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Outline 

This lecture 

•  Terminology 
•  Testing Activities 
•  Unit testing 

Testing 2 (Week) 

•  Integration testing 
–  Testing strategies 

•  System testing 
–  Function testing 
–  Structure testing 
–  Acceptance testing. 
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Famous bugs 

•  F-16 : crossing equator using autopilot 
•  Result: plane flipped over 

–  Reason? 
–  Reuse of autopilot 

software 

•  The Therac-25 accidents (1985-1987), quite possibly the most serious non-military 
computer-related failure ever in terms of human life (at least five died) 

•  Reason: Bad event handling in the GUI 

•  NASA Mars Climate Orbiter destroyed due to incorrect orbit insertion (September 23, 
1999) 

–  Reason: Unit conversion problem. 
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Terminology 

•  Failure:  Any deviation of the observed behavior from the specified 
behavior 

•  Erroneous state (error): The system is in a state such that further 
processing by the system can lead to a failure 

•  Fault: The mechanical or algorithmic cause of an error (“bug”) 
•  Validation: Activity of checking for deviations between the observed 

behavior of a system and its specification. 
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F-16 Bug 

•  What´s the failure? 
•  What´s the error? 
•  What´s the fault? 

–  Bad use of implementation  
inheritance 

–  A Plane is not a rocket. 

Rocket 

Plane 
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Examples of Faults and Errors 

•  Faults in the Interface 
specification 

–  Mismatch between what the client 
needs and what the server offers 

–  Mismatch between requirements and 
implementation 

•  Algorithmic Faults  
–  Missing initialization 
–  Incorrect branching condition 
–  Missing test for null 

•  Mechanical Faults (very hard to 
find) 

–  Operating temperature outside of 
equipment specification 

•  Errors  
–  Null reference errors 
–  Concurrency errors 
–  Exceptions. 
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Another View on How to Deal with Faults 

•  Fault avoidance 
–  Use methodology to reduce complexity  
–  Use configuration management to prevent inconsistency 
–  Apply verification to prevent algorithmic faults 
–  Use Reviews 

•  Fault detection 
–  Testing: Activity to provoke failures in a planned way 
–  Debugging: Find and remove the cause (Faults) of an observed failure 
–  Monitoring: Deliver information about state => Used during debugging 

•  Fault tolerance 
–  Exception handling 
–  Modular redundancy. 
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Taxonomy Fault Handling 
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Observations 

•  It is impossible to completely test any nontrivial module or system 
–  Practical limitations: Complete testing is prohibitive in time and cost 
–  Theoretical limitations: e.g. Halting problem 

•  “Testing can only show the presence of bugs, not their absence” (Dijkstra).  
•  Testing is not for free 

=> Define your goals and priorities 
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Testing takes creativity 

•  To develop an effective test, one must have: 
–  Detailed understanding of the system 
–  Application and solution domain knowledge  
–  Knowledge of the testing techniques 
–  Skill to apply these techniques  

•  Testing is done best by independent testers 
–  We often develop a certain mental attitude that the program should in a certain way when in 

fact it does not 
–  Programmers often stick to the data set that makes the program work  
–  A program often does not work when tried by somebody else. 

behave
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Testing Activities 
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Types of  Testing 

•  Unit Testing 
–  Individual component (class or subsystem) 
–  Carried out by developers 
–  Goal: Confirm that the component or subsystem is correctly coded and carries out the 

intended functionality 

•  Integration Testing 
–  Groups of subsystems (collection of subsystems) and eventually the entire system 
–  Carried out by developers 
–  Goal:  Test the interfaces among the subsystems. 
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Types of Testing continued... 

•  System Testing 
–  The entire system 
–  Carried out by developers 
–  Goal:  Determine if the system meets the requirements (functional and nonfunctional) 

•  Acceptance Testing 
–  Evaluates the system delivered by developers 
–  Carried out by the client.  May involve executing typical transactions on site on a trial basis 
–  Goal: Demonstrate that the system meets the requirements and is ready to use. 
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When should you write a test? 

•  Traditionally after the source code to be tested 

•  In XP before the source code to be tested 
–  Test-Driven Development Cycle 

•  Add a test 
•  Run the automated tests  

  => see the new one fail 
•  Write some code 
•  Run the automated tests 

   => see them succeed 
•  Refactor code. 



Chair for Applied Software Engineering 

Unit Testing 

•  Static Testing (at compile time) 
–  Static Analysis 
–  Review 

•  Walk-through (informal) 
•  Code inspection (formal) 

•  Dynamic Testing (at run time) 
–  Black-box testing 
–  White-box testing. 
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Static Analysis with Eclipse 

•  Compiler Warnings and Errors 
–  Possibly uninitialized Variable 
–  Undocumented empty block 
–  Assignment has no effect 

•  Checkstyle 
–  Check for code guideline violations 
–  http://checkstyle.sourceforge.net 

•  FindBugs 
–  Check for code anomalies 
–  http://findbugs.sourceforge.net 

•  Metrics 
–  Check for structural anomalies 
–  http://metrics.sourceforge.net 
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Black-box testing  

•  Focus: I/O behavior  
–  If for any given input, we can predict the output, then the component passes the test 
–  Requires test oracle 

•  Goal: Reduce number of test cases by equivalence partitioning: 
–  Divide input conditions into equivalence classes 
–  Choose test cases for each equivalence class.  
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Black-box testing: Test Case selection 

a)  Input is valid across range of values  
–  Developer selects test cases from  3 equivalence classes: 

•  Below the range 
•  Within the range 
•  Above the range 

b)  Input is only valid,  if it is a member of  a discrete set 
–  Developer selects test cases from 2 equivalence classes: 

•  Valid discrete values 
•  Invalid discrete values 

•  No rules, only guidelines. 
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Black box testing: An example 

public class MyCalendar { 

 public int getNumDaysInMonth(int month, int year)  
  throws InvalidMonthException 
 { … } 
} 

Representation for month: 
1: January, 2: February, …., 12: December 

Representation for year: 
1904, … 1999, 2000,…, 2006, … 

How many test cases do we need for the black box 
testing of getNumDaysInMonth()? 
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White-box testing overview 

•  Code coverage 

•  Branch coverage 

•  Condition coverage 

•  Path coverage 

=> Details in the exercise session about testing 
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Unit Testing Heuristics 

1. Create unit tests when object design is 
completed 

–  Black-box test: Test the functional model 
–  White-box test: Test the dynamic model 

2. Develop the test cases  
–  Goal: Find effective num- 

ber of test cases 
3. Cross-check the test cases to eliminate 

duplicates 
–  Don't waste your time! 

4. Desk check your source code 
–  Sometimes reduces testing time 

5. Create a test harness  
–  Test drivers and test stubs are needed for 

integration testing 
6. Describe the test oracle 

–  Often the result of the first successfully 
executed test 

7. Execute the test cases 
–  Re-execute test whenever a change is made 

(“regression testing”) 
8. Compare the results of the test with the test 

oracle 
–  Automate this if possible. 
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JUnit: Overview 

•  A Java framework for writing and running unit tests 
–  Test cases and fixtures  
–  Test suites 
–  Test runner 

•  Written by Kent Beck and Erich Gamma 
•  Written with “test first” and pattern-based development in mind 

–  Tests written before code 
–  Allows for regression testing 
–  Facilitates refactoring 

•  JUnit is Open Source 
–  www.junit.org 
–  JUnit Version 4, released Mar 2006 
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JUnit Classes 

Test 

TestSuite TestCase 

run(TestResult) 

run(TestResult) 
addTest() 

run(TestResult) 
setUp() 
tearDown() 
runTest() 

TestResult 

UnitToBeTested 
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An example: Testing MyList 

•  Unit to be tested 
–  MyList 

•  Methods under test 
–  add() 
–  remove() 
–  contains() 
–  size() 

•  Concrete Test case 
–  MyListTestCase 
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Test 

TestSuite TestCase 

run(TestResult) 

run(TestResult) 
addTest() 

run(TestResult) 
setUp() 
tearDown() 
runTest() 

TestResult 

ListTestCase 
setUp() 
tearDown() 
testAdd() 
testRemove() 

MyList 
add() 
remove() 
contains() 
size() 
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Writing TestCases in JUnit 

public class MyListTestCase extends TestCase { 
... 
} 

Test 

TestSuite TestCase 

run(TestResult) 

run(TestResult) 
addTest() 

run(TestResult) 
setUp() 
tearDown() 
runTest() 

ListTestCase 
setUp() 
tearDown() 
testAdd() 
testRemove() 

MyList 
add() 
remove() 
contains() 
size() 
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Writing TestCases in JUnit 

@Before 
public void setUp() { 
 aList = new MyList(); 
 anElement = “a string”; 
} 

@Test 
public void testRemove() { 
 aList.add(anElement); 
 aList.remove(anElement); 
 assertTrue(aList.size() == 0); 
 assertFalse(aList.contains(anElement)); 
} 

@After 
Public void tearDown() 
{ 
 aList = null; 
 anElement = null; 

} 

Test 

TestSuite TestCase 

run(TestResult) 

run(TestResult) 
addTest() 

run(TestResult) 
setUp() 
tearDown() 
runTest() 

ListTestCase 
setUp() 
tearDown() 
testAdd() 
testRemove() 

MyList 
add() 
remove() 
contains() 
size() 
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Writing TestCases in JUnit 

@Test 
public void testAdd() { 
 aList.add(anElement); 
 assertTrue(aList.size() == 1); 
 assertTrue(aList.contains(anElement));     
} 

Test 

TestSuite TestCase 

run(TestResult) 

run(TestResult) 
addTest() 

run(TestResult) 
setUp() 
tearDown() 
runTest() 

ListTestCase 
setUp() 
tearDown() 
testAdd() 
testRemove() 

MyList 
add() 
remove() 
contains() 
size() 
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Writing Fixtures and Test Cases 

@Before 
public void setUp() { 
 aList = new MyList(); 
 anElement = “a string”; 
} 

@Test 
public void testAdd() { 
 aList.add(anElement); 
 assertTrue(aList.size() == 1); 
 assertTrue(aList.contains(anElement));     
} 

@Test 
public void testRemove() { 
 aList.add(anElement); 
 aList.remove(anElement); 
 assertTrue(aList.size() == 0); 
 assertFalse(aList.contains(anElement)); 
} 

Test Fixture 

Test Case 

Test Case 
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Collecting TestCases into TestSuites 

@RunWith(Suite.class) 
@Suite.SuiteClasses({ 
 MyListTest.class, 
 MyOtherListTest.class 
}) 
public class MyListTestSuite { 

} 

Composite Pattern! 

Test 

TestSuite TestCase 

run(TestResult) 

run(TestResult) 
addTest() 

run(TestResult) 
setUp() 
tearDown() 
runTest() 
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Design patterns in JUnit 
Command Pattern 

Composite 
Pattern 

Adapter  
Pattern Template Method 

Pattern 

Test 

TestSuite TestCase 

run(TestResult) 

run(TestResult) 
addTest() 

run(TestResult) 
setUp() 
tearDown() 
runTest() 

TestResult 

UnitToBeTested 
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Other JUnit features 

•  Textual and GUI interface 
–  Displays status of tests 
–  Displays stack trace when tests fail 

•  Integrated with Maven and Continuous Integration 
–  http://maven.apache.org 

•  Build and Release Management Tool 
–  http://Maven.apache.org/continuum 

•  Continous integration server for Java programs 
–  All tests are run before release (regression tests) 
–  Test results are advertised as a project report 

•  Many specialized variants 
–  Unit testing of web applications 
–  J2EE applications 


