
1© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Object Design:
Reuse

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering I
Lecture 11

2© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Object Design

• Purpose of object design:
• Prepare for the implementation of the analysis model

based on system design decisions
• Transform analysis and system design models

• Investigate alternative ways to implement the
analysis model

• Use design goals: minimize execution time, memory
and other measures of cost.

• Object Design serves as the basis of
implementation

System Development as a Set of Activities

Custom objects

Analysis

- System Design

 - Object Design

System Model

Design

Application objects

Solution objects

Existing Machine

Problem

Off-the-Shelf Components

Design means “Closing the Gap”

Example of a Gap:
San Andreas Fault

“Subsystem 1”: Rock material
from the Southern Sierra

Nevada mountains (moving north)

“Subsystem 2”: San Francisco
Bay Area

“Subsystem 3” closing the Gap:
San Andreas Lake

Design means “Closing the Gap”

Solution objects

System Model

Application objects

Custom objects

Off-the-shelf components

System design gap

Object
design gap

Requirements gap

Problem

Machine

Develop-
ment
Gap

“Higher level Virtual
Machine”

6© 2006 Bernd Bruegge Software Engineering WS 2006/2007

One Way to do System Design

• Component-Based Software Engineering
1. Identify the missing components
2. Make a build or buy decision to get the missing

component

• Special Case: COTS-Development
• COTS: Commercial-off-the-Shelf
• Every gap is filled with a commercial-off-the-shelf-

component.
=> Design with standard components

7© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Design with Standard Components is like solving
a Traditional Jigsaw Puzzle

Remaining
puzzle piece

(“component”)

Design Activities:
1. Identify the missing components
2. Make a build or buy decision to get the missing component.

8© 2006 Bernd Bruegge Software Engineering WS 2006/2007

What do we do if we have non-Standard
Components?

Advanced
Jigsaw Puzzles

9© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Adapter Pattern

• Adapter Pattern: Converts the interface of a
component into another interface expected by
the calling component

• Used to provide a new interface to existing
legacy components (Interface engineering,
reengineering)

• Also known as a wrapper
• Two adapter patterns:

• Class adapter:
• Uses multiple inheritance to adapt one interface

to another
• Object adapter:

• Uses single inheritance and delegation.

10© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Apollo 13: “Houston, we’ve had a Problem!”

Service Module (SM)
Command Module (CM):

Living quarters for 3
astronauts during the trip

to and from the moon

Lunar Module (LM):
Living quarters for 2

astronauts on the moon

The LM was designed for 60 hours for 2 astronauts (2 days on the moon)
Could its resources be used for 12 man-days (2 1/2 days until reentry)?

Source: http://www1.jsc.nasa.gov/er/seh/apollo13.pdf

Available Lithium
Hydride in LM:

60 hours for 2
Astronauts

Available Lithium
Hydride (for breathing)

 in CM: “Plenty”
But: only 15 min power left

Needed:
88 hours for 3

Astronauts

Failure!

11© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Apollo 13: “Fitting a square peg in a round
hole”

12© 2006 Bernd Bruegge Software Engineering WS 2006/2007

A Typical Object Design Challenge:
Connecting Incompatible Components

Source: http://www.hq.nasa.gov/office/pao/History/SP-350/ch-13-4.html

Lithium Hydride Canister
 from Command Module System

(square openings)
connected to Lunar Module

System (round openings)
To Lunar Module

Command Module

13© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Adapter Pattern

ClientInterface

Request()

LegacyClass

ExistingRequest()

adaptee

Adapter

Request()

Client

Old System
(“Legacy System”)

New System

Delegation
Inheritance

14© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Adapter for Scrubber in Lunar Module

• Using a carbon monoxide scrubber (round opening)
in the lunar module with square cartridges from the
command module (square opening)

Scrubber

ObtainOxygen()

adaptee

Round_To_Square_Adapter

ObtainOxygen()

Astronaut

Opening: Round

CM_Cartridge

ScrubCarbonMonoxide()

Opening: Square

15© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Outline of Today

• Reuse examples
• Reuse of code, interfaces and existing classes

• Whitebox and Blackbox Reuse
• Object design leads also to new classes
• The use of inheritance
• Implementation vs Specification Inheritance
• Delegation
• Components
• Class Libraries and Frameworks
• Study yourself:

• Documenting the Object Design
• JavaDoc

16© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Reuse of Code

• I have a list, but my customer would like to
have a stack

• The list offers the operations Insert(), Find(), Delete()
• The stack needs the operations Push(), Pop() and

Top()
• Can I reuse the existing list?

• I am an employee in a company that builds cars
with expensive car stereo systems. Can I reuse
the existing car software in a home stero
system?

17© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Reuse of interfaces

• I am an off-shore programmer in Hawaii. I have a
contract to implement an electronic parts catalog
for DaimlerChrysler

• How can I and my contractor be sure that I implement it
correctly?

• I would like to develop a window system for Linux
that behaves the same way as in Windows

• How can I make sure that I follow the conventions for
Windows XP windows and not those of MacOS X?

• I have to develop a new service for cars, that
automatically call a help center when the car is
used the wrong way.

• Can I reuse the help desk software that I developed for a
company in the telecommuniction industry?

18© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Reuse of existing classes

• I have an implementation for a list of elements
vom Typ int

• How can I reuse this list without major effort to
build a list of customers, or a spare parts
catalog or a flight reservation schedule?

• Can I reuse a class “Addressbook”, which I
have developed in another project, as a
subsystem in my commercially obtained
proprietary e-mail program?

• Can I reuse this class also in the billing software of my
dealer management system?

19© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Customization: Build Custom Objects

• Problem: Close the object design gap
• Develop new functionality

• Main goal:
• Reuse knowledge from previous experience
• Reuse functionality already available

• Composition (also called Black Box Reuse)
• New functionality is obtained by aggregation
• The new object with more functionality is an

aggregation of existing objects

• Inheritance (also called White-box Reuse)
• New functionality is obtained by inheritance

20© 2006 Bernd Bruegge Software Engineering WS 2006/2007

White Box and Black Box Reuse

• White box reuse
• Access to the development products (models, system

design, object design, source code) must be available

• Black box reuse
• Access to models and designs is not avaliable, or

models do not exist
• Worst case: Only executables (binary code) are

available
• Better case: A specification of the system interface

is available.

21© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Identification of new Objects during Object
Design

Incident
Report

Requirements Analysis
(Language of Application

Domain)

Object Design
(Language of Solution Domain)

Incident
Report

Text box Menu Scrollbar

22© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Other Reasons for new Objects

• The implementation of algorithms may
necessitate objects to hold values

• New low-level operations may be needed during
the decomposition of high-level operations

• Example: EraseArea() in a drawing program
• Conceptually very simple
• Implementation is complicated:

• Area represented by pixels
• We need a Repair() operation to clean up objects

partially covered by the erased area
• We need a Redraw() operation to draw objects

uncovered by the erasure
• We need a Draw() operation to erase pixels in

background color not covered by other objects.

23© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Why Inheritance?

1. Organization (during analysis):
• Inheritance helps us with the construction of

taxonomies to deal with the application domain
• when talking the customer and application domain

experts we usually find already existing
taxonomies

2. Reuse (during object design):
• Inheritance helps us to reuse models and code to deal

with the solution domain
• when talking to developers

24© 2006 Bernd Bruegge Software Engineering WS 2006/2007

The use of Inheritance

• Inheritance is used to achieve two different goals
• Description of Taxonomies
• Interface Specification

• Description of taxonomies
• Used during requirements analysis
• Activity: identify application domain objects that are

hierarchically related
• Goal: make the analysis model more understandable

• Interface specification
• Used during object design
• Activity: identify the signatures of all identified objects
• Goal: increase reusability, enhance modifiability and

extensibility

25© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Inheritance can be used during Modeling
as well as during Implementation

• Starting Point is always the requirements
analysis phase:

• We start with use cases
• We identify existing objects (“class identification“)
• We investigate the relationship between these objects;

“Identification of associations“:
• general associations
• aggregations
• inheritance associations.

26© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example of Inheritance
Superclass:

drive()
brake()
accelerate()

Car

playMusic()
ejectCD()
resumeMusic()
pauseMusic()

LuxuryCar
Subclass:
public class LuxuryCar extends Car
{
 public void playMusic() {…}
 public void ejectCD() {…}
 public void resumeMusic() {…}
 public void pauseMusic() {…}
}

public class Car {
 public void drive() {…}
 public void brake() {…}
 public void accelerate() {…}
}

27© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Inheritance comes in many Flavors

Inheritance is used in four ways:

• Specialization
• Generalization
• Specification Inheritance
• Implementation Inheritance.

28© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Discovering Inheritance

• To “discover“ inheritance associations, we can
proceed in two ways, which we call
specialization and generalization

• Generalization: the discovery of an inheritance
relationship between two classes, where the sub
class is discovered first.

• Specialization: the discovery of an inheritance
relationship between two classes, where the
super class is discovered first.

29© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Generalization

• First we find the subclass, then the super class
• This type of discovery occurs often in science

Generalization Example: Modeling a
Coffee Machine

totalReceipts
numberOfCups
coffeeMix
collectMoney()
makeChange()
heatWater()
dispenseBeverage()
addSugar()
addCreamer()

CoffeeMachine

VendingMachine
Generalization:
The class CoffeeMachine is
discovered first, then the class
SodaMachine, then the
superclass
VendingMachine

totalReceipts
cansOfBeer
cansOfCola

collectMoney()
makeChange()
chill()
dispenseBeverage()

SodaMachine

31© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Restructuring of Attributes and Operations
is often a Consequence of Generalization

totalReceipts
collectMoney()
makeChange()
dispenseBeverage()

VendingMachine

numberOfCups
coffeeMix
heatWater()
addSugar()
addCreamer()

CoffeeMachine

cansOfBeer
cansOfCola
chill()

SodaMachine

totalReceipts
numberOfCups
coffeeMix
collectMoney()
makeChange()
heatWater()
dispenseBeverage()
addSugar()
addCreamer()

CoffeeMachine

VendingMachine

totalReceipts
cansOfBeer
cansOfCola

collectMoney()
makeChange()
chill()
dispenseBeverage()

SodaMachine

Called Remodeling if done on
the model level;

called Refactoring if done on
the source code level.

32© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Details for the Mid-Term: Alternative 1

• Coverage: Lecture 1 - Lecture 11 (this lecture)

• Alternative 1: Closed book exam
• Duration 9:00 to 10:00 am

• 45 min (15 min extra if you appear at 9am)
• Format: Paper-based, handwritten notes
• Questions about definitions and/or modeling activities from

material covered in lecture 1 to lecture 11.

• Questions in English
• Answers in English or German

33© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Details for the Midterm (2):
Alternative 2: Project exam

• If you cannot take the closed book exam, send a
request to bruegge@in.tum.de (preferred: via a
TUM e-mail) at the latest by Wed 10:30 am

• Subject: SE 1 midterm request, <Your First Name
and Family Name and MatrikelNr>

• You will then get access to a problem statement
in PDF format by 12:00 o’clock

• Tasks: Read the problem statement, describe the steps
for the solution, using everything you learned so far.

• Requirements elicitation, analysis, design and object
design to demonstrate a solution to the problem

• Send e-mail with PDF attachments to
bruegge@in.tum.de by Thursday 12:00 noon
(Timestamp of sender!)

• Subject: SE 1 midterm solution, <Your First Name
and Family Name>

34© 2006 Bernd Bruegge Software Engineering WS 2006/2007

More Details for Alternative 2: Project exam
• You are expected to work alone
• No reuse of solutions from other students
• No cheating, submit your own solution!
• Use any kind of tools you have access to

• Handwritten text, hand-drawings, scetches, UML CASE
tools

• Format for submission:
• One (1) file in PDF format
• If you have more than one document, make sure to

put all the documents together in one file.
• If you need to compress: Use the Zip format.

• If you don’t want to use e-mail:
• Drop your solution (with your first and family name!)

at Room 01.07.52 Secretary Monika Markl. Deadline:
Thursday 12:00 noon.

35© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Specialization 12 13 2006

• Specialization occurs, when we find a subclass
that is very similar to an existing class.

• Example: A theory postulates certain particles and
events which we have to find.

• Specialization can also occur unintentionally:

36© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Which Taxonomy is correct for the Example
in the previous Slide?

 fly()

 Airplane

 drive()

Car

 drive()

Car

fly()

Airplane

37© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Another Example of a Specialization

numberOfCups
coffeeMix
heatWater()
addSugar()
addCreamer()

CoffeeMachine

totalReceipts
collectMoney()
makeChange()
dispenseBeverage()

VendingMaschine

cansOfBeer
cansOfCola
chill()

SodaMachine

bagsofChips
numberOfCandyBars
dispenseSnack()

CandyMachine

CandyMachine is a new
product and designed as a sub
class of the superclass
VendingMachine

A change of names might now
be useful: dispenseItem()
instead of

dispenseBeverage()
and
dispenseSnack()

38© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example of a Specialization (2)

numberOfCups
coffeeMix
heatWater()
addSugar()
addCreamer()
dispenseItem()

CoffeeMachine

totalReceipts
collectMoney()
makeChange()
dispenseItem()

VendingMaschine

cansOfBeer
cansOfCola
chill()
dispenseItem()

SodaMachine

bagsofChips
numberOfCandyBars
dispenseItem()

CandyMachine

39© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Meta-Model for Inheritance

Inheritance

Specification

Inheritance

Implementation

Inheritance

Inheritance
for ReuseTaxonomy

Inheritance
detected by

generalization

Inheritance
detected by

specialization

Analysis
activity

Object
Design

40© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Implementation Inheritance and
Specification Inheritance

• Implementation inheritance
• Also called class inheritance
• Goal:

• Extend an applications’ functionality by reusing
functionality from the super class

• Inherit from an existing class with some or all
operations already implemented

• Specification Inheritance
• Also called subtyping
• Goal:

• Inherit from a specification
• The specification is an abstract class with all

operations specified, but not yet implemented.

 Problem with implementation inheritance:
• The inherited operations might exhibit unwanted behavior.
• Example: What happens if the Stack user calls Remove()

instead of Pop()?

Example:
 • I have a List class, I need a

Stack class
 • How about subclassing the

Stack class from the List
class and implementing
Push(), Pop(), Top() with
Add() and Remove()?

Add()
Remove()

List

Push()
Pop()

Stack

Top()

“Already
 implemented”

Example for Implementation Inheritance

• A very similar class is already implemented that
does almost the same as the desired class
implementation

42© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Better Code Reuse: Delegation

• Implementation-Inheritance: Using the
implementation of super class operations

• Delegation: Catching an operation and sending it
to another object that implements the operation

+Add()
+Remove()

List

Stack

+Push()
+Pop()
+Top()

+Push()
+Pop()
+Top()

Stack

Add()
Remove()

List

43© 2006 Bernd Bruegge Software Engineering WS 2006/2007

delegates to Client Receiver Delegate
calls

Delegation

• Delegation is a way of making composition as
powerful for reuse as inheritance

• In delegation two objects are involved in
handling a request from a Client

•The Receiver object delegates operations to
the Delegate object
•The Receiver object makes sure, that the
Client does not misuse the Delegate object.

44© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Comparison: Delegation v. Inheritance

• Code-Reuse can be done by delegation as well
as inheritance

• Delegation
• Flexibility: Any object can be replaced at run time by

another one
• Inefficiency: Objects are encapsulated

• Inheritance
• Straightforward to use
• Supported by many programming languages
• Easy to implement new functionality
• Exposes a subclass to details of its super class
• Change in the parent class requires recompilation of

the subclass.

45© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Implementation Inheritance v.
Specification Inheritance

• Implementation Inheritance: The combination of
inheritance and implementation

• The Interface of the superclass is completely inherited
• Implementations of methods in the superclass

("Reference implementations") are inherited by any
subclass

• Specification Inheritance: The combination of
inheritance and specification

• The Interface of the superclass is completely inherited
• Implementations of the superclass (if there are any)

are not inherited.

46© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Object
Design

Mapping
Models to

 Code

Object Design Activities

1. Reuse: Identification of existing solutions
• Use of inheritance
• Off-the-shelf components and

additional solution objects
• Design patterns

2. Interface specification
• Describes precisely each class interface

3. Object model restructuring
• Transforms the object design model to

improve its understandability and extensibility

4. Object model optimization
• Transforms the object design model to address

performance criteria such as response
time or memory utilization.

47© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Additional Readings

48© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Summary

• Object design closes the gap between the
requirements and the machine.

• Object design adds details to the requirements
analysis and makes implementation decisions

• Object design activities include:
• Identification of Reuse
• Identification of interface and implementation

inheritance
• Identification of opportunities for delegation

49© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example and Additional Slides

50© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Another Example for Inheritance

Device
- int serialNnr

+void setSerialNr(int n)

Valve
-Position s
+void on()

Motor

-RPM d

+void init()

Model:
Java Code:
class Device {
 private int serialNr;
 public void setSerialNr(int n) {
 serialNr = n;
 }
}

class Valve extends Device {
 private Position s;
 public void on() {
 ….;
 }
}
class Motor extends Device {
 private RPM d;
 public void init () {
 …;
 }
}

51© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Another Example (Customization)
Model: Java Code:

class Link {
Link next;

 public void setNext(Link n) {
 next = n;
 }
}

Data

int data

+void setData(int n)
+ int getData()

Link

+void setNext(Link n)

next

Data extends Link with a new field data and two new
methods setData() and getData(, which can be called
on objects of Typ Data.

…..
Link l = new Data();
l.setData(5000);
…..

class Data extends Link {
 int data;
 public void setData(int d) {
 data = d;
 }
}

52© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Modeling of the Real World

• Modeling of the real world leads to a system that
reflects today’s realities but not necessarily
tomorrow’s.

• There is a need for reusable and flexible designs

• Design knowledge complements application
domain knowledge and solution domain
knowledge.

53© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Types of Whitebox Reuse

1. Implementation inheritance
• Reuse of Implementations

2. Specification Inheritance
• Reuse of Interfaces

• Programming concepts to achieve reuse
Inheritance
• Delegation
• Abstract classes and Method Overriding
• Interfaces

54© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Application v. Solution Domain Objects

• Application domain objects represent concepts
of the problem domain that are relevant to the
system.

• They are identified by the application domain
specialists and by the end users.

• Solution domain objects represent concepts that
do not have a counterpart in the application
domain,

• They are identified by the developers

55© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Reuse Concepts

• Main goal:
• Reuse knowledge from previous experience
• Reuse of already available functionality

• Customization
• Application objects versus solution objects
• Specification inheritance and implementation

inheritance
• Delegation
• The Liskov substitution principle
• Delegation and inheritance in design patterns
• Selecting design patterns and components

56© 2006 Bernd Bruegge Software Engineering WS 2006/2007

A Little Bit of Terminology: Activities

Object-oriented software
engineering (OOSE):

• System Design
• Decomposition into

subsystems
• Object Design

• Implementation
language chosen

• Data structures and
algorithms chosen

Structured analysis/structured
design (SA/SD):

• Preliminary Design
• Decomposition into

subsystems
• Data structures are chosen

• Detailed Design
• Algorithms are chosen
• Data structures are refined
• Implementation language is

chosen
• Typically in parallel with

preliminary design, not a
separate activity

57© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Detailed View of Object Design Activities
(ctd)

Collapsing classes

Restructuring Optimization

Revisiting
inheritance

Optimizing access
paths

Caching complex
computations

Delaying complex
computations

Check Use Cases

Realizing associations

58© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Typical of Object Design Activities

• Identification of existing components
• Full definition of associations
• Full definition of classes

• System Design => Service, Object Design => API

• Specifying contracts for each component
• Choosing algorithms and data structures
• Identifying possibilities of reuse
• Detection of solution-domain classes
• Optimization
• Increase of inheritance
• Decision on control
• Packaging

59© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example: Framework for Building Web
Applications

WebBrowser

RelationalDatabase

StaticHTML

WOAdaptor
WebServer

WoRequest Template

WebObjectsApplication

WORequest

EOF

WebObjects

60© 2006 Bernd Bruegge Software Engineering WS 2006/2007

JavaDoc

• Add documentation comments to the source
code.

• A doc comment consists of characters between
/** and */

• Doc comments may include HTML tags
• Example of a doc comment:

/**
* This is a doc comment
*/

61© 2006 Bernd Bruegge Software Engineering WS 2006/2007

More on JavaDoc

• Doc comments are only recognized when placed
immediately before class, interface, constructor,
method or field declarations.

• Class and Interface Doc Tags
• Constructor and Method Doc Tags

62© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Class and Interface Doc Tags
@author name-text

• Creates an “Author” entry.

@version version-text
• Creates a “Version” entry.

@see classname
• Creates a hyperlink “See Also classname”

@since since-text
• Adds a “Since” entry. Usually used to specify that a

feature or change since a certain release number

• @deprecated deprecated-text
• Adds a comment that this method can no longer be used.

Convention is to describe the replacing method
• Example: @deprecated Replaced by setBounds(int,

int, int, int).

63© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Constructor and Method Doc Tags
Can contain @see tag, @since tag, @deprecated as

well as:

@param parameter-name description
Adds a parameter to the "Parameters" section.

@return description
A description of the return value.

@exception fully-qualified-class-name description
Name of the exception that may be thrown by the method.

@see classname
Adds a hyperlink "See Also" entry to the method.

64© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example of a Class Doc Comment
/**
 * A class representing a window on the screen.
 * For example:
 * <pre>
 * Window win = new Window(parent);
 * win.show();
 * </pre>
 *
 * @author Sami Shaio
 * @version %I%, %G%
 * @see java.awt.BaseWindow
 * @see java.awt.Button
 */
class Window extends BaseWindow {
 ...
}

65© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example of a Method Doc Comment
/**
 * Returns the character at the specified index. Index ranges
 * from <code>0</code> to <code>length() - 1</code>.
 *
 * @param index the index of the desired character.
 * @return the desired character.
 * @exception StringIndexOutOfRangeException
 * if the index is not in the range <code>0</code>
 * to <code>length()-1</code>.
 * @see java.lang.Character#charValue()
 */
 public char charAt(int index) {
 ...
 }

66© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example of a Field Doc Comment

A field comment can contain only the @see,
@since and @deprecated tags

 /**
 * The X-coordinate of the window.
 *
 * @see window#1
 */
 int x = 1263732;

67© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example: Specifying a Service in Java

/** Office is a physical structure in a building. It is
possible to create an instance of an office; add
an occupant; get the name of occupants */

public class Office {
/** Adds an occupant to the office
@param NAME name is a nonempty string
*/
public void AddOccupant(string name);
/** @Return Returns the name of the office.

Requires, that Office has been initialized with a
name

*/
public string GetName();

....

}

68© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Package it all up

• Construct physical modules
• Ideally use one package for each subsystem

• Two design principles for packaging
• Minimize coupling:

• Classes in client-supplier relationships are usually
loosely coupled

• Large number of parameters in some methods
mean strong coupling (> 4-5)

• Maximize cohesion:
• Classes closely connected by associations => same

package

69© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Packaging Heuristics

• Each subsystem service is made available by one
or more interface objects within the package

• Start with one interface object for each subsystem
service

• Try to limit the number of interface operations (7+-2)

• If the service has too many operations, reconsider
the number of interface objects

• If you have too many interface objects, reconsider
the number of subsystems

70© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Object Design
Activities

Specifying constraints

Specifying types &
signatures

Identifying patterns

Adjusting patterns

Identifying missing
attributes & operations

Specifying visibility

Specification

Specifying exceptions

Reuse

Identifying components

Adjusting components

Select Subsystem

71© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Customization Projects are like Advanced Jigsaw
Puzzles

http://www.puzzlehouse.com/_

