
1© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Modeling with UML:
Basic Notations

Prof. Bernd Bruegge, Ph.D.
Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering I
Lecture 2

7 November 2006

2© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Overview

• Odds and Ends
• Modeling
• The UML notation
• Use case diagrams
• Class diagrams
• Sequence diagrams
• Activity diagrams

3© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Odds and Ends (1)

• Reading for this Week:
• Chapter 1 and 2, Bruegge&Dutoit, Object-Oriented
Software Engineering

• Software Engineering I Portal
• http://wwwbruegge.in.tum.de/static/contribute/Lehrst

uhl/SoftwareTechnikWiSe05.htm

• Lectures Slides:
• Will be sent to you via e-mail if you are registered for this class.

4© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Lecture Schedule

• Oct 31: Modeling with UML
 moved to Nov 7

• Nov 7: Project Organization
 moved to January

• Nov 14: Functional Modeling
• Nov 21: Dynamic Modeling
• Nov 28: Architectural Styles
• Nov 30: Reuse
• Dec 5: No lecture
• Dec 12: Design Patterns
• Dec 19: Object Constraint

Language

• Nov 1: Holiday (Allerheiligen)

• Nov 8: Requirements
Elicitation

• Nov 15: Object Modeling
• Nov 22: Design Goals
• Nov 29: Addressing Design

Goals

• Dec 6: No lecture
• Dec 13: Interface Specification
• Dec 20: Mid-term

Tuesdays 12:15-13:45
 Oct 24: Introduction

Wednesday 9:15-10:00
• Oct 25: Introduction ctd

Always subject to Change!

5© 2006 Bernd Bruegge Software Engineering WS 2006/2007

What is modeling?

• Modeling consists of building an abstraction of
reality

• Abstractions are simplifications because:
• They ignore irrelevant details and
• They only represent the relevant details

• What is relevant or irrelevant depends on the
purpose of the model.

• Models can be used for 2 purposes:
• Gain insight into the past and presence
• Predict future behavior.

6© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example of a Model: A Street Map

7© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Why should we model Software?

• Software is used in many appliances and
everyday objects

• Software is getting increasingly more complex
• Windows 2000: ~ 40 millions lines of code
• A single programmer cannot manage this amount of

code in its entirety

• Code is not easily understandable by developers
who did not write it

• We need simpler representations for complex
systems
• Modeling is a mean for dealing with complexity.

8© 2006 Bernd Bruegge Software Engineering WS 2006/2007

What is a “good” Model?
• Interpretation I: Maps entities in R to entities in M

• fM: Relationship between entities in M
• fR: Relationship between entities in R

• Relationships that are valid in reality R are also
valid in the model M.

• For a good model, the following is true:

fM

fR

MM

R R
I I

9© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Model of Models of Models...

• Modeling is relative.
• One can regard a model again as reality and make

another model of it (with more abstractions)

fM1

fR

M1M1

R R
I1 I1

M2M2

I2 I2

fM2

….

The development of
 software systems can be seen as a

 sequence of transformations
and validations of models:
 Analysis, System Design,

 Implementation

10© 2006 Bernd Bruegge Software Engineering WS 2006/2007

fM1

fR

M1M1

R R
I1

M2M2

I2

fM2

….

Software Development is a
Sequence of Transformations

Reality

Analysis
model

Analysis

Design
model

Design

Source
code

Implementation Solution
Domain

Application
Domain

I3

11© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Models must be falsifiable

• Karl Popper (“Objective Knowledge):
• There is no absolute truth when trying to understand reality
• One can only build theories, that are “true” until somebody

finds a counter example

• Falsification: The act of disproving a theory or hypothesis
• The truth of a theory is never certain. We must use

phrases like:
• “by our best judgement”, “using state-of-the-art knowledge”

• In software engineering any model is a theory:
• We build models and try to find counter examples by:

• Requirements validation, user interface testing, review of
the design, source code testing, system testing, etc.

• Testing: The act of disproving a model.

12© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Concepts and Phenomena

• Phenomenon
• An object in the world of a domain as you perceive it

• Examples: This lecture on November 7 at 12:30, my
black watch

• Concept
• Describes the common properties of phenomena

• Example: All lectures on software engineering
• Example: All black watches

• A Concept is a 3-tuple:
• Name: The name distinguishes the concept from other

concepts
• Purpose: Properties that determine if a phenomenon is

a member of a concept
• Members: The set of phenomena which are part of the

concept.

13© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Definition Abstraction:
• Classification of phenomena into concepts

Definition Modeling:
• Development of abstractions to answer specific questions

about a set of phenomena while ignoring irrelevant details.

MembersName

Watch

Purpose

A device that
measures time.

Concepts, Phenomena, Abstraction and
Modeling

14© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Abstract Data Types & Classes

• Abstract data type
• A type whose implementation is

hidden from the rest of the system

• Class:
• An abstraction in the context of

object-oriented languages
• A class encapsulates state and

behavior
• Example: Watch

Watch

time
date

SetDate(d)

CalculatorWatch

EnterCalcMode()
InputNumber(n)

calculatorState
Unlike abstract data types, subclasses
can be defined in terms of other
classes using inheritance

State

Behavior

Inheritance

Subclass
• Example: CalculatorWatch

Superclass

15© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Type and Instance
• Type:

• An concept in the context of programming languages
• Name: int
• Purpose: integral number
• Members: 0, -1, 1, 2, -2,…

• Instance:
• Member of a specific type

• The type of a variable represents all possible
instances of the variable

The following relationships are similar:
Type <–> Variable
Concept <–> Phenomenon
Class <-> Object

16© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Systems

• A system is an organized set of communicating parts
• Natural system: A system whose ultimate purpose is not

known
• Engineered system: A system which is designed and built by

engineers for a specific purpose

• The parts of the system can be considered as
systems again
• In this case we call them subsystems

Examples of engineered systems:
 • Airplane, watch, GPS

Examples of subsystems:
 • Jet engine, battery, satellite.

Examples of natural systems:
 • Universe, earth, ocean

17© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Systems, Models and Views

• A model is an abstraction describing a
system or a subsystem

System: Airplane

Models:
Flight simulator
Scale model

Views:
Blueprint of the airplane components
Electrical wiring diagram
Fuel system
Sound wave created by airplane

• A view depicts selected aspects of a model

• A notation is a set of graphical or textual
 rules for depicting models and
 views: formal notations, “napkin notations”

18© 2006 Bernd Bruegge Software Engineering WS 2006/2007

System
View 1

Model 2

View 2

View 3

Model 1

Aircraft
 Flightsimulator

Scale Model
Blueprints Electrical

Wiring

Fuel System

Views and models of a complex system usually overlap

(“Napkin” Notation)Systems, Models and Views

19© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Systems, Models and Views

System View
*

Model
*

Depicted byDescribed by

Airplane:
System

Scale Model:Model Flight Simulator:Model

Fuel System:
 View

Electrical Wiring:
 View

Blueprints:
View

(UML Notation)
Class Diagram

Object Diagram

20© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Model-Driven Development

1. Build a platform-independent model of an
applications functionality and behavior
 a) Describe model in modeling notation (UML)
 b) Convert model into platform-specific model

2. Generate executable from platform-specific
model

Advantages:
• Code is generated from model (“mostly”)
• Portability and interoperability

• Model Driven Architecture effort:
• http://www.omg.org/mda/

• OMG: Object Management Group

21© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Reality: A stock exchange lists many companies. Each
company is identified by a ticker symbol

Analysis results in analysis object model (UML Class Diagram):

StockExchange Company

tickerSymbolLists
**

Implementation results in source code (Java):

public class StockExchange {
 public m_Company = new Vector();
 };
public class Company {
 public int m_tickerSymbol;
 public Vector m_StockExchange = new Vector();
};

Model-driven Software Development

22© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Application vs Solution Domain

• Application Domain (Analysis):
• The environment in which the system is operating

• Solution Domain (Design, Implementation):
• The technologies used to build the system

• Both domains contain abstractions that we can
use for the construction of the system model.

23© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Object-oriented Modeling

Application Domain
(Phenomena)

Solution Domain
(Phenomena)

System Model (Concepts) System Model (Concepts)

Aircraft TrafficController

FlightPlanAirport

MapDisplay

FlightPlanDatabase

Summary
Display

TrafficControl

TrafficControl

UML
Package

(Analysis) (Design)

24© 2006 Bernd Bruegge Software Engineering WS 2006/2007

What is UML?

• UML (Unified Modeling Language)
• Nonproprietary standard for modeling software systems, OMG
• Convergence of notations used in object-oriented methods

• OMT (James Rumbaugh and collegues)
• Booch (Grady Booch)
• OOSE (Ivar Jacobson)

• Current Version 2.0
• Information at the OMG portal http://www.uml.org/

• Commercial tools: Rational (IBM),Together (Borland), Visual
Architect (business processes, BCD)

• Open Source tools: ArgoUML, StarUML, Umbrello

• Commercial and Opensource: PoseidonUML (Gentleware)

25© 2006 Bernd Bruegge Software Engineering WS 2006/2007

UML: First Pass

• You can model 80% of most problems by using
about 20 % UML

• We teach you those 20%

• 80-20 rule: Pareto principle
• http://www.ephorie.de/hindle_pareto-prinzip.htm

26© 2006 Bernd Bruegge Software Engineering WS 2006/2007

UML First Pass

• Use case diagrams
• Describe the functional behavior of the system as seen

by the user

• Class diagrams
• Describe the static structure of the system: Objects,

attributes, associations

• Sequence diagrams
• Describe the dynamic behavior between objects of the

system

• Statechart diagrams
• Describe the dynamic behavior of an individual object

• Activity diagrams
• Describe the dynamic behavior of a system, in

particular the workflow.

27© 2006 Bernd Bruegge Software Engineering WS 2006/2007

UML Core Conventions

• All UML Diagrams denote graphs of nodes and
edges
• Nodes are entities and drawn as rectangles or ovals
• Rectangles denote classes or instances
• Ovals denote functions

• Names of Classes are not underlined
• SimpleWatch
• Firefighter

• Names of Instances are underlined
• myWatch:SimpleWatch
• Joe:Firefighter

• An edge between two nodes denotes a
relationship between the corresponding entities

28© 2006 Bernd Bruegge Software Engineering WS 2006/2007

UML first pass: Use case diagrams

WatchUser

Actor

Use casePackage
 Watch

Use case diagrams represent the functionality of the system
from user’s point of view

ReadTime

SetTime

ChangeBattery

WatchRepairPerson

29© 2006 Bernd Bruegge Software Engineering WS 2006/2007

UML first pass: Class diagrams

Class
Association

Multiplicity

Class diagrams represent the structure of the system

2
1 1

1
1

1
1

2

SimpleWatch

Display Battery TimePushButton

30© 2006 Bernd Bruegge Software Engineering WS 2006/2007

UML first pass: Class diagrams

1
2

push()
release()

1

1

blinkIdx
blinkSeconds()
blinkMinutes()
blinkHours()
stopBlinking()
referesh()

LCDDisplay Battery
Load

1

2

1

Time
Now

1

Watch

Operations

state
PushButton

Attribute

Class diagrams represent the structure of the system

Class
Association

Multiplicity

31© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Message

UML first pass: Sequence diagram

:Time :Watch:WatchUser

Object

Activation

Sequence diagrams represent the behavior of a system
as messages (“interactions”) between different objects

Actor

pressButton1()

Lifeline

blinkHours()

pressButton2()
incrementMinutes()

:LCDDisplay

pressButton1and2()
commitNewTime()

stopBlinking()

refresh()

pressButton1()
blinkMinutes()

32© 2006 Bernd Bruegge Software Engineering WS 2006/2007

UML first pass: Statechart diagrams

State

Initial state

Final state

Transition

Event

Represent behavior of a single object with interesting
dynamic behavior.

button1&2Pressed

button1Pressed

button2Pressed

button2Pressed

button2Pressed

button1Pressed

button1&2Pressed Increment
Minutes

Increment
Hours

Blink
Hours

Blink
Seconds

Blink
Minutes

Increment
Seconds

Stop
Blinking

33© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Other UML Notations

UML provides many other notations

• Activity diagrams for modeling work flows
• Deployment diagrams for modeling

configurations (for testing and release
management)

34© 2006 Bernd Bruegge Software Engineering WS 2006/2007

What should be done first? Coding or
Modeling?

• It all depends….
• Forward Engineering

• Creation of code from a model
• Start with modeling
• Greenfield projects

• Reverse Engineering
• Creation of a model from existing code
• Interface or reengineering projects

• Roundtrip Engineering
• Move constantly between forward and reverse

engineering
• Useful when requirements, technology and schedule

are changing frequently.

35© 2006 Bernd Bruegge Software Engineering WS 2006/2007

UML Basic Notation Summary

• UML provides a wide variety of notations for
modeling many aspects of software systems

• For now we have concentrated on a few
notations:
• Functional model: Use case diagram
• Object model: Class diagram
• Dynamic model: Sequence diagrams, statechart

36© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Additional References

• Martin Fowler
• UML Distilled: A Brief Guide to the Standard Object

Modeling Language, 3rd ed., Addison-Wesley, 2003.

• Grady Booch,James Rumbaugh,Ivar Jacobson
• The Unified Modeling Language User Guide, Addison

Wesley, 1999

• Commercial UML tools
• Rational Rose XDE for Java

• http://www-306.ibm.com/software/awdtools/developer/java/

• Together (Eclipse, MS Visual Studio, JBuilder)
• http://www.borland.com/us/products/together/index.html

• Open Source UML tools
• http://java-source.net/open-source/uml-modeling
• ArgoUML,UMLet,Violet, …

