

Requirements
Elicitation

Requirements
Analysis

System
Design

Object
Design

Implementation

Testing

Te
ch

ni
qu

es
, M

et
ho

ds
 a

nd
 T

oo
ls

Software Engineering for Engineers - Lecture 1 30

Chair for Applied Software Engineering

What is UML?

• UML (Unified Modeling Language)
– Convergence of notations used in object-oriented methods

• OMT (James Rumbaugh and colleagues)
• Booch (Grady Booch)
• OOSE (Ivar Jacobson)

• Current version 2.1.2
– Information at the UML portal http://www.uml.org/

• Commercial CASE tools: Rational Rose (IBM), Together (Borland), Visual
Architect (business processes, BCD)

• Open Source CASE tools: ArgoUML, StarUML, Umbrello, Unicase
• Commercial as well as Open Source: PoseidonUML (Gentleware)

Software Engineering for Engineers - Lecture 1 31

Chair for Applied Software Engineering

We use Models to describe Software Systems

• System model: Object model + functional model + dynamic model

• Object model: What is the structure of the system?
– UML Notation: Class diagrams

• Functional model: What are the functions of the system?
– UML Notation: Use case diagrams

• Dynamic model: How does the system react to external events?
– UML Notation: Sequence, State chart and Activity diagrams

Software Engineering for Engineers - Lecture 1 32

Chair for Applied Software Engineering

Another view on UML Diagrams

Software Engineering for Engineers - Lecture 1 33

Chair for Applied Software Engineering

Where are we now?

 What is UML and why do we use it?

• UML Class Diagram
– Associations
– Inheritance
– UML to Java

Software Engineering for Engineers - Lecture 1 34

Chair for Applied Software Engineering

Models are abstractions

• Different audiences require different abstractions

• In Software Engineering we call different members of audience
stakeholders

• Example for stakeholders:
– Clients
– End-users
– Venture Capitalist
– Developers
– CASE-Tools

Software Engineering for Engineers - Lecture 1 35

Chair for Applied Software Engineering

Modeling a computer network for a client

ClientA:Client

ClientB:Client

ServerA:Server
ClientA

ClientB

ServerA

Modeling a computer network for a tester

Object

Software Engineering for Engineers - Lecture 1 36

Chair for Applied Software Engineering

Modeling a computer network for a tester

ClientA:Client

ClientB:Client

ServerA:ServerClient * 1 Server

Modeling a computer network for a developer

Class

Software Engineering for Engineers - Lecture 1 37

Chair for Applied Software Engineering

1-to-1 and 1-to-many Associations

Name: String

Country

Name: String

Capital

1-to-1 association

1 1

Polygon

draw()

x: Integer
x: Integer

Point

1-to-many association

1 *

Software Engineering for Engineers - Lecture 1 38

Chair for Applied Software Engineering

Many-to-many Associations

Stock
Exchange

*
tickerSymbol

Company
*

• A stock exchange lists many companies.
• Each company is identified by a ticker symbol

Software Engineering for Engineers - Lecture 1 39

Chair for Applied Software Engineering

Part-of Hierarchy (Aggregation)

Computer

MemoryCPUI/O Devices

Program
CounterALUCache

• An aggregation is a special case of association denoting a “consists-of” hierarchy
• The aggregate is the parent class, the components are the children classes

Software Engineering for Engineers - Lecture 1 40

Chair for Applied Software Engineering

Composition

• A solid diamond denotes composition: A strong form of aggregation where
the life time of the component instances is controlled by the aggregate
(“the whole controls/destroys the parts”)

Ticket
Machine

Zone
Button

3

Software Engineering for Engineers - Lecture 1 41

Chair for Applied Software Engineering

Is-Kind-of Hierarchy (Taxonomy)

Cell

PyramidalCorticalWhiteRedSmoothStriate

Muscle
Cell

Blood
Cell

Nerve
Cell

Software Engineering for Engineers - Lecture 1 42

Chair for Applied Software Engineering

Inheritance

• Inheritance is another special case of an association denoting a “kind-of”
hierarchy

• Inheritance simplifies the analysis model by introducing a taxonomy
• The children classes inherit the attributes and operations of the parent

class.

Zone
Button

Cancel
Button

Button

Software Engineering for Engineers - Lecture 1 43

Chair for Applied Software Engineering

Class diagram: Basic Notations

Zone
Button

Cancel
Button

Button *

components

Class diagrams represent the structure of the system

Aggregation

Association End
Name (Role)

Multiplicity

Inheritance

Class

Software Engineering for Engineers - Lecture 1 44

Chair for Applied Software Engineering

Code Generation from UML to Java I

CompositeLeaf

Component *

components

public class Component{ }

public class Leaf extends
Component{ }

public class Composite extends
Component{
private Collection<Component>
components;
…

}

Software Engineering for Engineers - Lecture 1 45

Chair for Applied Software Engineering

Excursion: Packages

• Packages help you to organize UML models to increase their readability
• We can use the UML package mechanism to organize classes into

subsystems

• Any complex system can be decomposed into subsystems, where each
subsystem is modeled as a package.

Bank Customer Account

