
1
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering for
Engineers

Object Design

2
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Miscellaneous

•  No exercise session today
•  Last week lecture was canceled. Need to revise lecture

schedule.
•  Next Week, May 20

•  Lecture on Design Patterns
•  Preconditions: Object Design, UML Class Diagram
•  Postconditions: Adapter Pattern, Observer Pattern

3
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

New Schedule

Week 1

April 22, 2009

UML Class Diagrams

Week 2

April, 29 2009

Testing

Week 3

May 6, 2009

cancelled

Week 4

May 13, 2009

Object Design I: Reuse

Week 5

May 20, 2009

Object Design II: Interface Specification (Contracts) &

Design Patterns I

Week 6

May 27, 2009

Design Patterns II

Week 7

June 6, 2009

Requirements Elicitation and Analysis

4
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

New Schedule (cont’d)

Week 8

June, 10 2009

System Design 1

Week 9

June 17, 2009

System Design 2

Week 10

June 24, 2009

Testing 2

Week 11

July 1, 2009

Guest Speaker

Week 12

July 8, 2009

Methodologies

Week 13

July 15, 2009

XP and Scrum

Week 14

July 22, 2009

Putting everything together

5
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Outline of Today

•  Definition: Object Design
•  System Design vs Object Design
•  Object Design Activities
•  Reuse examples

•  Whitebox and Blackbox Reuse

•  Object design leads also to new classes
•  Implementation vs Specification Inheritance
•  Inheritance vs Delegation
•  Class Libraries and Frameworks
•  Exercises: Documenting the Object Design

•  JavaDoc, Doxygen

6
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Object Design

•  Purpose of object design:
•  Prepare for the implementation of the analysis model

based on system design decisions

•  Transform analysis and system design models

•  Investigate alternative ways to implement the
analysis model

•  Use design goals: minimize execution time, memory
and other measures of cost.

•  Object Design serves as the basis of
implementation

7
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Terminology: Naming of Design Activities

Methodology: Object-oriented
software engineering
(OOSE)

•  System Design
•  Subsystem Decomposition,

Concurrency, HW-SW
mapping, Access Control

•  Object Design
•  Data structures and

algorithms chosen
•  Implementation

•  Implementation language is
chosen

Methodology: Structured
analysis/structured design
(SA/SD)

•  Preliminary Design
•  Decomposition into

subsystems, etc
•  Data structures are chosen

•  Detailed Design
•  Algorithms are chosen
•  Data structures are refined
•  Implementation language

is chosen.

System Development as a Set of Activities

Custom objects

Analysis

- System Design

 - Object Design

System Model

Design

Application objects

Solution objects

Existing Machine

Problem

Off-the-Shelf Components

Design means “Closing the Gap”

Example of a Gap:

San Andreas Fault

“Subsystem 1”: Rock material

from the Southern Sierra

Nevada mountains (moving north)

“Subsystem 2”: San Francisco

Bay Area

“Subsystem 3” closing the Gap:
San Andreas Lake

Design means “Closing the Gap”

Solution objects

System Model

Application objects

Custom objects

System design gap

Object

design gap

Requirements gap

Problem

Machine

Develop-

ment

Gap

“Higher level Virtual
Machine”

11
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Object Design consists of 4 Activities

1. Reuse: Identification of existing solutions
•  Use of inheritance
•  Off-the-shelf components and

additional solution objects
•  Design patterns (Adapter, etc)

2. Interface specification
•  Describes precisely each class interface

3. Object model restructuring
•  Transforms the object design model to

improve its understandability and extensibility

4. Object model optimization
•  Transforms the object design model to address

performance criteria such as response
time or memory utilization.

Today’s

Lecture

Next week

Lecture

Ch 10

More

Design

Patterns

12
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Cloud

Grid

13
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Object Design Activities

Specifying constraints

Specifying types &
signatures

Identifying patterns

Applying patterns

Identifying missing
attributes & operations

Specifying visibility

Specification

Specifying exceptions

Reuse

Identifying components

Adjusting components

Select Subsystem Today
Next Week

14
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Detailed View of Object Design Activities
(ctd)

Collapsing classes

Restructuring Optimization

Revisiting
inheritance

Optimizing access
paths

Caching complex
computations

Delaying complex
computations

Check Use Cases

Realizing associations

No Lecture,
Reading Ch 10

Lecture Design
Patterns (Proxy
Pattern)

15
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

One Way to do Object Design

1.  Identify the missing components in the design gap
2.  Make a build or buy decision to obtain the missing

component

 => Component-Based Software Engineering:
 The design gap is filled with available
components (“0 % coding”).

•  Special Case: COTS-Development
•  COTS: Commercial-off-the-Shelf
•  The design gap is completely filled with commercial-

off-the-shelf-components.

=> Design with standard components.

16
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Design with Standard Components is like solving
a Traditional Jigsaw Puzzle

Remaining

puzzle piece

(“component”)

Design Activities:
1.  Identify the missing components
2.  Make a build or buy decision to get the missing component.

17
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

What do we do if we have non-Standard
Components?

Advanced
Jigsaw Puzzles

Apollo 13: “Houston, we’ve had a Problem!”
Service Module (SM):

Batteries, etc

Command Module (CM):

Living quarters for 3

astronauts during the trip

to and from the moon

Lunar Module (LM):

Living quarters for 2

astronauts on the moon

The LM was designed for 60 hours for 2 astronauts staying 2 days on the moon

Redesign challenge: Can the LM be used for 12 man-days (2 1/2 days until

reentry into Earth)?

Proposal: Reuse Lithium Hydride Canisters from CM in LM

Problem: Incompatible openings in Lithium Hydride Canisters

Available Lithium

Hydride in �

Lunar Module:

60 hours for 2

Astronauts

Available Lithium

Hydride (for breathing) in

 Command Module: “Plenty”

But: only 15 min power left

Needed:

88 hours for 3

Astronauts

Failure!

19
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Apollo 13: “Fitting a square peg in a round
hole”

20
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

A Typical Object Design Challenge:
Connecting Incompatible Components

Source: http://www.hq.nasa.gov/office/pao/History/SP-350/ch-13-4.html

Lithium Hydride Canister

 from Command Module System

(square openings)

connected to Lunar Module

System (round openings)

To Lunar Module

Command Module

21
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Adapter Pattern

•  Adapter Pattern: Converts the interface of a
component into another interface expected by
the calling component

•  Used to provide a new interface to existing
legacy components (Interface engineering,
reengineering)

•  Also known as a wrapper
•  Two adapter patterns:

•  Class adapter:
•  Uses multiple inheritance to adapt one interface to

another
•  Object adapter:

•  Uses single inheritance and delegation
•  Introduced in this lecture.

22
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Adapter Pattern

ClientInterface

Request()

LegacyClass

ExistingRequest()

adaptee

Adapter

Request()

Client

Old System

(“Legacy System”)

New System

Delegation

Inheritance

23
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Adapter for Scrubber in Lunar Module

•  Using a carbon monoxide scrubber (round opening)
in the lunar module with square cartridges from the
command module (square opening)

Scrubber

ObtainOxygen()

adaptee

Round_To_Square_Adapter

ObtainOxygen()

Astronaut

Opening: Round

CM_Cartridge

ScrubCarbonMonoxide()

Opening: Square

24
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Modeling of the Real World

•  Modeling of the real world leads to a system that
reflects today’s realities but not necessarily
tomorrow’s.

•  There is a need for reusable and flexible designs

•  Design knowledge such as the adapter pattern
complements application domain knowledge and
solution domain knowledge.

25
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Typical of Object Design Activities

•  Identifying possibilities of reuse
•  Identification of existing components

•  Full definition of associations
•  Full definition of classes

•  System Design => Service, Object Design => API

•  Specifying contracts for each component
•  OCL (Object Constraint Language)

•  Choosing algorithms and data structures
•  Detection of solution-domain classes
•  Optimization
•  Increase of inheritance
•  Decision on control
•  Packaging

26
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Reuse of Code

•  I have a list, but my customer would like to
have a stack

•  The list offers the operations Insert(), Find(), Delete()
•  The stack needs the operations Push(), Pop() and

Top()
•  Can I reuse the existing list?

•  I am an employee in a company that builds cars
with expensive car stereo systems. Can I reuse
the existing car software in a home stero
system?

27
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Reuse of interfaces

•  I am an off-shore programmer in Hawaii. I have a
contract to implement an electronic parts catalog
for DaimlerChrysler

•  How can I and my contractor be sure that I implement it
correctly?

•  I would like to develop a window system for Linux
that behaves the same way as in Windows

•  How can I make sure that I follow the conventions for
Windows XP windows and not those of MacOS X?

•  I have to develop a new service for cars, that
automatically call a help center when the car is
used the wrong way.

•  Can I reuse the help desk software that I developed for a
company in the telecommuniction industry?

28
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Reuse of existing classes

•  I have an implementation for a list of elements
vom Typ int

•  How can I reuse this list without major effort to
build a list of customers, or a spare parts
catalog or a flight reservation schedule?

•  Can I reuse a class “Addressbook”, which I
have developed in another project, as a
subsystem in my commercially obtained
proprietary e-mail program?

•  Can I reuse this class also in the billing software of my
dealer management system?

29
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Reuse

•  Problem: Close the object design gap to
develop new functionality

•  Design goal:
•  Reuse knowledge from previous experience
•  Reuse functionality already available

•  Composition (also called Black Box Reuse)
•  New functionality is obtained by aggregation
•  The new object with more functionality is an

aggregation of existing objects

•  Inheritance (also called White-box Reuse)
•  New functionality is obtained by inheritance

•  In both cases: Identification of new classes

30
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Identification of new Classes during Object
Design

Incident

Report

Requirements Analysis
(Language of Application

Domain)

Object Design
(Language of Solution Domain)

Incident

Report

Text box
 Menu
 Scrollbar

31
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Other Reasons for new Classes

•  The implementation of algorithms may
necessitate objects to hold values

•  New low-level operations may be needed during
the decomposition of high-level operations

•  Example: EraseArea() in a drawing program
•  Conceptually very simple
•  Implementation is complicated:

•  Area represented by pixels
•  We need a Repair() operation to clean up objects

partially covered by the erased area
•  We need a Redraw() operation to draw objects

uncovered by the erasure
•  We need a Draw() operation to erase pixels in

background color not covered by other objects.

32
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

White Box and Black Box Reuse

•  White box reuse
•  Access to the development products (models, system

design, object design, source code) must be available

•  Black box reuse
•  Access to models and designs is not avaliable, or

models do not exist
•  Worst case: Only executables (binary code) are

available
•  Better case: A specification of the system interface

is available.

33
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Types of Whitebox Reuse

1. Implementation inheritance
•  Reuse of Implementations

2. Specification Inheritance
•  Reuse of Interfaces

•  Programming concepts to achieve reuse
 Inheritance
•  Delegation
•  Abstract classes and Method Overriding
•  Interfaces

34
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Why Inheritance?

1. Organization (during analysis):
•  Inheritance helps us with the construction of

taxonomies to deal with the application domain
•  when talking the customer and application domain

experts we usually find already existing
taxonomies

2. Reuse (during object design):
•  Inheritance helps us to reuse models and code to deal

with the solution domain
•  when talking to developers

35
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

The use of Inheritance

•  Inheritance is used to achieve two different goals
•  Description of Taxonomies
•  Interface Specification

•  Description of taxonomies
•  Used during requirements analysis
•  Activity: identify application domain objects that are

hierarchically related
•  Goal: make the analysis model more understandable

•  Interface specification
•  Used during object design
•  Activity: identify the signatures of all identified objects
•  Goal: increase reusability, enhance modifiability and

extensibility

36
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Inheritance can be used during Modeling
as well as during Implementation

•  Starting Point is always the requirements
analysis phase:

•  We start with use cases
•  We identify existing objects (“class identification“)
•  We investigate the relationship between these objects;

“Identification of associations“:
• general associations
•  aggregations
•  inheritance associations.

37
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Example of Inheritance in a Taxonomy
Superclass:

drive()

brake()

accelerate()

Car

playMusic()

ejectCD()

resumeMusic()

pauseMusic()

LuxuryCar

Subclass:

public class LuxuryCar extends Car
{
 public void playMusic() {…}
 public void ejectCD() {…}
 public void resumeMusic() {…}
 public void pauseMusic() {…}
}

public class Car {
 public void drive() {…}
 public void brake() {…}
 public void accelerate() {…}
}

38
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Inheritance comes in many Flavors

The term Inheritance is used in four different
ways:

•  Specialization
•  Generalization
•  Specification Inheritance
•  Implementation Inheritance.

39
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Discovering Inheritance

•  To “discover“ inheritance associations, we can
proceed in two ways, which we call
specialization and generalization

•  Generalization: the discovery of an inheritance
relationship between two classes, where the sub
class is discovered first.

•  Specialization: the discovery of an inheritance
relationship between two classes, where the
super class is discovered first.

40
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Generalization

•  First we find the subclass, then the super class
•  This type of discovery occurs often in science

Generalization Example: Modeling a
Coffee Machine

totalReceipts

numberOfCups

coffeeMix

collectMoney()

makeChange()

heatWater()

dispenseBeverage()

addSugar()

addCreamer()

CoffeeMachine

VendingMachine

Generalization:
The class CoffeeMachine is
discovered first, then the class
SodaMachine, then the
superclass
VendingMachine

totalReceipts
cansOfBeer
cansOfCola
collectMoney()
makeChange()
chill()
dispenseBeverage()

SodaMachine

42
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Restructuring of Attributes and Operations
is often a Consequence of Generalization

totalReceipts

collectMoney()

makeChange()

dispenseBeverage()

VendingMachine

numberOfCups

coffeeMix

heatWater()

addSugar()

addCreamer()

CoffeeMachine

cansOfBeer

cansOfCola

chill()

SodaMachine

totalReceipts

numberOfCups

coffeeMix

collectMoney()

makeChange()

heatWater()

dispenseBeverage()

addSugar()

addCreamer()

CoffeeMachine

VendingMachine

totalReceipts
cansOfBeer
cansOfCola
collectMoney()
makeChange()
chill()
dispenseBeverage()

SodaMachine

Called Remodeling if done on �
the model level;

called Refactoring if done on�
the source code level.

43
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Specialization

•  Specialization occurs, when we find a subclass
that is very similar to an existing class.

•  Example: A theory postulates certain particles and
events which we have to find.

•  Specialization can also occur unintentionally:

44
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Which Taxonomy models the scenario in
the previous Slide?

 fly()

 Airplane

 drive()

Car

 drive()

Car

fly()

Airplane

45
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Another Example of a Specialization

numberOfCups

coffeeMix

heatWater()

addSugar()

addCreamer()

CoffeeMachine

totalReceipts

collectMoney()

makeChange()

dispenseBeverage()

VendingMaschine

cansOfBeer

cansOfCola

chill()

SodaMachine

bagsofChips

numberOfCandyBars

dispenseSnack()

CandyMachine

CandyMachine is a new
product and designed as a sub
class of the superclass
VendingMachine

A change of names might now
be useful: dispenseItem()
instead of

 dispenseBeverage()
 and
 dispenseSnack()

46
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Example of a Specialization (2)

numberOfCups

coffeeMix

heatWater()

addSugar()

addCreamer()

dispenseItem()

CoffeeMachine

totalReceipts

collectMoney()

makeChange()

dispenseItem()

VendingMaschine

cansOfBeer

cansOfCola

chill()

dispenseItem()

SodaMachine

bagsofChips

numberOfCandyBars

dispenseItem()

CandyMachine

47
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Meta-Model for Inheritance

Inheritance

Specification

Inheritance

Implementation

Inheritance

Inheritance
for Reuse Taxonomy

Inheritance
detected by

generalization

Inheritance
detected by

specialization

Analysis

activity

Object

Design

48
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Implementation Inheritance and
Specification Inheritance

•  Implementation inheritance
•  Also called class inheritance
•  Goal:

•  Extend an applications’ functionality by reusing
functionality from the super class

•  Inherit from an existing class with some or all
operations already implemented

•  Specification Inheritance
•  Also called subtyping
•  Goal:

•  Inherit from a specification
•  The specification is an abstract class with all

operations specified, but not yet implemented.

49
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Implementation Inheritance v.
Specification Inheritance

•  Implementation Inheritance: The combination of
inheritance and implementation

•  The Interface of the superclass is completely inherited
•  Implementations of methods in the superclass

("Reference implementations") are inherited by any
subclass

•  Specification Inheritance: The combination of
inheritance and specification

•  The Interface of the superclass is completely inherited
•  Implementations of the superclass (if there are any)

are not inherited.

  Problem with implementation inheritance:
•  The inherited operations might exhibit unwanted behavior.
•  Example: What happens if the Stack user calls Remove()

instead of Pop()?

Example:
 • I have a List class, I need a

Stack class
 • How about subclassing the

Stack class from the List
class and implementing
Push(), Pop(), Top() with
Add() and Remove()?

Add()

Remove()

List

Push
()

Pop()

Stack

Top()

“Already
 implemented”

Example for Implementation Inheritance

•  A very similar class is already implemented that
does almost the same as the desired class
implementation

51
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Better Code Reuse: Delegation 5 13 2009

•  Implementation-Inheritance: Using the
implementation of super class operations

•  Delegation: Catching an operation and sending it
to another object that implements the operation

+Add()

+Remove()

List

Stack

+Push()

+Pop()

+Top()

+Push()

+Pop()

+Top()

Stack

Add()

Remove()

List

52
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

delegates to Client Receiver Delegate
calls

Delegation

•  Delegation is a way of making composition as
powerful for reuse as inheritance

•  In delegation two objects are involved in
handling a request from a Client

• The Receiver object delegates operations to
the Delegate object
• The Receiver object makes sure, that the
Client does not misuse the Delegate object.

53
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Comparison: Delegation v. Inheritance

•  Code-Reuse can be done by delegation as well
as inheritance

•  Delegation
•  Flexibility: Any object can be replaced at run time by

another one
•  Inefficiency: Objects are encapsulated

•  Inheritance
•  Straightforward to use
•  Supported by many programming languages
•  Easy to implement new functionality
•  Exposes a subclass to details of its super class
•  Change in the parent class requires recompilation of

the subclass.

54
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Finally: Pack up the design

•  Goal: Pack up design into discrete physical units
that can be edited, compiled, linked, reused

•  Two design principles for packaging
•  Minimize coupling:

•  Example: Classes in client-supplier architectures
are usually loosely coupled

•  Large number of parameters (> 4-5) in some
methods mean high coupling

•  Maximize cohesion:
•  Classes closely connected by associations => same

package

55
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Design Heuristics for Packaging

•  Each subsystem service is made available by one
or more interface objects within the package

•  Start with one interface object for each subsystem
service

•  Try to limit the number of interface operations (7+-2)

•  If the service has too many operations, reconsider
the number of interface objects

•  If you have too many interface objects, reconsider
the number of subsystems

56
© 2009 Bernd Bruegge Software Engineering for Engineers SS 2009

Summary

•  Object design closes the gap between the
requirements and the system design/machine.

•  Object design adds details to the requirements
analysis and prepares for implementation
decisions

•  Object design activities include:
•  Identification of Reuse
•  Identification of interface and implementation

inheritance
•  Identification of opportunities for delegation

