Intfroduction

Software Engineering I
WS 2006/2007

Prof. Bernd Bruegge, Ph.D.
Applied Software Engineering
Technische Universitaet Muenchen

Intended avdience

 Informatik Diplom students (“alte
Prafungsordnung”)

 Informatik Bachelor students (“alte
Prafungsordnung”)

« Computational science and engineering (CSE)
students

o Students taking Informatik as a minor
(“Nebenfach”)

© 2006 Bernd Bruegge Software Engineering I WS 2006-07

This lecture is not intended for

Bachelor students (“neue Prifungsordnung”)
Master student (“neue Prufungsordnung”)
Students with "Wahlfach Software Engineering”

If you belong to any of these groups, you must take
» Software Engineering I: Softwaretechnik by Prof. Broy
« wwwbroy.in.tum.de/lehre/vorlesungen/sw_technik/WS0607

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 3

Objectives of the Class

Appreciate Software Engineering:

» Build complex software systems in the context of
frequent change

Understand how to
« produce a high quality software system within time
« while dealing with complexity and change

Acquire technical knowledge
Acquire basic managerial knowledge

© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Assumptions for this Class

e Assumption:
* You are proficient in a programming language,

* You have no experience in the analysis or design of a
system

 You want to learn more about the technical and
managerial aspects of the development of complex
software systems

e Beneficial:

* You have had practical experience with a large
software system

* You have already participated in a large software
project

* You have experienced major problems

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 5

Times, Locations and Credits

« Main lecture: MI HS 1, 00.02.001
 Tuesdays 12:15-13:45
« Wednesdays 9:15-10:00
e Exercises: Miniproject
* Scheduled for January
e Written Exams:
e Mid-term: Dec 20, 2006, Wednesday 9:00-10:30

e Location to be announced
 Final: Time and Location to be announced

© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Grading and Credits: Bachelor Students

o Exercises: 20 %
e Mini-Project
Mid-term: 30 %
Final: 50 %

Area: Informatics
Hours per week: 3 lectures + 2 exercises
ECTS Credits: 6

© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Acquire Technical Knowledge

Understand system modeling

Learn a modeling notation (Unified Modeling
Language UML)

Learn different modeling methods
Learn how to use Tools

Testing

Model-based software development

© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Acquire Basic Managerial Knowledge

o Software Project Management
o Software Lifecycle

e Rationale Management

e Configuration Management
 Methodologies

 Expansion on these topics:
* Course Software Engineering II in the Summer

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 9

Outline of Today’s Lecture

High quality software: State of the art
Modeling complex systems
Dealing with change

Concepts

« Abstraction
e Modeling

* Hierarchy

Organizational issues
» Lecture schedule
« Exercise schedule
« Associated Project

© 2006 Bernd Bruegge Software Engineering I WS 2006-07

10

Software Production has Poor Track
Record

Example: Space Shuttle Software

Cost: $10 Billion, millions of dollars more than
planned

Time: 3 years late

Quality: First launch of Columbia was cancelled

* Synchronization problem with the Shuttle's 5 onboard
computers.

Substantial errors still exist

» Astronauts are supplied with a book of known software
problems "Program Notes and Waivers".

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 11

Limitations of Non-engineered

Software

4 N

Requirements

- /

© 2006 Bernd Bruegge

N

Software Engineering I WS 2006-07

Software

12

Limitations of Non-engineered
Software

4 N
Requirements
o /

N

<>

~
s,

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 13

Can you develop this system?

The impossible
Fork

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 14

Physical Model of the
impossible Fork (Shigeo Fukuda)

Source http://neuro.caltech.edu/~seckel/mod/movies/fukuda/DisappearingColumn.mov
© 2006 Bernd Bruegge Software Engineering I WS 2006-07 15

Physical Model of the
impossible Fork (Shigeo Fukuda)

Source http://neuro.caltech.edu/~seckel/mod/movies/fukuda/DisappearingColumn.mov
© 2006 Bernd Bruegge Software Engineering I WS 2006-07 16

Why are software systems complex?

The problem domain is difficult

The development process is very difficult to
manage

Software offers extreme flexibility

Software is a discrete system
* Continuous systems have no hidden surprises (Parnas)
« Discrete systems can have hidden surprises!

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 17

Software Engineering is more than
writing Code

Problem solving
e Creating a solution
 Engineering a system based on the solution

Modeling
Knowledge acquisition
Rationale management

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 18

Techniques, Methodologies and Tools

« Techniques:

 Formal procedures for producing results
using some well-defined notation

« Methodologies:

* Collection of techniques applied across
software development and unified by a
philosophical approach

e Tools:

« Instruments or automated systems to
accomplish a technique

« CASE = Computer Aided Software
Engineering

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 19

Computer Science vs
SoftwareEngineering

e Computer Scientist

« Assumes techniques and tools have to be
developed.

* Proves theorems about algorithms, designs
languages, defines knowledge
representation schemes

 Has infinite time...

© 2006 Bernd Bruegge Software Engineering I WS 2006-07

20

Computer Science vs Software
Engineering (cont’'d)

 Engineer

* Develops a solution for a problem in an
application domain for a client

« Uses computers & languages, techniques and
tools

o Software Engineer
 Works in multiple application domains

 Has only 3 months...

 ...while changes occurs in requirements and
available technology

© 2006 Bernd Bruegge Software Engineering I WS 2006-07

21

Software Engineering: A Working
Definition

Software Engineering is a collection of techniques,
methodologies and tools that help with the
production of

a high quality software system
with a given budget

before a given deadline

while change occurs

Challenge: Dealing with complexity and
change

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 22 20

Software Engineering:
A Problem Solving Activity

 Analysis:

* Understand the nature of the problem and break the
problem into pieces

 Synthesis:
« Put the pieces together into a large structure

For problem solving we use techniques,
methodologies and tools

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 23

Course Outline

Dealing with Complexity Dealing with Change

 Modeling . Rationale
« UML Notation Management
. Requirements e Configuration
Elicitation Management
« Requirements Analysis - Software Project
Management

e System Design
* Detailed Design

 Implementation &
Testing

» Software Life Cycle
 Methodologies

Application of these Concepts: Project

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 24

Lecture Outline

Introduction:
1. Introduction
2. Basic UML Notations
3. Advanced UML Notations

Project Management:
4. Organization
5. Project Communication
Requirements Analysis:
6. Requirements Elicitation
7. Functional Modeling
8. Object Modeling
9. Dynamic Modeling

© 2006 Bernd Bruegge Software Engineering I WS 2006-07

25

Lecture Outline (cont’d)

System Design:

10.
11.
12.

Design Goals & System Decomposition
Architectural Styles
Addressing Design Goals

Object Design:

13.
14.
15.
16.
17.

Reuse

Basic Design Patterns

Advanced Design Patterns
Object Constraint Language OCL
Interface Specification

Implementation:

18.
19.

Mapping Object Models to Java Code
Mapping Object Models to Relational Schema

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 [¥]

26

Lecture Outline (cont’d)

Testing:
e 20. Unit Testing
« 21. System and Usability Testing

Configuration Management:
e 22. Basic Concepts
« 23. Configuration Management Tools
e 24. Build Management

Software Lifecycle
« 25. Software Lifecycle Modeling

© 2006 Bernd Bruegge Software Engineering I WS 2006-07

27

Tentative Lecture Schedule [Subiectto Change

Tuesdays 12:15-13:45 Wednesday 9:15-10:00
v Oct 24: Introduction e Oct 25: Introduction ctd

e Oct 31: Modeling with UML Nov 1: Holiday (Allerheiligen)

e Nov 7: Project Organization & Nov 8: Requirements
Communication Elicitation

 Nov 14: Functional Modeling Nov 15: Object Modeling
e Nov 21: Dynamic Modeling Nov 22: Design Goals
e Nov 28: Architectural Styles Nov 29: Addressing Design

« Nov 30: Reuse Goals
e Dec5: No |ecture e Dec 6: No IeCture
. Dec 12: Design Patterns Dec 13: Interface Specification
« Dec 19: Object Constraint « Dec 20: Mid-term
Language

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 28

Lecture Plan for Januvary/February 2007

Tuesdays 13:15-14:15 Wednesday 9:15-10:00

Jan 9: Unit Testing Jan 10: Integration Testing
Jan 16: System Testing Jan 17: Build Management
Jan 23: Configuration « Jan 24: Software lifecycle
Management « Jan 31: Guest lecture

January 30: Software Lifecycle, gap g: Miniproject

Feb 7: Miniproject Presentations II
Presentations

Final Exam: To be announced

Tools: Subversion
(Configuration Management),
Maven (Web-Site Generation),
Ant, Cruise-Control (Build
Management()

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 29

Case Study: ARENA

e This project will be used in the lectures to

illustrate software engineering concepts and
artifacts

 ARENA specific models and documents will be
made available incrementally during the course

e ARENA's source code is available
e http://sysiphus.in.tum.de/arena

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 30

eno ARENA - ARENA

[4 b] [(v] [+] €3 http://sysiphus.in.tum.de/arena/ [Q~ Google

[0 Mac NTU Gemeinde Feldafing LEO Apple Web Cam Page iChat AV 3.0 Tutorial Chinar's mus...: July 2004 Web Cam Gallery Page MapMemo

TlITI Applied Software Engineering

Last published: 24 February 2005 | Doc for 0.9 2

Getting Started

Downloading ARENA ARENA

Starting ARENA

Developing a New Game
Documents

» Problem Statement About ARENA

» Requirements Analysis
Document

» System Design Document | ARENA is a distributed, multi-user system for organizing and conducting tournamets.
Project Documentation

, ::J‘j’::t’l‘r:‘fsm‘ ARENA is game independent in the sense that organizers can adapt a new game to the ARENA game interface,

» Project Reports upload it to the ARENA server, and announce and conduct tournaments with players and spectators located
Development Process @ anywhere on the Internet. Organizers can also define new tournament styles, describing how players are mapped
to a set of matches and how to compute an overall ranking of players by adding up their victories and losses (and
: hence, figuring out who won the tournament).
L -
R A en. ARENA has been developed as a companion example for the book Object-Oriented Software Engineering &. Our goal

is to provide a non-trivial and living example for software engineering education. With ARENA, an instructor can
cover technical topics (e.g., access control, concurrency control, dynamic class loading), and methodological topics
(e.g applying design patterns, specifying contracts). ARENA can also be used for supporting project courses in
which students extend or refine the system.

Status

ARENA is currently under construction. A skeleton architectural prototype has been completed, including dynamic
loading of games, tournament styles across distributed match front ends and game peers. A demo scenario can be
played in which five predefined users can play a knock out tournament until its completion.

To be completed in the near term are:

+ web interface to the arena server
e storage subsystem

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 [¥] 31

>

Playing TicTacToe within ARENA

e 06 Welcome to ARENA alice

TicTacToe leagues
¥ TTT Champions League - A restricted league for insiders.
> TTT 2003 Championship -
> TTT 2004 Championship -
¥ Novice TTT League - A simple, unrestricted league for beginners.
¥ _ TTT Cup - An adhoc knockout tournament.
joe, mike- waiting for opponents
alice, mark- playing

mary - bye
® O O TTT Match alice against mark
I\ Apply for tournament /i .\ Watch match /l . Play match 0
X X
X 0

Waiting for opponent to play

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 32

Mini Project: Asteroids

e Main Goal:

 Practice and apply the important concepts of the
lectures

« Become proficient in using and applying these concepts

o Context
» Asteroids Game
« Examples of an Asteroids Implementation:

e http://www.surfnetkids.com/games/asteroids-
game.htm

 Project Tasks:

e Addition of nonfunctional requirements to an existing
implementation of Asteroids using model-based
development techniques and design patterns

» Integration of Asteroids with ARENA

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 [¥] 33

Texibook

 Bernd Bruegge, Allen H. Dutoit:

 Object-Oriented Software Engineering: Using
UML, Design Patterns and Java, 2nd edition,
Prentice Hall, September 2003

e German Version:

 Bernd Brlugge, Allen H. Dutoit: “"Objektorientierte
Softwaretechnik mit UML, Entwurfsmustern und
Java, Pearson Education, Oktober 2004

e You can get a 10% discount for the english
edition, if you order from this URL
e WWW.pearson-

studium.de/main/main.asp?page=bookdetails&Productl
D=111686

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 34

Additional Readings

e Additional readings are announced for each
lecture

« Additional Readings for this lecture:

« K. Popper, "Objective Knowledge, an Evolutionary
Approach”, Oxford Press, 1979.

e Falsification

© 2006 Bernd Bruegge Software Engineering I WS 2006-07

35

Let’s start bruegge@in.tum.de Subject: SE 1
or Software Engineering 1

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 [¥] 36

What is this?

© 2006 Be

- T
RO M0 i . -,'_ = ._:r:l_ -
PROCESSES RECLIAEMENTS ay VERFICATION &
‘ PROCESS WAL A TION PROCE S
- az — - I J1
DEV ORENTED | | SYSTEM f [} I1 r
FRCCESSES B - ALLOCATEN ‘] r T
PR _ '
= — —-.I | | 52
'I— wEGRM. | - DS
l_llﬂ:ﬂ'_{ ;..fu,_i: I - PROCESS l
an
PROCESS 1D CrecErT _
EXLCHATION t————
— PROCESS 12
! kwmm
B T P
el e e e
1
PRUECT i '
WO T H & = |
CXMNTICN, PROCE S L a3 ‘
PLEMENTATION
PROCESS
= ;
13
A DALY
WIT, FROCESY —— —_
L
-~ i pocysENTATON |
- DEVELOPRENT
I paocess
¥ e ———
ad e [8]
RETHEMENT) ,
PO ’ ", m:-c:sl m?
T4 !
a3 LA ' g
- PROCESS il —
mmmm a3 i f
PROCESS OFF AT i P ———
& SUPROAT
_ - PROCT 55

37

3 Ways to deal with Complexity

1. Abstraction
2. Decomposition
3. Hierarchy

© 2006 Bernd Bruegge Software Engineering I WS 2006-07

38

Abstraction 10 24 2006

Complex systems are hard to understand
e The 7 +- 2 phenomena

e Our short term memory cannot store more than 7+-2
pieces at the same time

e Chunking: Group collection of objects
Abstraction allows us to ignore unessential details

e Two definitions for abstraction:

« Abstraction as activity: Abstraction is a thought
process where ideas are distanced from objects

 Abstraction as entity: Abstraction is the resulting idea
of a thought process where an idea is distanced from an
object '

Ideas can be expressed by models

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 39

Model

e A model is an abstraction of a
system

* A system that no longer exists
* An existing system
» A future system to be built.

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 [¥] 40

We can use models to describe
Software Systems

e Object model: What is the structure of
the system?

e Functional model: What are the
functions of the system?

e Dynamic model: How does the system
react to external events?

o« System Model: Object model +
functional model + dynamic model

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 41

Other models used to describe
Software System Development

e Task Model:

« PERT Chart: What are the dependencies
between tasks?

e Schedule: How can this be done within the
time limit?

e Organization Chart: What are the roles in the
project?
e Issues Model:
« What are the open and closed issues?
« What blocks me from continuing?
« What constraints were imposed by the client?
 What resolutions were made?
 These lead to action items

© 2006 Bernd Bruegge Software Engineering I WS 2006-07

42

Issue-Modeling

Issue:

What is the Resolution (1615):

Center of the

Universe?
‘

The church
decides rrevosal 1
1S right

Pro: Pro:
Aristotle Copernicus
110 C DU DLALC
around Jupiter, not
Pro: around Earth.
Change will disturb Pro:

Galaxies are moving away

© 2006 Bernd Bruegge Software Engineering I WS 2006-07

2. Technique to deal with Complexity:
Decomposition

A technique used to master complexity
(“divide and conquer”)

« Two major types of decomposition

e Functional decomposition
e Object-oriented decomposition

e The system is decomposed into modules

 Each module is a major function in the
application domain

 Modules can be decomposed into smaller
modules.

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 44

Decomposition (cont’'d)

» The system is decomposed into classes (“objects”)

e Each class is a major entity in the application
domain

* Classes can be decomposed into smaller classes

e Object-oriented vs. functional decomposition

Which decomposition is the right one?

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 45

Functional Decomposition

% Top Level functions

Level 1 functions

Level 2 functions

Eend g CTramsom
1N

Load R10 00 0 0 Add R1, R10) Machine instructions

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 46

Functional Decomposition

 The functionality is spread all over the system

 Maintainer must understand the whole system to
make a single change to the system
« Consequence:
e Source code is hard to understand
e Source code is complex and impossible to maintain
« User interface is often awkward and non-intuitive.

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 47

Functional Decomposition

 The functionality is spread all over the system

 Maintainer must understand the whole system to
make a single change to the system

« Consequence:
« Source code is hard to understand
e Source code is complex and impossible to maintain
» User interface is often awkward and non-intuitive

« Example: Microsoft Powerpoint’s Autoshapes
« How do I change a square into a circle?

O = ()

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 48

Functional Decomposition: Autoshape

>

Change Change Change
Rectangle Oval Circle

Rectangle

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 49

Object-Oriented View

Autoshape

Draw()
Change()

© 2006 Bernd Bruegge Software Engineering I WS 2006-07

50

An Eskimo! A Facel

Cave Hair

Neck
Ellbow Nose
Pocket Mouth
Coat Chin
h '
h '

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 51

Class Identification

« Basic assumptions:

 We can find the classes for a new software
system: Greenfield Engineering

« We can identify the classes in an existing
system: Reengineering

 We can create a class-based interface to an
existing system: Interface Engineering

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 [¥]

52

Class Identification (cont’d)

« Why can we do this?
* Philosophy, science, experimental evidence

 What are the limitations?

 Depending on the purpose of the system,
different objects might be found

e Crucial
Identify the purpose of a system

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 [¥] 53

3. Hierarchy

e So far we got abstractions

* This leads us to classes and objects
* “Chunks”

« Another way to deal with complexity is to
provide relationships between these chunks

 One of the most important relationships is
hierarchy

e 2 special hierarchies
« "Part-of" hierarchy
o "Is-kind-of" hierarchy

© 2006 Bernd Bruegge Software Engineering I WS 2006-07

54

Part-of Hierarchy (Aggregation)

© 2006 Bernd Bruegge

Computer
<
I/0 Devices CPU Memory
S
Cache ALU Program
Counter

Software Engineering I WS 2006-07

55

Is-Kind-of Hierarchy (Taxonomy)

Cell

Muscle Cell

A

Striate

Blood CeI‘

Smooth

Red

White

Nerve Cell

A

© 2006 Bernd Bruegge

Cortical

Software Engineering I WS 2006-07

Pyramidal

56

Where are we now?

Three ways to deal with complexity:
« Abstraction, Decomposition, Hierarchy

Object-oriented decomposition is good

« Unfortunately, depending on the purpose of the
system, different objects can be found

How can we do it right?
« Start with a description of the functionality of a system
 Then proceed to a description of its structure

Ordering of development activities
» Software lifecycle

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 57

Software Lifecycle Activities...and their models

Requirements : System Object mplemen- :
Elicitation Analysis Design Design tation Testing
ci X |

Ao , | ‘ Implemented by
Expressed In Structured Realized by Verified
terms of by
v : v By
@ Vv
I% > class... 5 v
2 class... >
O 7
Applicati Sl class...| | ¢lass?..
Use Case pplication olution
Model Domain Sltlb' Domain S((:)ucrlce Test
Objects ~ SYStems Objects 0d€ Cases
© 2006 Bernd Bruegge Software Engineering I WS 2006-07 58

Software Lifecycle Definition

o Software lifecycle:

« Set of activities and their dependency
relationships to each other to support the
development of a software system

© 2006 Bernd Bruegge Software Engineering I WS 2006-07

59

Software Lifecycle Definition (cont'd)

* Typical Lifecycle questions:

« Which activities should I select for the
software project?

« What are the dependencies between
activities?

e How should I schedule the activities?

 These are the topics of the lecture on
software lifecycle modeling

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 60

What to do next?

« Read the ARENA case study (Chapter 4.6 in the
book)

« Read Chapter 2 for the next lecture on UML
Modeling

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 61

Summary

o Software development: Problem solving activity

Goal of software engineering
* Provide techniques, tools and methodologies

* Develop quality software for a complex problem within a
limited time while things are changing

Models

« System models, issue models, task models

Ways to deal with complexity
« Decomposition, abstraction, hierarchy
e Functional & object-oriented decomposition

Ways to do deal with change
« Software lifecycle

* Configuration management, Rationale management,
Project management

© 2006 Bernd Bruegge Software Engineering I WS 2006-07 62

