
1© 2005 Bernd Brügge Software Engineering WS 2005-6

System Testing

Bernd Bruegge, Ph.D.
Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering 1
Lecture 16

2© 2005 Bernd Brügge Software Engineering WS 2005-6

Remaining Lecture and Exercise Schedule

• Jan 24 (Today), HS 1
• System Testing, Software Lifecycle

• Jan 30 - Jan 31, HS 1
• Software Lifecycle II, Methodologies

• Feb 6 - Feb 7, HS 1
• NEW: How to Present and Review a Software System

• Heuristics and Suggestions
• Methodologies II

• Feb 8, 16:30-18:00 Room 00.08.038
• Miniproject presentations, Part 1

• Feb 9, 16:30-18:00 Room 00.08.038
• Miniproject presentations, Part 2

3© 2005 Bernd Brügge Software Engineering WS 2005-6

Overview

• JUnit testing framework
• Integration testing

• Big bang
• Bottom up
• Top down
• Sandwich

• System testing
• Functional
• Performance

• Acceptance testing
• Summary

4© 2005 Bernd Brügge Software Engineering WS 2005-6

JUnit: Overview

• A Java framework for writing and running unit
tests

• Test cases and fixtures
• Test suites
• Test runner

• Written by Kent Beck and Erich Gamma
• Written with “test first” and pattern-based

development in mind
• Tests written before code
• Allows for regression testing
• Facilitates refactoring

• JUnit is Open Source
• www.junit.org
• JUnit Version 4, released Mar 2006

5© 2005 Bernd Brügge Software Engineering WS 2005-6

*

JUnit Classes

Test

run(TestResult)

ConcreteTestCase

setUp()
tearDown()
runTest()

TestResult

TestCase

run(TestResult)
setUp()
tearDown()

testName:String

runTest()

TestSuite

run(TestResult)
addTest()

UnitToBeTested

Methods under Test

6© 2005 Bernd Brügge Software Engineering WS 2005-6

An example: Testing MyList

• Unit to be tested
• MyList

• Methods under test
• add()
• remove()
• contains()
• size()

• Concrete Test case
• MyListTestCase

Test

run(TestResult)

MyListTestCase

setUp()
tearDown()
runTest()
testAdd()
testRemove()

TestResult

TestCase

run(TestResult)
setUp()
tearDown()

testName:String

runTest()

TestSuite

run(TestResult)
addTest()

MyList

add()
remove()
contains()
size()

*

8© 2005 Bernd Brügge Software Engineering WS 2005-6

Writing TestCases in JUnit
public class MyListTestCase extends TestCase {

public MyListTestCase(String name) {
super(name);

}
public void testAdd() {
 // Set up the test

List aList = new MyList();
String anElement = “a string”;

 // Perform the test
aList.add(anElement);

 // Check if test succeeded
assertTrue(aList.size() == 1);
assertTrue(aList.contains(anElement));

}
protected void runTest() {

testAdd();
}
}

Test

run(TestResult)

MyListTestCase

setUp()
tearDown()
runTest()
testAdd()
testRemove()

TestResult

TestCase

run(TestResult)
setUp()
tearDown()

testName:String

runTest()

TestSuite

run(TestResult)
addTest()

MyList

add()
remove()
contains()
size()

*

9© 2005 Bernd Brügge Software Engineering WS 2005-6

Writing Fixtures and Test Cases

public class MyListTestCase extends TestCase {
// …
private MyList aList;
private String anElement;
public void setUp() {

aList = new MyList();
anElement = “a string”;

}

public void testAdd() {
aList.add(anElement);
assertTrue(aList.size() == 1);
assertTrue(aList.contains(anElement));

}

public void testRemove() {
aList.add(anElement);
aList.remove(anElement);
assertTrue(aList.size() == 0);
assertFalse(aList.contains(anElement));

}

Test Fixture

Test Case

Test Case

10© 2005 Bernd Brügge Software Engineering WS 2005-6

Collecting TestCases into TestSuites

public static Test suite() {
TestSuite suite = new TestSuite();
suite.addTest(new MyListTest(“testAdd”));
suite.addTest(new MyListTest(“testRemove”));
return suite;

}

Test

run(TestResult)

TestCase

run(TestResult)
setUp()
tearDown()

testName:String

runTest()

TestSuite

run(TestResult)
addTest()

Composite Pattern!

*

11© 2005 Bernd Brügge Software Engineering WS 2005-6

Design patterns in JUnit

Test

run(TestResult)

ConcreteTestCase

setUp()
tearDown()
runTest()

TestResult

TestCase

run(TestResult)
setUp()
tearDown()

testName:String

runTest()

TestSuite

run(TestResult)
addTest()

Command Pattern

Composite
Pattern

Adapter
Pattern

Template Method
Pattern

TestedUnit

*

12© 2005 Bernd Brügge Software Engineering WS 2005-6

Design patterns in JUnit

Test

run(TestResult)

ConcreteTestCase

setUp()
tearDown()
runTest()

TestResult

TestCase

run(TestResult)
setUp()
tearDown()

testName:String

runTest()

TestSuite

run(TestResult)
addTest()

Command Pattern

Composite
Pattern

Adapter
Pattern

Template Method
Pattern

TestedUnit

*

13© 2005 Bernd Brügge Software Engineering WS 2005-6

Other JUnit features

• Textual and GUI interface
• Displays status of tests
• Displays stack trace when tests fail

• Integrated with Maven and Continuous Integration
• maven.apache.org

• Build and Release Management Tool
• Maven.apache.org/continuum

• Continous integration server for Java programs
• All tests are run before release (regression tests)
• Test results are advertised as a project report

• Many specialized variants
• Unit testing of web applications
• J2EE applications

14© 2005 Bernd Brügge Software Engineering WS 2005-6

Integration Testing

• The entire system is viewed as a collection of
subsystems (sets of classes) determined during
the system and object design

• The order in which the subsystems are selected
for testing and integration determines the
testing strategy

• Big bang integration (Nonincremental)
• Bottom up integration
• Top down integration
• Sandwich testing
• Variations of the above.

15© 2005 Bernd Brügge Software Engineering WS 2005-6

Example: A 3-Layer-Design

A

B C D

GFE

Layer I

Layer II

Layer III

16© 2005 Bernd Brügge Software Engineering WS 2005-6

Integration Testing: Big-Bang Approach

Unit Test
F

Unit Test
E

Unit Test
D

Unit Test
C

Unit Test
B

Unit Test
A

Integration Test

17© 2005 Bernd Brügge Software Engineering WS 2005-6

Bottom-up Testing Strategy

• The subsystem in the lowest layer of the call
hierarchy are tested individually

• Then the next subsystems are tested that call the
previously tested subsystems

• This is repeated until all subsystems are included
• Special program needed for testing(“Test Driver”):

A routine that calls a subsystem and passes a test
case to it

Match Driver
(simulates MatchPanel)

Match
Interface

Match
 Implementation

Real Match

18© 2005 Bernd Brügge Software Engineering WS 2005-6

Bottom-up Integration A

B C D

GFE

Layer I

Layer II

Layer III

Test F

Test E

Test G

Test C

Test D,G

Test B, E, F

Test
A, B, C, D,

E, F, G

19© 2005 Bernd Brügge Software Engineering WS 2005-6

Pros and Cons of Bottom-Up Integration
Testing

• Con:
• Tests the most important subsystem (user interface)

last

• Pro:
• Useful for integration testing of the following systems

• Object-oriented systems
• Real-time systems
• Systems with strict performance requirements.

20© 2005 Bernd Brügge Software Engineering WS 2005-6

Top-down Testing Strategy

• Test the top layer or the controlling subsystem
first

• Then combine all the subsystems that are called
by the tested subsystems and test the resulting
collection of subsystems

• Do this until all subsystems are incorporated
into the test

• Special program is needed to do the testing,
(“Test stub”):

• A program or a method that simulates the activity of a
missing subsystem by answering to the calling
sequence of the calling subsystem and returning back
fake data.

21© 2005 Bernd Brügge Software Engineering WS 2005-6

Top-down Integration Testing
A

B C D

GFE

Layer I

Layer II

Layer III

Test A

Layer I

Test A, B, C, D

Layer I + II

Test
A, B, C, D,

E, F, G

All Layers

22© 2005 Bernd Brügge Software Engineering WS 2005-6

Pros and Cons of Top-down Integration
Testing

Pro
• Test cases can be defined in terms of the

functionality of the system (functional
requirements)

Cons
• Writing stubs is difficult: Stubs must allow all

possible conditions to be tested.
• Large number of stubs may be required,

especially if the lowest level of the system
contains many methods.

23© 2005 Bernd Brügge Software Engineering WS 2005-6

Sandwich Testing Strategy

• Combines top-down strategy with bottom-up
strategy

• The system is view as having three layers
• A target layer in the middle
• A layer above the target
• A layer below the target

• Testing converges at the target layer

24© 2005 Bernd Brügge Software Engineering WS 2005-6

Sandwich Testing Strategy
A

B C D

GFE

Layer I

Layer II

Layer IIITest E

Test D,G

Test B, E, F
Test F

Test G

Test A

Bottom
Layer
Tests

Top
Layer
Tests

Test A,B,C, D

Test
A, B, C, D,

E, F, G

25© 2005 Bernd Brügge Software Engineering WS 2005-6

Pros and Cons of Sandwich Testing

• Top and Bottom Layer Tests can be done in
parallel

• Problem: Does not test the individual
subsystems thoroughly before integration

• Solution: Modified sandwich testing strategy

26© 2005 Bernd Brügge Software Engineering WS 2005-6

Modified Sandwich Testing Strategy

• Test in parallel:
• Middle layer with drivers and stubs
• Top layer with stubs
• Bottom layer with drivers

• Test in parallel:
• Top layer accessing middle layer (top layer

replaces drivers)
• Bottom accessed by middle layer (bottom

layer replaces stubs).

27© 2005 Bernd Brügge Software Engineering WS 2005-6

Modified Sandwich Testing Strategy
A

B C D

GFE

Layer I

Layer II

Layer III

Test F

Test E

Test B

Test G

Test D

Test A

Test C

Test B, E, F

Triple
Test ITriple

Test I

Test D,G

Double
Test II

Double
Test II

Double
Test I

Double
Test I

Test A,C

Test
A, B, C, D,

E, F, G

28© 2005 Bernd Brügge Software Engineering WS 2005-6

Scheduling Sandwich Tests 1 23 2007

Unit Tests Double Tests Triple Tests SystemTests

29© 2005 Bernd Brügge Software Engineering WS 2005-6

Steps in Integration Testing

.

1. Based on the integration
strategy, select a
component to be tested.
Unit test all the classes in
the component.

2. Put selected component
together; do any
preliminary fix-up
necessary to make the
integration test operational
(drivers, stubs)

3. Do functional testing:
Define test cases that
exercise all uses cases with
the selected component

4. Do structural testing: Define
test cases that exercise the
selected component

5. Execute performance tests
6. Keep records of the test

cases and testing activities.
7. Repeat steps 1 to 7 until

the full system is tested.

The primary goal of integration
testing is to identify errors in
the (current) component
configuration.

30© 2005 Bernd Brügge Software Engineering WS 2005-6

Which Integration Strategy should you use?

• Factors to consider
• Amount of test overhead

(stubs &drivers)
• Location of critical parts

in the system
• Availability of hardware
• Availability of

components
• Scheduling concerns

• Bottom up approach
• Good for object-oriented

design methodologies
• Test driver interfaces

must match component
interfaces

• ...

• ...Top-level components
are usually important and
cannot be neglected up to
the end of testing

• Detection of design errors
postponed until end of
testing

• Top down approach
• Test cases can be defined

in terms of functions
examined

• Need to maintain
correctness of test stubs

• Writing stubs can be
difficult

31© 2005 Bernd Brügge Software Engineering WS 2005-6

Using the Bridge design pattern to enable
early integration testing

• Use the bridge pattern to provide multiple
implementations under the same interface.

• Interface to a component that is incomplete, not
yet known or unavailable during testing

MatchPanel Match Interface Match Implementation

Real MatchStub

32© 2005 Bernd Brügge Software Engineering WS 2005-6

System Testing 1 17 2006

• Impact of requirements on system testing:
• Quality of use cases determines the ease of functional

testing
• Quality of subsystem decomposition determines the ease of

structure testing
• Quality of nonfunctional requirements and constraints

determines the ease of performance tests

• Functional Testing
• Structure Testing
• Performance Testing
• Acceptance Testing
• Installation Testing

33© 2005 Bernd Brügge Software Engineering WS 2005-6

.

.

Functional Testing

Goal: Test functionality of system
• Test cases are designed from the requirements

analysis document (better: user manual) and
centered around requirements and key functions
(use cases)

• The system is treated as black box.
• Unit test cases can be reused, but new test

cases have to be developed as well.

34© 2005 Bernd Brügge Software Engineering WS 2005-6

Structure Testing

Goal: Cover all paths in the system design
• Exercise all input and output parameters of each

component.
• Exercise all components and all calls (each

component is called at least once and every
component is called by all possible callers.)

• Use conditional and iteration testing as in unit
testing.

35© 2005 Bernd Brügge Software Engineering WS 2005-6

Performance Testing

Goal: Try to break the subsystems
• Test how the system behaves when overloaded.

• Can bottlenecks be identified? (First candidates for
redesign in the next iteration)

• Try unusual orders of execution
• Call a receive() before send()

• Check the system’s response to large volumes of
data

• If the system is supposed to handle 1000 items, try it
with 1001 items.

• What is the amount of time spent in different
use cases?

• Are typical cases executed in a timely fashion?

36© 2005 Bernd Brügge Software Engineering WS 2005-6

Types of Performance Testing

• Stress Testing
• Stress limits of system

• Volume testing
• Test what happens if large

amounts of data are handled

• Configuration testing
• Test the various software and

hardware configurations

• Compatibility test
• Test backward compatibility

with existing systems

• Timing testing
• Evaluate response times and

time to perform a function

• Security testing
• Try to violate security

requirements

• Environmental test
• Test tolerances for heat,

humidity, motion

• Quality testing
• Test reliability, maintain-

ability & availability

• Recovery testing
• Test system’s response to

presence of errors or loss
of data.

• Human factors testing
• Test with end users

37© 2005 Bernd Brügge Software Engineering WS 2005-6

Acceptance Testing

• Goal: Demonstrate system is
ready for operational use

• Choice of tests is made by
client

• Many tests can be taken
from integration testing

• Acceptance test is
performed by the client, not
by the developer.

• Alpha test:
• Sponsor uses the software

at the developer’s site.
• Software used in a

controlled setting, with
the developer always
ready to fix bugs.

• Beta test:
• Conducted at sponsor’s

site (developer is not
present)

• Software gets a realistic
workout in target environ-
ment

38© 2005 Bernd Brügge Software Engineering WS 2005-6

Testing has its own Life Cycle

Establish the test objectives

Design the test cases

Write the test cases

Test the test cases

Execute the tests

Evaluate the test results

Change the system

Do regression testing

39© 2005 Bernd Brügge Software Engineering WS 2005-6

Test Team

Test

Analyst

TeamUser

Programmer
too familiar
with code

Professional
Tester

Configuration
Management

Specialist

System
Designer

40© 2005 Bernd Brügge Software Engineering WS 2005-6

Summary

• Testing is still a black art, but many rules and
heuristics are available

• Testing consists of
• Unit testing
• Integration testing
• System testing
• Acceptance testing

• Design patterns can be used for integration
testing

• Testing has its own lifecycle

41© 2005 Bernd Brügge Software Engineering WS 2005-6

Announcement: LS 1 Seminars in SS 2007
Applied Software Engineering, Prof. B. Bruegge, Ph.D
• Offshore Software Testing

• http://wwwbruegge.in.tum.de/static/contribute/Lehrstuhl/Offshore
SoftwareTestingSoSe07.htm

• Knowledge Management in Software Engineering  
• http://wwwbruegge.in.tum.de.de/twiki/bin/view/Lehrstuhl/KMinSE

SoSe2007

• Product Line Requirements Engineering
• http://wwwbruegge.in.tum.de/twiki/bin/view/Lehrstuhl/ProductLin

es  
• Agile Project Management  

• http://wwwbruegge.in.tum.de/twiki/bin/view/Lehrstuhl/Agil
ePMSoSe2007

• Applications are still possible!

42© 2005 Bernd Brügge Software Engineering WS 2005-6

Additional Reading

• JUnit Website www.junit.org/index.htm
• J. Thomas, M. Young, K. Brown, A. Glover, Java

Testing Patterns, Wiley, 2004
• D. Saff and M. D. Ernst, An experimental evaluation

of continuous testing during development Int.
Symposium on Software Testing and Analysis, Boston
July 12-14, 2004, pp. 76-85

• A controlled experiment shows that developers using
continuous testing were three times more likely to complete the
task before the deadline than those without.

