
Chair for Applied Software Engineering

Software Engineering for Engineers

Lecture 3: Unit Testing

Chair for Applied Software Engineering

Outline

This lecture

•  Terminology
•  Testing Activities
•  Unit testing

Testing 2 (Week)

•  Integration testing
–  Testing strategies

•  System testing
–  Function testing
–  Structure testing
–  Acceptance testing.

Chair for Applied Software Engineering

Famous bugs

•  F-16 : crossing equator using autopilot
•  Result: plane flipped over

–  Reason?
–  Reuse of autopilot

software

•  The Therac-25 accidents (1985-1987), quite possibly the most serious non-military
computer-related failure ever in terms of human life (at least five died)

•  Reason: Bad event handling in the GUI

•  NASA Mars Climate Orbiter destroyed due to incorrect orbit insertion (September 23,
1999)

–  Reason: Unit conversion problem.

Chair for Applied Software Engineering

Terminology

•  Failure: Any deviation of the observed behavior from the specified
behavior

•  Erroneous state (error): The system is in a state such that further
processing by the system can lead to a failure

•  Fault: The mechanical or algorithmic cause of an error (“bug”)
•  Validation: Activity of checking for deviations between the observed

behavior of a system and its specification.

Chair for Applied Software Engineering

F-16 Bug

•  What´s the failure?
•  What´s the error?
•  What´s the fault?

–  Bad use of implementation
inheritance

–  A Plane is not a rocket.

Rocket

Plane

Chair for Applied Software Engineering

Examples of Faults and Errors

•  Faults in the Interface
specification

–  Mismatch between what the client
needs and what the server offers

–  Mismatch between requirements and
implementation

•  Algorithmic Faults
–  Missing initialization
–  Incorrect branching condition
–  Missing test for null

•  Mechanical Faults (very hard to
find)

–  Operating temperature outside of
equipment specification

•  Errors
–  Null reference errors
–  Concurrency errors
–  Exceptions.

Chair for Applied Software Engineering

Another View on How to Deal with Faults

•  Fault avoidance
–  Use methodology to reduce complexity
–  Use configuration management to prevent inconsistency
–  Apply verification to prevent algorithmic faults
–  Use Reviews

•  Fault detection
–  Testing: Activity to provoke failures in a planned way
–  Debugging: Find and remove the cause (Faults) of an observed failure
–  Monitoring: Deliver information about state => Used during debugging

•  Fault tolerance
–  Exception handling
–  Modular redundancy.

Chair for Applied Software Engineering

Taxonomy Fault Handling

Fault
Avoidance

Fault
Detection

Fault
Tolerance

Verification

Configuration
Management Methodoloy Atomic

Transactions
Modular

Redundancy

System
Testing

Integration
Testing

Unit
Testing

Testing Debugging

Chair for Applied Software Engineering

Observations

•  It is impossible to completely test any nontrivial module or system
–  Practical limitations: Complete testing is prohibitive in time and cost
–  Theoretical limitations: e.g. Halting problem

•  “Testing can only show the presence of bugs, not their absence” (Dijkstra).
•  Testing is not for free

=> Define your goals and priorities

Chair for Applied Software Engineering

Testing takes creativity

•  To develop an effective test, one must have:
–  Detailed understanding of the system
–  Application and solution domain knowledge
–  Knowledge of the testing techniques
–  Skill to apply these techniques

•  Testing is done best by independent testers
–  We often develop a certain mental attitude that the program should in a certain way when in

fact it does not
–  Programmers often stick to the data set that makes the program work
–  A program often does not work when tried by somebody else.

behave

Chair for Applied Software Engineering

Testing Activities

Unit
Testing

Acceptance
Testing

Integration
Testing

System
Testing

Requirements
Analysis

Document

Client
Expectation

System
Design

Document

Object
Design

Document

Developer Client

Chair for Applied Software Engineering

Types of Testing

•  Unit Testing
–  Individual component (class or subsystem)
–  Carried out by developers
–  Goal: Confirm that the component or subsystem is correctly coded and carries out the

intended functionality

•  Integration Testing
–  Groups of subsystems (collection of subsystems) and eventually the entire system
–  Carried out by developers
–  Goal: Test the interfaces among the subsystems.

Chair for Applied Software Engineering

Types of Testing continued...

•  System Testing
–  The entire system
–  Carried out by developers
–  Goal: Determine if the system meets the requirements (functional and nonfunctional)

•  Acceptance Testing
–  Evaluates the system delivered by developers
–  Carried out by the client. May involve executing typical transactions on site on a trial basis
–  Goal: Demonstrate that the system meets the requirements and is ready to use.

Chair for Applied Software Engineering

When should you write a test?

•  Traditionally after the source code to be tested

•  In XP before the source code to be tested
–  Test-Driven Development Cycle

•  Add a test
•  Run the automated tests

 => see the new one fail
•  Write some code
•  Run the automated tests

 => see them succeed
•  Refactor code.

Chair for Applied Software Engineering

Unit Testing

•  Static Testing (at compile time)
–  Static Analysis
–  Review

•  Walk-through (informal)
•  Code inspection (formal)

•  Dynamic Testing (at run time)
–  Black-box testing
–  White-box testing.

Chair for Applied Software Engineering

Static Analysis with Eclipse

•  Compiler Warnings and Errors
–  Possibly uninitialized Variable
–  Undocumented empty block
–  Assignment has no effect

•  Checkstyle
–  Check for code guideline violations
–  http://checkstyle.sourceforge.net

•  FindBugs
–  Check for code anomalies
–  http://findbugs.sourceforge.net

•  Metrics
–  Check for structural anomalies
–  http://metrics.sourceforge.net

Chair for Applied Software Engineering

Black-box testing

•  Focus: I/O behavior
–  If for any given input, we can predict the output, then the component passes the test
–  Requires test oracle

•  Goal: Reduce number of test cases by equivalence partitioning:
–  Divide input conditions into equivalence classes
–  Choose test cases for each equivalence class.

Chair for Applied Software Engineering

Black-box testing: Test Case selection

a)  Input is valid across range of values
–  Developer selects test cases from 3 equivalence classes:

•  Below the range
•  Within the range
•  Above the range

b)  Input is only valid, if it is a member of a discrete set
–  Developer selects test cases from 2 equivalence classes:

•  Valid discrete values
•  Invalid discrete values

•  No rules, only guidelines.

Chair for Applied Software Engineering

Black box testing: An example

public class MyCalendar {

 public int getNumDaysInMonth(int month, int year)
 throws InvalidMonthException
 { … }
}

Representation for month:
1: January, 2: February, …., 12: December

Representation for year:
1904, … 1999, 2000,…, 2006, …

How many test cases do we need for the black box
testing of getNumDaysInMonth()?

Chair for Applied Software Engineering

White-box testing overview

•  Code coverage

•  Branch coverage

•  Condition coverage

•  Path coverage

=> Details in the exercise session about testing

Chair for Applied Software Engineering

Unit Testing Heuristics

1. Create unit tests when object design is
completed

–  Black-box test: Test the functional model
–  White-box test: Test the dynamic model

2. Develop the test cases
–  Goal: Find effective num-

ber of test cases
3. Cross-check the test cases to eliminate

duplicates
–  Don't waste your time!

4. Desk check your source code
–  Sometimes reduces testing time

5. Create a test harness
–  Test drivers and test stubs are needed for

integration testing
6. Describe the test oracle

–  Often the result of the first successfully
executed test

7. Execute the test cases
–  Re-execute test whenever a change is made

(“regression testing”)
8. Compare the results of the test with the test

oracle
–  Automate this if possible.

Chair for Applied Software Engineering

JUnit: Overview

•  A Java framework for writing and running unit tests
–  Test cases and fixtures
–  Test suites
–  Test runner

•  Written by Kent Beck and Erich Gamma
•  Written with “test first” and pattern-based development in mind

–  Tests written before code
–  Allows for regression testing
–  Facilitates refactoring

•  JUnit is Open Source
–  www.junit.org
–  JUnit Version 4, released Mar 2006

Chair for Applied Software Engineering

JUnit Classes

Test

TestSuite TestCase

run(TestResult)

run(TestResult)
addTest()

run(TestResult)
setUp()
tearDown()
runTest()

TestResult

UnitToBeTested

Chair for Applied Software Engineering

An example: Testing MyList

•  Unit to be tested
–  MyList

•  Methods under test
–  add()
–  remove()
–  contains()
–  size()

•  Concrete Test case
–  MyListTestCase

Chair for Applied Software Engineering

Test

TestSuite TestCase

run(TestResult)

run(TestResult)
addTest()

run(TestResult)
setUp()
tearDown()
runTest()

TestResult

ListTestCase
setUp()
tearDown()
testAdd()
testRemove()

MyList
add()
remove()
contains()
size()

Chair for Applied Software Engineering

Writing TestCases in JUnit

public class MyListTestCase extends TestCase {
...
}

Test

TestSuite TestCase

run(TestResult)

run(TestResult)
addTest()

run(TestResult)
setUp()
tearDown()
runTest()

ListTestCase
setUp()
tearDown()
testAdd()
testRemove()

MyList
add()
remove()
contains()
size()

Chair for Applied Software Engineering

Writing TestCases in JUnit

@Before
public void setUp() {
 aList = new MyList();
 anElement = “a string”;
}

@Test
public void testRemove() {
 aList.add(anElement);
 aList.remove(anElement);
 assertTrue(aList.size() == 0);
 assertFalse(aList.contains(anElement));
}

@After
Public void tearDown()
{
 aList = null;
 anElement = null;

}

Test

TestSuite TestCase

run(TestResult)

run(TestResult)
addTest()

run(TestResult)
setUp()
tearDown()
runTest()

ListTestCase
setUp()
tearDown()
testAdd()
testRemove()

MyList
add()
remove()
contains()
size()

Chair for Applied Software Engineering

Writing TestCases in JUnit

@Test
public void testAdd() {
 aList.add(anElement);
 assertTrue(aList.size() == 1);
 assertTrue(aList.contains(anElement));
}

Test

TestSuite TestCase

run(TestResult)

run(TestResult)
addTest()

run(TestResult)
setUp()
tearDown()
runTest()

ListTestCase
setUp()
tearDown()
testAdd()
testRemove()

MyList
add()
remove()
contains()
size()

Chair for Applied Software Engineering

Writing Fixtures and Test Cases

@Before
public void setUp() {
 aList = new MyList();
 anElement = “a string”;
}

@Test
public void testAdd() {
 aList.add(anElement);
 assertTrue(aList.size() == 1);
 assertTrue(aList.contains(anElement));
}

@Test
public void testRemove() {
 aList.add(anElement);
 aList.remove(anElement);
 assertTrue(aList.size() == 0);
 assertFalse(aList.contains(anElement));
}

Test Fixture

Test Case

Test Case

Chair for Applied Software Engineering

Collecting TestCases into TestSuites

@RunWith(Suite.class)
@Suite.SuiteClasses({
 MyListTest.class,
 MyOtherListTest.class
})
public class MyListTestSuite {

}

Composite Pattern!

Test

TestSuite TestCase

run(TestResult)

run(TestResult)
addTest()

run(TestResult)
setUp()
tearDown()
runTest()

Chair for Applied Software Engineering

Design patterns in JUnit
Command Pattern

Composite
Pattern

Adapter
Pattern Template Method

Pattern

Test

TestSuite TestCase

run(TestResult)

run(TestResult)
addTest()

run(TestResult)
setUp()
tearDown()
runTest()

TestResult

UnitToBeTested

Chair for Applied Software Engineering

Other JUnit features

•  Textual and GUI interface
–  Displays status of tests
–  Displays stack trace when tests fail

•  Integrated with Maven and Continuous Integration
–  http://maven.apache.org

•  Build and Release Management Tool
–  http://Maven.apache.org/continuum

•  Continous integration server for Java programs
–  All tests are run before release (regression tests)
–  Test results are advertised as a project report

•  Many specialized variants
–  Unit testing of web applications
–  J2EE applications

