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Outline 
•  Design Patterns 

•  Usefulness of design patterns, Design Pattern Categories 

•  Patterns covered in the lecture 
•  Composite Pattern: Modeling of dynamic aggregates 
•  Adapter Pattern: Interface to old systems  (legacy systems) 
•  Observer Pattern: Maintain consistency across redundant 

state, also called Publisher-Subscriber 
•  Bridge Pattern: Interfacing to existing and future systems 
•  Façade Pattern: Interfacing to subsystems 
•  Proxy Pattern: Reduces the cost of accessing objects 
•  Strategy Pattern: Interface to a task implemented by 

different algorithms 
•  Not covered in the lecture, but in the backup slides: 

Template, Abstract Factory, Builder. 
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Design pattern 

A design pattern is… 

…a template solution to a recurring design 
problem 

•  Look before re-inventing the wheel just  one more time 

…an example of modifiable  design 
•  Learning to design starts by studying other designs 

…reusable design knowledge 
•  7+-2 classes and their associations 
•  Often actually more 5+-2 classes. 
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What makes Design Patterns Good? 

•  They are generalizations of design knowledge 
from existing systems 

•  They provide a shared vocabulary to designers 
•  They provide examples of reusable designs 

•  Inheritance (abstract classes) 
•  Delegation (or aggregation) 
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Categorization of  Design Patterns 

•  Structural Patterns 
•  reduce coupling between two or more classes  
•  introduce an abstract class to enable future extensions 
•  encapsulate complex structures 

•  Behavioral Patterns 
•  allow a choice between algorithms and the assignment 

of responsibilies to objects (“Who does what?”) 
•  characterize complex control flows that are difficult to 

follow at runtime 

•  Creational Patterns 
•  allow to abstract from complex instantiation processes  
•  Make the system independent from the way its objects 

are created, composed and represented. 
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A Game:  Get-15 
•  Start with the nine numbers 1,2,3,4, 5, 6, 7, 8 

and 9.  
•  You and your opponent take alternate turns, each 

taking a number 
•  Each number can be taken only once: If you 

opponent has selected a number, you cannot also 
take it.  

•  The first person to have any three numbers that 
total 15 wins the game.  

•  Example: 
You: 

Opponent: 

1 5 83

6 9 27 Opponent
Wins!
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Characteristics of Get-15 

•  Hard to play, 
•  The game is especially hard,  if you are not 

allowed to write anything done.  

•  Why?  
•  All the numbers need to be scanned to see if you have 

won/lost 
•  It is hard to see what the opponent will take if you take 

a certain number 
•  The choice of the number depends on all the previous 

numbers 

•  Not easy to devise an simple strategy 
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Another Game: Tic-Tac-Toe 

Source: http://boulter.com/ttt/index.cgi
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A Draw Sitation 
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Strategy for determining a winning move 
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Winning Situations for Tic-Tac-Toe 

Winning
Patterns
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Tic-Tac-Toe is “Easy” 
•  Why?   Reduction of complexity through patterns 

and symmetry 
•  Patterns: Knowing the following three  patterns, 

the player can anticipate the opponents move 

•  Symmetry:  
• The player needs to remember only these  
three patterns to deal with 8 different game 
situations 
• The player needs to memorize only 3 
opening moves and their responses 
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Get-15 and Tic-Tac-Toe are identical 
problems 

•  Any Get-15 solution is a solution to a tic-tac-toe 
problem 

•  Any tic-tac-toe solution is a solution to a Get-15 
problem 

•  To see the relationship between the two games, we 
simply arrange the 9 digits into the following pattern 

8 1 6

3 5 7

4 9 2
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8 1 6

3 5 7

4 9 2

1 5 83

6 9 27

You: 

Opponent: 

8 1 6

3 5 7

4 9 2
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•  During object modeling we do many 
transformations and changes to the object 
model  

•  It is important to make sure the object model 
stays simple!  

•  Design patterns are used to keep system models 
simple (and reusable). 
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Modeling Heuristics 

•  Modeling must address our mental limitations:  
•  Our short-term memory has only limited capacity (7+-2) 

•  Good Models deal with this limitation, because they 
•  Do not tax the mind 

•  A good model requires a small mental effort 
•  Reduce complexity 

•  Turn complex tasks into easy ones (choice of 
representation) 

•  Use of symmetries 
•  Use abstractions 

•  Taxonomies 
•  Have organizational structure: 

•  Memory limitations are overcome with an appropriate 
representation (“natural model”). 
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What is common between these 
definitions? 

•  Definition Software System 
•  A software system consists of subsystems which are 

either other subsystems or collection of classes 

•  Definition Software Lifecycle 
•  A software lifecycle consists of a set of development 

activities which are either other activities or 
collection of  tasks. 

Recursion
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Recursion 

•  Recursion  
•  An abstraction being defined is used within  its own 

definition
•  More general: Description of an  abstraction based 

on self-similarity. 
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What is common between these 
definitions? 

•  Definition Software System 
•  A software system consists of subsystems which are 

either other subsystems or collection of classes 
•  Composite: Subsystem  

•  A software system consists of subsystems which 
consists of subsystems, which consists of 
subsystems, which... 

•  Base case: Class 

•  Definition Software Lifecycle 
•  The software lifecycle consists of a set of development 

activities which are either other activities or collection 
of  tasks 

•  Composite: Activity  
•  The software lifecycle consists of activities which 

consist  of  activities, which consist of activities, 
which.... 

•  Base case:  Task. 
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Modeling a Software System       

Software
System

Class
Subsystem Children

*
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Modeling the Software Lifecycle 

Software
Lifecycle

Task
Activity Children

*
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Introducing the Composite Pattern 
•  The pattern models tree structures that represent 

hierarchies of objects with arbitrary depth and width 
•  The Composite Pattern lets a client treat individual 

objects and compositions of these  objects uniformly 

Client Component

Leaf

Operation()

Composite

Operation()
AddComponent

RemoveComponent()
GetChild()

Children

*
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The Composite Patterns models dynamic 
aggregates  

University School Department

Organization Chart (variable aggregate):

Dynamic tree (recursive aggregate):

CarFixed Structure:

Doors Wheels Battery Engine

Compound
Statement

Simple
Statement

Program

Block

* *

* *

* *
Dynamic tree (recursive aggregate):

Composite
Pattern
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Client Graphic

Square

Draw()

Picture

Draw()
Add(Graphic g)

RemoveGraphic)
GetChild(int)

Children
Line

Draw()

•  The Graphic  Class represents both primitives (Line, 
Square) and their containers (Picture)

Graphic Applications also Composite 
Patterns 

*
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√
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Observer Pattern Motivation 

•  Problem:  
•  We have an object that changes its state quite 

often 
•  Example: A Portfolio of stocks 

•  We want to provide multiple views of the current 
state of the portfolio 

•  Example:Histogram view, pie chart view, time 
line view, alarm 

•  Requirements:  
•  The system should maintain consistency across 

the (redundant) views, whenever the state of the 
observed object changes 

•  The system design should be highly extensible 
•  It should be possible to add new views 

without having to recompile the observed 
object or the existing views.   

Portfolio

Stock
*
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Example: The File Name of a Presentation  

InfoView

Powerpoint
View

List View3 Possibilities to change the File Name  

What happens  
if I change  

the file name of this 
presentation in List View 

 to foo? 



Observer Pattern: Decouple Object from its Views 

Subject

subscribe(subscriber) 
unsubscribe(subscriber) 
notify() 

•  The Subject (“Publisher”) represents the entity object  
•  Observers (“Subscribers”) attach to the Subject by calling subscribe() 
•  Each Observer has a different view of the state of the entity object  

•  The state is contained in the subclass ConcreteSubject 
•  The state can be obtained and set by subclasses of type 

ConcreteObserver. 

update() 

Observer
*observers

ConcreteSubject
state 

getState() 
setState() 

ConcreteObserver
observeState 

update() 
Application Domain

(Application Knowledge)

Solution Domain
(Design Knowledge)


