Addressing Design Goals

Software Engineering I
Lecture 9

Bernd Bruegge, Ph.D.
Applied Software Engineering
Technische Universitaet Muenchen

Overview

System Design 1
v 0. Overview of System Design
v 1. Design Goals
v 2. Subsystem Decomposition
v'Architectural Styles

System Design II
3. Concurrency
. Hardware/Software Mapping
. Persistent Data Management
. Global Resource Handling and Access Control
. Software Control
8. Boundary Conditions

N O o1 b

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

System Design

/ \ 8, Boun dary
v'1. Design Goals Conditions
Definition Initialization

Trade-offs Termination

Failure

v'2. Subsystem Decomposijtion
Layers vs Partitions
Coherence/Couplin

7. Software
Control

Monolithic
Event-Driven

»>3. Concurrency Conc. Processes

Identification of 4- Hardware/ 5. Data 6. Global Resource
Threads Software Mapping Management Handlung
Special Purpose Persistent Objects Access Control List
Buy vs Build Filesystem vs Database vs Capabilities
Allocation of Resources Security
Connectivity

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 3

Concurrency

e Definition Thread

* A thread of control is a path through a set of state
diagrams on which a single object is active at a time

* A thread remains within a state diagram until an object
sends an event to another object and waits for another
event

« Thread splitting: Object does a nonblocking send of an
event

e System Design Activities:
« Identify concurrent threads and address design issues

 Design goals to be addressed: Performance
(Response time, latency, availability).

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 4

Concurrency (continued)

e Two objects are if they
can receive events at the same time without
interacting

» Source for identification: Objects in a sequence
diagram that can simultaneously receive events

e Inherently concurrent objects can be assigned to
different threads of control

e Objects with could be
folded into a single thread of control

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 5

Example: Problem with thread

Assume: Initial
balance = 200

©

©

=
:WithdrawCtrl :BankAccount :WithdrawCtrl
c1:Customer c2:Customer
I withdraw(50) i i | o
5 getBalance() |
200 . withdraw(50)
< TTTTTTTTTo TgetBalance()
computeNewBalance(200,50)
>l 20,

© 2006 Bernd Bruegge

]

Should BankAccount
be another Thread ?

setBalance(150)

'setBalance(150)

computeNewBalance(200,50)

-

B B

!

Final

balance = 150 ??!

Software Engineering WS 2006/2007

Soluhon Svynchronis

c1: Customer c2:Customer

Single WithdrawCtrl
Instance

Initial
balance = 200

1 withdraw(50)

© 2006 Bernd Bruegge

withdraw(50)

omputeNewBalance(200,50)

]

setBalance(150)

Software Engineering WS 2006/2007

End
balance =100

Concurrency Questions

 To identify candidates for concurrency we ask
the following questions:

* Does the system provide access to multiple users?

 Which entity objects of the object model can be
executed independently from each other?

 What kinds of control objects are identifiable?

 Can a single request to the system be decomposed into
multiple requests? Can these requests and handled in
parallel? (Example: a distributed query)

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 8

Implementing Concurrency

 Concurrent systems can be implemented on any
system that provides

e Physical concurrency: Threads are provided by hardware

or
» Logical concurrency: Threads are provided by software

 Physical concurrency is provided by
multiprocessors and computer networks

* Logical concurrency is provided by threads
packages.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 9

Implementing Concurrency (2)

e In both cases, - physical concurrency as well as
Io%ical concurrency - we have to solve the
scheduling of these threads:

 Which thread runs when?
« Today’s operating systems provide a variety of
scheduling mechanisms:

« Round robin, time slicing, collaborating processes,
interrupt handling

» General question addresses starvation, _
deadlocks, fairness -> Topic for researchers in
operating systems

« Sometimes we have to solve the scheduling
problem ourselves

» Topic addressed by software control (system design
topic 7).

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 10

System Design

/ \ 8. Boun dary
v'1. Design Goals Conditions
Termination

Definition
Trade-offs

Initialization
Failure
v'2. Subsystem Decomposijtion

Layers vs Partitions
Coherence/Couplin

7. Software
Control

Monolithic
Event-Driven

v'3. Concurrency Conc. Processes

Identification of 4. Hardware/ 5. Data 6. Global Resource
Threads oftware Mapping Management Handlung
Special Purpose Persistent Objects Access Control List
Buy vs Build Filesystem vs Database vs Capabilities
Allocation of Resources Security
Connectivity

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 11

4. Hardware Software Mapping

 This system design activity addresses two
questions:

 How shall we realize the subsystems: With hardware or
with software?

« How do we map the object model onto the chosen
hardware and/or software?

« Mapping the Objects:

* Processor, Memory, Input/Output
« Mapping the Associations:

 Network connections

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 12

Mapping the Objects

e Processor issues:

« Is the computation rate too demanding for a single
processor?

« Can we get a speedup by distributing objects across
several processors?

e How many processors are required to maintain steady
state load?
e Memory issues:
» Is there enough memory to buffer bursts of requests?

e Input/Output issues:

« Do we need an extra piece of hardware to handle the
data generation rate?

 Does the response time exceed the available
communication bandwidth between subsystems?

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 13

Mapping the Associations: Connectivity

 Describe the physical connectivity
 (“physical layer in the OSI Reference Model”)

» Describes which associations in the object model
are mapped to physical connections.

e Describe the logical connectivity (subsystem
associations)

e Associations that do not directly map into physical
connections.

« In which layer should these associations be
implemented?

 Informal connectivity drawings often contain
both types of connectivity

* Practiced by many developers, sometimes confusing.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 14

Application
Client

Logical
Connectivity

Communication
Agent for
Application Clients

Application Application
Client Client
- TCP/IP
LAN

Communication
Agent for
Application Clients

Backbone Network

LAN

Communication
Agent for Data

Server

Global
Data

Communication
Agent for Data

Server

LAN

Ethernet Cat 5

Server

Local Data

© 2006 Bernd Bruegge

Global Data

Server

Software Engineering WS 2006/2007

Server

OODBMS

Global
Data

Server

RDBMS

Physical
Connectivity

15

Logical vs Physical Connectivity and the
relationship to Subsystem Layering

Application Layer | >
Presentation Layer < >
Session Layer < >
Bidirectional associa-

tions for each layer
Transport Layer |« >

Network Layer

< >
Data Link Layer < >
Physical Layer ¢ >

Processor 1

© 2006 Bernd Bruegge

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Processor 2

Software Engineering WS 2006/2007

Logical
> Connectivity

)

Physical
 Connectivity

O] 16

Hardware-Software Mapping Difficulties

 Much of the difficulty of designing a system
comes from addressing externally-imposed
hardware and software constraints.

» Certain tasks have to be at specific locations

« Example: Withdrawing money from an ATM
machine

« Some hardware components have to be used from a
specific manufacturer

« Example: To send DVB-T signals, the system has to
use components from a company that provides
DVB-T transmitters.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 17

Hardware/Software Mappings in UML

« A UML component is a building block of the system.
It is represented as a rectangle with tabs

« Components have different lifetimes:
« Some exist only at design time
» Classes, associations

e Others exist until compile time
» Source code, pointers E‘% Component
e« Some exist at link or only at runtime

* Linkable libraries, executables, addresses

e The Hardware/Software Mapping addresses
dependencies and distribution issues of UML
components during system design.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 18

Two New UML Diagram Types

« UML Component Diagram:

 Illustrates dependencies between components at
design time, compilation time and runtime

« UML Deployment Diagram:
o Illustrates the distribution of components at run-time.

 Deployment diagrams use nodes and connections to
depict the physical resources in the system.

e UML Interface:

« A UML interface describes a group of operations used
or created by UML components.

o It is represented as a line with a circle.

—O

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 19

Component Diagram

e Component Diagram

* A graph of components connected by dependency
relationships
 Shows the dependencies among software components

e source code, linkable libraries, executables

« Dependencies are shown as dashed arrows from
the client component to the supplier component
* The types of dependencies are implementation
language specific.
« A component diagram may also be used to show
dependencies on a subsystem interface:

e Use a dashed arrow between the component and the
UML interface it depends on.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 20

Component Diagram Example

% Scheduler [——) reservations
/4
/

o o O Dependency.

UML

Component)

/
Z

Planner — update

7 o

’)
© 2006 Bernd Bruegge Software Engineering WS 2006/2007 21

Deployment Diagram

 Deployment diagrams are useful for showing a
system design after these system design
decisions have been made:

e Subsystem decomposition
e Concurrency

<

 Hardware/Software Mapping . pC . Server

A deployment diagram is a graph of nodes and
connections ("communication associations”).

e Nodes are shown as 3-D boxes
e Connections are shown as solid lines
« Nodes may contain components

« Components may contain objects (indicating that the
object is part of the component).

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 22

Deployment Diagram Example

Dependenc
O O
:HostMachine o
< _ o~ 7f<database> UML
== meetingsDB Interface
)

- =
:Scheduler —2}3
]

/ Dependency
e o O between nodes

—
— ;
2 PC

/
/
l

I:::I :Planner

—

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 23

ARENA Hardware/Software Mapping

:UserMachine :ServerMachine

:ArenaClient N : :ArenaServer

' ' —— i EArenaStorage
N I
N
:MatchFrontEndPeerp|— H — — %E:I
\ :AdvertisementServer

1

{Hh HE

\ ——

:GamePeer

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

5. Data Management

e Some objects in the system model need to be
persistent:
» Values for their attributes have a lifetime longer than a
single execution

* A persistent object can be realized with one of
the following mechanisms:
* Filesystem:

« If the data are used by multiple readers but a
single writer

 Database:

« If the data are used by concurrent writers and
readers.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 25

Data Management Questions

How often is the database accessed?

« What is the expected request (query) rate? The worst
case?

« What is the size of typical and worst case requests?
Do the data need to be archived?

Should the data be distributed?

» Does the system design try to hide the location of the
databases (location transparency)?

Is there a need for a single interface to access
the data?

« What is the query format?
Should the data format be extensible?

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 26

Mapping Object Models

UML object models can be mapped to relational
databases

The mapping:

« Each class is mapped to its own table
Each class attribute is mapped to a column in the table
An instance of a class represents a row in the table

One-to-many associations are implemented with a
buried foreign key

Many-to-many associations are mapped to their own
tables

Methods are not mapped

More details in Lecture: Mapping Models to
Relational Schema

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 27

6. Global Resource Handling

e Discusses access control

* Describes access rights for different classes of
actors

e Describes how object guard against
unauthorized access.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

28

Defining Access Contirol

 In multi-user systems different actors usually
have different access rights to different
functionality and data

e How do we model these accesses?

e During analysis we model them by associating different
use cases with different actors

 During system design we model them determining
which objects are shared among actors.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 29

Access Matrix

e We model access on classes with an access
matrix:

 The rows of the matrix represents the actors of the
system

 The column represent classes whose access we want to
control

e Access Right: An entry in the access matrix. It
lists the operations that can be executed on
instances of the class by the actor.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 30

Access Matrix Example

Access Rights

Classes
~
@ Arena /‘/gue Tournament Match
\6perator <<create>>" <<create>>
createUser() archive()
view ()

LeagueOwner |view () edit () <<create>> <<create>>
archive() end()
schedule()
view()

Player | view() view() applyFor() play()
applyForOwner()| subscribe() view() forfeit()

Spectator | view() view() view() view()
applyForPlayer() | subscribe() replay()

© 2006 Bernd Bruegge

Software Engineering WS 2006/2007

o] 31

Access Matrix Implementations

 Global access table: Represents explicitly every
cell in the matrix as a triple (actor,class,
operation)

LeagueOwner, Arena, view()
LeagueOwner, League, edit()
LeagueOwner, Tournament, <<create>>
LeagueOwner, Tournament, view()
LeagueOwner, Tournament, schedule()
LeagueOwner, Tournament, archive()
LeagueOwner, Match, <<create>>
LeagueOwner, Match, end()

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 32

Better Access Matrix Implementations

e Access control list

» Associates a list of (actor,operation) pairs with each
class to be accessed.

« Every time an instance of this class is accessed, the
access list is checked for the corresponding actor and
operation.

o Capability
« Associates a (class,operation) pair with an actor.

« A capability provides an actor to gain control access to
an object of the class described in the capability.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 33

Access Matrix Example

Arena League Tournament Match
Operator | <<create>> <<create>>
createUser() archive()
view ()
77\

Leagu ner |view () edit () <<create>> <<create>>
archive() end()
schedule()
view()

Player | view() view() applyFor() play()
applyForOwner()| subscribe() view() forfeit()

Spectator | view() view() view() view()
applyForPlayer() | subscribe() replay()

© 2006 Bernd Bruegge

Software Engineering WS 2006/2007

Match

Player

play()
forfeit()

© 2006 Bernd Bruegge

Software Engineering WS 2006/2007

Access Control List Realization

Access Control

: m1:Match
| am joe, List for m1 >/ T
| want to play in %
match m1

joe may play
alice may play

joe:Player

Gatekeeper checks
identification against
list and allows access.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 36

Capability Realization

m1:Match

Here’s my ticket, I'd
like to play in match
m1

Gatekeeper checks if
ticket is valid and
allows access.

— e
Capability

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 37

Global Resource Questions

 Does the system need authentication?

o If yes, what is the authentication scheme?
 User name and password? Access control list
« Tickets? Capability-based

e What is the user interface for authentication?

e Does the system need a network-wide name
server?

e How is a service known to the rest of the
system?
e At runtime? At compile time?
By Port?
e By Name?

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

38

7. Decide on Software Contirol

Two major design choices:
1. Choose implicit control

2. Choose explicit control
* Centralized or decentralized

 Centralized control:
. Control resides within program code.

. Control resides within a dispatcher calling
functions via callbacks.

 Decentralized control
e Control resides in several independent objects.
« Examples: Message based system, RMI

* Possible speedup by mapping the objects on different
processors, increased communication overhead.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 39

Software Control

AN

Explicit Control

N\

Implicit Control

AN

Rule-based
Control

Logic Programming

Decentralized
Control

Centralized
Control

A

© 2006 Bernd Bruegge

Event-based
Control

Procedural
Control.

Software Engineering WS 2006/2007

Ceniralized vs. Decentralized Designs

 Centralized Design

* One control object or subsystem ("spider") controls
everything

 Pro: Change in the control structure is very easy

 Con: The single control object is a possible
performance bottleneck

e Decentralized Design

 Not a single object is in control, control is distributed;
That means, there is more than one control object

e Con: The responsibility is spread out
* Pro: Fits nicely into object-oriented development

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 41

Centralized vs. Decentralized Designs (2)

 Should you use a centralized or decentralized
design?

« Take the sequence diagrams and control objects
from the analysis model

 Check the participation of the control objects in
the sequence diagrams

« If the sequence diagram looks like a fork =>
Centralized design

» If the sequence diagram looks like a stair =>
Decentralized design.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 42

8. Boundary Conditions

Initialization

 The system is brought from a non-initialized state to
steady-state

Termination

 Resources are cleaned up and other systems are
notified upon termination

Failure
» Possible failures: Bugs, errors, external problems

Good system design foresees fatal failures and
provides mechanisms to deal with them.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 43

Boundary Condition Questions

o Initialization
« What data need to be accessed at startup time?
 What services have to registered?
« What does the user interface do at start up time?

e« Termination
e Are single subsystems allowed to terminate?

* Are subsystems notified if a single subsystem
terminates?

« How are updates communicated to the database?
e Failure

« How does the system behave when a node or
communication link fails?

« How does the system recover from failure?.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

44

Modeling Boundary Conditions

« Boundary conditions are best modeled as use
cases with actors and objects

« We call them boundary use cases or
administrative use cases

o Actor: often the system administrator

e Interesting use cases:
« Start up of a subsystem
o Start up of the full system
 Termination of a subsystem

* Error in a subsystem or component, failure of a
subsystem or component.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

45

Example: Boundary Use Case for ARENA

Let us assume, we identified the subsystem
AdvertisementServer during system design

* This server takes a big load during the holiday
season

 During hardware software mapping we decide to
dedicate a special node for this server

 For this node we define a new boundary use
CaSe€ Manageserver

e ManageServer includes all the functions

necessary to start up and shutdown the
AdvertilisementServer.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 46

ManageServer Boundary Use Case

Server
Administrator

© 2006 Bernd Bruegge

<<include>£::::::>
/’;7

-

- StartServer

-
-

\\\\\\\\\\\ - <<include>
) === === >

ManageServer ™~ _ ShutdownServer
_ N\
<<include>>
ConfigureServer

Software Engineering WS 2006/2007 47

Summary

e System design activities:

« Concurrency identification
Hardware/Software mapping
Persistent data management
Global resource handling
Software control selection
 Boundary conditions

 Each of these activities may affect the
subsystem decomposition

e Two new UML Notations

« UML Component Diagram: Showing compile time and
runtime dependencies between subsystems

« UML Deployment Diagram: Drawing the runtime
configuration of the system

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 48

