
1Bernd Bruegge Software Engineering for Engineers Summer 2009

Design Patterns

Bernd Bruegge
 Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering for Engineers
Summer 2009

2Bernd Bruegge Software Engineering for Engineers Summer 2009

Outline
•  Design Patterns

•  Usefulness of design patterns, Design Pattern Categories

•  Patterns covered in the lecture
•  Composite Pattern: Modeling of dynamic aggregates
•  Adapter Pattern: Interface to old systems (legacy systems)
•  Observer Pattern: Maintain consistency across redundant

state, also called Publisher-Subscriber
•  Bridge Pattern: Interfacing to existing and future systems
•  Façade Pattern: Interfacing to subsystems
•  Proxy Pattern: Reduces the cost of accessing objects
•  Strategy Pattern: Interface to a task implemented by

different algorithms
•  Not covered in the lecture, but in the backup slides:

Template, Abstract Factory, Builder.

3Bernd Bruegge Software Engineering for Engineers Summer 2009

Design pattern

A design pattern is…

…a template solution to a recurring design
problem

•  Look before re-inventing the wheel just one more time

…an example of modifiable design
•  Learning to design starts by studying other designs

…reusable design knowledge
•  7+-2 classes and their associations
•  Often actually more 5+-2 classes.

4Bernd Bruegge Software Engineering for Engineers Summer 2009

What makes Design Patterns Good?

•  They are generalizations of design knowledge
from existing systems

•  They provide a shared vocabulary to designers
•  They provide examples of reusable designs

•  Inheritance (abstract classes)
•  Delegation (or aggregation)

5Bernd Bruegge Software Engineering for Engineers Summer 2009

Categorization of Design Patterns

•  Structural Patterns
•  reduce coupling between two or more classes
•  introduce an abstract class to enable future extensions
•  encapsulate complex structures

•  Behavioral Patterns
•  allow a choice between algorithms and the assignment

of responsibilies to objects (“Who does what?”)
•  characterize complex control flows that are difficult to

follow at runtime

•  Creational Patterns
•  allow to abstract from complex instantiation processes
•  Make the system independent from the way its objects

are created, composed and represented.

6Bernd Bruegge Software Engineering for Engineers Summer 2009

7Bernd Bruegge Software Engineering for Engineers Summer 2009

A Game: Get-15
•  Start with the nine numbers 1,2,3,4, 5, 6, 7, 8

and 9.
•  You and your opponent take alternate turns, each

taking a number
•  Each number can be taken only once: If you

opponent has selected a number, you cannot also
take it.

•  The first person to have any three numbers that
total 15 wins the game.

•  Example:
You:

Opponent:

1 5 83

6 9 27 Opponent
Wins!

8Bernd Bruegge Software Engineering for Engineers Summer 2009

Characteristics of Get-15

•  Hard to play,
•  The game is especially hard, if you are not

allowed to write anything done.

•  Why?
•  All the numbers need to be scanned to see if you have

won/lost
•  It is hard to see what the opponent will take if you take

a certain number
•  The choice of the number depends on all the previous

numbers

•  Not easy to devise an simple strategy

9Bernd Bruegge Software Engineering for Engineers Summer 2009

Another Game: Tic-Tac-Toe

Source: http://boulter.com/ttt/index.cgi

10Bernd Bruegge Software Engineering for Engineers Summer 2009

A Draw Sitation

11Bernd Bruegge Software Engineering for Engineers Summer 2009

Strategy for determining a winning move

12Bernd Bruegge Software Engineering for Engineers Summer 2009

Winning Situations for Tic-Tac-Toe

Winning
Patterns

13Bernd Bruegge Software Engineering for Engineers Summer 2009

Tic-Tac-Toe is “Easy”
•  Why? Reduction of complexity through patterns

and symmetry
•  Patterns: Knowing the following three patterns,

the player can anticipate the opponents move

•  Symmetry:
• The player needs to remember only these
three patterns to deal with 8 different game
situations
• The player needs to memorize only 3
opening moves and their responses

14Bernd Bruegge Software Engineering for Engineers Summer 2009

Get-15 and Tic-Tac-Toe are identical
problems

•  Any Get-15 solution is a solution to a tic-tac-toe
problem

•  Any tic-tac-toe solution is a solution to a Get-15
problem

•  To see the relationship between the two games, we
simply arrange the 9 digits into the following pattern

8 1 6

3 5 7

4 9 2

15Bernd Bruegge Software Engineering for Engineers Summer 2009

8 1 6

3 5 7

4 9 2

1 5 83

6 9 27

You:

Opponent:

8 1 6

3 5 7

4 9 2

16Bernd Bruegge Software Engineering for Engineers Summer 2009

•  During object modeling we do many
transformations and changes to the object
model

•  It is important to make sure the object model
stays simple!

•  Design patterns are used to keep system models
simple (and reusable).

17Bernd Bruegge Software Engineering for Engineers Summer 2009

Modeling Heuristics

•  Modeling must address our mental limitations:
•  Our short-term memory has only limited capacity (7+-2)

•  Good Models deal with this limitation, because they
•  Do not tax the mind

•  A good model requires a small mental effort
•  Reduce complexity

•  Turn complex tasks into easy ones (choice of
representation)

•  Use of symmetries
•  Use abstractions

•  Taxonomies
•  Have organizational structure:

•  Memory limitations are overcome with an appropriate
representation (“natural model”).

18Bernd Bruegge Software Engineering for Engineers Summer 2009

What is common between these
definitions?

•  Definition Software System
•  A software system consists of subsystems which are

either other subsystems or collection of classes

•  Definition Software Lifecycle
•  A software lifecycle consists of a set of development

activities which are either other activities or
collection of tasks.

Recursion

19Bernd Bruegge Software Engineering for Engineers Summer 2009

Recursion

•  Recursion
•  An abstraction being defined is used within its own

definition
•  More general: Description of an abstraction based

on self-similarity.

20Bernd Bruegge Software Engineering for Engineers Summer 2009

What is common between these
definitions?

•  Definition Software System
•  A software system consists of subsystems which are

either other subsystems or collection of classes
•  Composite: Subsystem

•  A software system consists of subsystems which
consists of subsystems, which consists of
subsystems, which...

•  Base case: Class

•  Definition Software Lifecycle
•  The software lifecycle consists of a set of development

activities which are either other activities or collection
of tasks

•  Composite: Activity
•  The software lifecycle consists of activities which

consist of activities, which consist of activities,
which....

•  Base case: Task.

21Bernd Bruegge Software Engineering for Engineers Summer 2009

Modeling a Software System

Software
System

Class
Subsystem Children

*

22Bernd Bruegge Software Engineering for Engineers Summer 2009

Modeling the Software Lifecycle

Software
Lifecycle

Task
Activity Children

*

23Bernd Bruegge Software Engineering for Engineers Summer 2009

Introducing the Composite Pattern
•  The pattern models tree structures that represent

hierarchies of objects with arbitrary depth and width
•  The Composite Pattern lets a client treat individual

objects and compositions of these objects uniformly

Client Component

Leaf

Operation()

Composite

Operation()
AddComponent

RemoveComponent()
GetChild()

Children

*

24Bernd Bruegge Software Engineering for Engineers Summer 2009

25Bernd Bruegge Software Engineering for Engineers Summer 2009

The Composite Patterns models dynamic
aggregates

University School Department

Organization Chart (variable aggregate):

Dynamic tree (recursive aggregate):

CarFixed Structure:

Doors Wheels Battery Engine

Compound
Statement

Simple
Statement

Program

Block

* *

* *

* *
Dynamic tree (recursive aggregate):

Composite
Pattern

26Bernd Bruegge Software Engineering for Engineers Summer 2009

Client Graphic

Square

Draw()

Picture

Draw()
Add(Graphic g)

RemoveGraphic)
GetChild(int)

Children
Line

Draw()

•  The Graphic Class represents both primitives (Line,
Square) and their containers (Picture)

Graphic Applications also Composite
Patterns

*

27Bernd Bruegge Software Engineering for Engineers Summer 2009

28Bernd Bruegge Software Engineering for Engineers Summer 2009

√

29Bernd Bruegge Software Engineering for Engineers Summer 2009

Observer Pattern Motivation

•  Problem:
•  We have an object that changes its state quite

often
•  Example: A Portfolio of stocks

•  We want to provide multiple views of the current
state of the portfolio

•  Example:Histogram view, pie chart view, time
line view, alarm

•  Requirements:
•  The system should maintain consistency across

the (redundant) views, whenever the state of the
observed object changes

•  The system design should be highly extensible
•  It should be possible to add new views

without having to recompile the observed
object or the existing views.

Portfolio

Stock
*

30Bernd Bruegge Software Engineering for Engineers Summer 2009

Example: The File Name of a Presentation

InfoView

Powerpoint
View

List View3 Possibilities to change the File Name

What happens
if I change

the file name of this
presentation in List View

 to foo?

Observer Pattern: Decouple Object from its Views

Subject

subscribe(subscriber)
unsubscribe(subscriber)
notify()

•  The Subject (“Publisher”) represents the entity object
•  Observers (“Subscribers”) attach to the Subject by calling subscribe()
•  Each Observer has a different view of the state of the entity object

•  The state is contained in the subclass ConcreteSubject
•  The state can be obtained and set by subclasses of type

ConcreteObserver.

update()

Observer
*observers

ConcreteSubject
state

getState()
setState()

ConcreteObserver
observeState

update()
Application Domain

(Application Knowledge)

Solution Domain
(Design Knowledge)

