
INTfRCHI ‘93 24-29 April 1993

Preserving Knowledge in Design Projects:
What Designers Need to Know

James D. Herbsleb
The University of Michigan

701 Tappan Street
Ann Arbor, MI 48109-1234, USA

herbsleb@csmil.umich.edu

ABSTRACT
In order to inform the design of technology support and
new procedural methods for software design, we analyzed
the content of real design meetings in three organizations,
focusing in particular on the questions the designers ask of
each other. We found that most questions concerned the
project requirements, particularly what the software was
supposed to do and, somewhat less frequently, scenarios of
use. Questions about functions to be performed by
software components and how these functions were to be
realized were also fairly frequent. Rationales for design
decisions were seldom asked about. The implications of
this research for design tools and methods are discussed.

KEYWORDS: Design tools, design methods, design
rationale, user scenarios.

INTRODUCTION
The difficulty, expense, and unpredictability of large
software development projects are so well known and so
widely discussed that the term “software crisis” has
become passe. This is not because the difficulties have
been overcome -- there has been no silver bullet [l] -- but
rather, we suspect, because the difficulty of the task is no
longer a surprise. Empirical research has a major role to
play in the process of bringing about incremental
improvements. As we attain a better understanding of the
cognitive and organizational demands of large software
development projects, we are in a better position to
introduce methods and tools which are precisely tuned to
the biggest problems.

One of the suggestions most often heard is to provide
developers with access to more knowledge about various
aspects of the development project. But the views
about precisely what knowledge to provide are many and
diverse. Here are a few of the major contenders:

Rationale for Design Decisions
Much attention is currently focused on methods, notations,
and tools for recording rationales for design decisions.
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

5 1993 ACM 0-89791~5755/9310004/0007..S1.50

Eiji Kuwana
NTT Corporation

l-9- 1 Kohnan Minato-ku
Tokyo 108 JAPAN

kuwana@mickey.ntt.jp

What is represented in this approach is not primarily the
application domain or the system design itself, but rather
the space or history of arguments surrounding the actual
decisions made as development progresses (see [171). The
most commonly advocated framework for selecting and
organizing this kind of data is argument structure (e.g.,
gIBIS, [3], SIBYL [14], and QOC [la]). It typically
includes nodes such as issue, alternative, argument,
criterion, goal, and claim. These are linked up into
structures by relations like achieves, supports, denies,
presupposes, subgoal-of, and subdecision-of. The most
expressive language to date is Decision Rationale
Language (DRL)[lS], which includes all of these and
more. What is represented is the “rhetorical” space around
decisions, and structure is created by links which have
strictly rhetorical significance. If this sort of information is
found to be sufficiently useful, it could be maintained
independently or integrated with traditional design
representations (e.g., [203).

Knowledge of application domain
In a major study of software development projects, Curtis,
Krasner, & Iscoe [4] found that one of the problems that
was most salient and consistently troublesome was “the
thin spread of application domain knowledge.”
Particularly rare and important was command of the larger
view, i.e., the integration of all the various and diverse
pieces of domain knowledge. This was essential for
creating a good computational architecture, and for forging
and communicating a common understanding of the
system under development.

Recently, there has been increased attention to analysis of
problem domains and representing domain knowledge
(see, e.g., [5]). Methods using such notations support the
representation of the problem domain in terms of nodes
like entities, objects, processes, or data structures, and
links such as data flow, control flow, relations, inherits,
subclass-of, and so on. The basic idea is to represent the
domain and the system, generally in terms which domain
experts would understand.

Scenarios of use
Closely related to application domain knowledge is
knowledge of scenarios of use. In contrast to general
domain knowledge, knowledge of scenarios of use
concerns the ways in which the system will need to fit into
the dynamic flow of activities in its environment. As noted

7

24-29 April 1993 INTf RCHII ‘93
by Guindon [7], scenarios of use are one of the major kinds
of knowledge developers bring to bear in designing
software. These scenarios are very important for
understanding the requirements, and appeared to play a
role in the sudden unplanned discovery of partial solutions.
In a similar vein, Curtis et al. [4] also concluded from their
extensive interviews with software developers that
scenarios of use were very important for understanding the
behavior of the application and its relation to its
environment. Yet they observed that while it is common
for customers to generate scenarios as they are determining
their requirements, they very seldom pass them on to the
developers. As a consequence, the developers had to
generate their own scenarios, and could only predict the
obvious ones and not ones which created unusual
conditions. There is also anecdotal evidence that scenarios
of use are very helpful in the user interface design process
WI.

Scenarios of use could be made available to designers in
several ways. At least one software engineering method,
Objector-y [lo] explicitly incorporates scenarios of use
(“use cases”) as a central part of the method. There are
also other, less formal techniques, (e.g., [111) for making
this kind of knowledge available during design. Finally,
techniques that get users actively involved in the design
process (e.g., 1181) may serve, among other purposes, to
inject knowledge of user scenarios into the design process.

Knowledge generated by design methods
Finally, there are many software design methods, each with
an associated notation, and embedded in rules-of-thumb,
principles, and a development philosophy. They fall within
several broad categories, including structured analysis and
design, entity-relation modeling, and object-oriented
design. There are many claims by advocates of these
techniques, and also some empirical evidence, e.g., from
research on software errors [191, that these methods can
have a significant positive impact on the development
process. It is unclear how much of this effect is
attributable to an improvement in the ongoing design
process and in the quality of the design decisions made,
and how much is attributable to capturing knowledge in the
system’s notation so that the knowledge can be used at later
stages. But it seems very plausible that capturing this sort
of knowledge could significantly impact the later stages of
development.

What is really needed?
Each of these ideas for capturing project knowledge and
making it available for later use embodies empirical
hypotheses about the knowledge needs of the software
design process. Testing these claims should be given top
priority, since they determine the potential of various
classes of tools to make positive contributions to the design
process.

Unfortunately, it is very difficult to test these hypotheses
directly, i.e., by building an appropriate tool then designing
a software system and assessing the results. The expense,
risk, and the difficulty of interpreting the results of
complex processes in the real world make this option
untenable. Laboratory studies solve some of these
problems by isolating the effects of selected variables, but
they do not :provide the opportunity to take advantage of
many of the potentially most beneficial features of
knowledge-preserving tools and techniques, since there is
generally no realistic organizational or project history in a
laboratory context. Preserving small quantities of
knowledge for the duration of a typical experiment, i.e., an
hour or two, is radically different from preserving
potentially enormous quantities of knowledge for more
realistic time periods of months to years.

This research attempts to inform this issue by taking a
different approach. To begin to assess the basic knowledge
needs in upstream software development, we examine the
questions that arise in actual requirements specification
and design meetings among software engineers. The
central assumption is simply that the questions askeld in
these meetings by experienced, professional software
designers are a reasonably good indicator of the kinds of
knowledge that an ideal method should make available. It
is certainly not a perfect indicator, since designers may be
unaware of their lack of information, or they may be
asking a question just to test their understanding. We
assume, however, that asking a question very often
indicates that the asker believes the answer contains
knowledge important in the immediate context, and that
the asker does not currently possess this knowledge.

In a previous paper [131, we briefly described this method,
and presented basic frequency data on questions
concerning software requirements. Here we provide a
more detailed description of our method, present data
concerning questions about all of the software
development stages, and draw out the implications of our
findings for design tools and methods.

METHOD
Data Profile.
We use two basic kinds of data in this study. The first is a
set of minutes from 38 design meetings at Nippon
Telegraph and Telephone Corporation (NTT) Software
Laboratories that took place over an eight month period.
The task was to specify requirements and design for
version 1.5 of an existing software development
environment. The meetings from which our data are drawn
involved external behavior analysis and preliminary
design. Individual members of the team wrote the minutes,
generally a day or two after the meeting, using their notes
and documents from the meeting. The chore of taking
minutes rotated through the development team.

This corpus of data covers a substantial continuous period
of time on a large re-design project. One potential

8

INlfRCHI ‘93 24-29 April 1993

weakness of this data stems from the fact that it is filtered
through and reconstructed by the individual taking
minutes. Presumably, this will not cause too much
distortion, since minutes customarily capture the most
important points, and the minute-takers were experts in the
software design domain. But the second data source was
included, in part, to compensate for these possibilities.

The second type of data we used is videotape protocol data
gathered in the United States from three software
requirements and preliminary design meetings. Each
meeting had software requirements and/or preliminary
design as its primary activity, had either four or five
participants, and lasted from slightly under one hour to
slightly over two hours. These particular meetings were
selected, in part, to span early requirements through
preliminary design phases of development.

Two of the meetings were teams at Andersen Consulting
(AC). One was a preliminary design meeting concerned
with specifying a client-server architecture to be used by
Andersen to build systems for a variety of customers. The
other AC meeting, involving a different team, was
concerned with detailed requirements of “reverse
engineering” software which would heuristically identify
and describe structure in large, old, unstructured,
assembly-language programs. In the third meeting, a team
at Microelectronics and Computer Corporation (MCC) was
an early discussion of the requirements for a knowledge-
base editor, trying to determine its basic functionality.

As one would expect, the three organizations from which
the data are taken differ with respect to development
methods. N’IT’s development process was governed by
internal NTT guidelines similar to those published by IEEE
(e.g., [8,9]. These guidelines spelled out what documents
must be created and what each should contain. The
development style was based on Composite Design
Methods and SA/SD. The Andersen Consulting projects
made use of Method/l, a proprietary method with very
detailed specification of required documents and
deliverables. The style tended to be process-oriented,
postponing consideration of data structures. Development
on the MCC project was in the context of a research-
oriented artificial intelligence project, and was thought to
be much less structured than in the other two settings.

These two data sets complement each other. The videotape
data are unfiltered and unreconstructed, and so do not
suffer from those potential sources of distortion. The chief
disadvantages of the videotapes are first, that we have no
real way of knowing which of the questions we identify
would be considered important by the software engineers
themselves; and second, these are only three brief
snapshots of three different projects, a sample with many
potential biases. The NTT minute data compensates for
these weaknesses, since it is a continuous eight month
sample of questions deemed important enough to record.

Data Analysis.
As we mentioned above, our basic assumption is that the
questions software engineers ask provide a good heuristic
for identifying knowledge that should be preserved and
made available to designers. We extracted from our data
not only explicit questions, but also implicit requests for
information, including statements of ignorance that were
interpreted as questions. We excluded such things as
rhetorical questions, questions intended as jokes, questions
that were embedded in digressions and clearly bore no
relationship to the task, requests for action that were
worded as questions, and questions that asked for a
restatement of something that was badly worded or just not
heard clearly.

Once we had identified the questions, we coded them
according to the following scheme.l First, we identified
one or more targets for each question. A target is simply
the thing, happening, or task that the questioner was asking
about. So, for example, if a question asked about a
particular component of the design, that component is a
target. Many questions had more than one target.

Second, we coded each target according to the attribute
which the question referred to. We adopted a simple
classification of target attributes into who, what, when,
why, and how. This turned out to be a simple, yet
meaningful and comprehensive set of categories. In brief,
we used the following criteria to determine the attribute:
Questions about who built a target or performed a task, or
about skills needed, were coded as who. What questions
concerned the external behavior or function of a target, i.e.,
what it was or what it did, without regard to how that
function was actually carried out. How questions focused
on the particular way that a target carried out its function or
the way a task was performed. For example, a question
about how a user would accomplish a user task with the
functionality described in a particular software
requirement, would be coded how. Questions about
deadlines and scheduling were coded as when. Finally,
questions asking why some decision was made, or about an
evaluation that was assigned or might be assigned to some
alternative, or soliciting a comparison of alternatives, or
arguments about alternatives were coded as why. If a
question referred to two or more attributes of a single
target, each was coded separately and is reflected in our
results.

Next, we categorized the target according to the stage in
the traditional software life cycle in which the target was
(or would be) created. We used a scheme which included
requirements specification, design, implementation,
testing and maintenance. We used software engineering
textbooks (e.g., [6] and IEEE guidelines [8, 91 to help
define these stages. In general, descriptions of what the

1 Additional details are available from the authors.

9

24-29 April 1993 lNTtRCMl’93
software system, as a whole, is supposed to do are
requirements. Design, on the other hand, concerns
determining the modules into which the system will be
decomposed and the interfaces of these modules
(preliminary design), and the ways in which their
functionality is to be realized (detailed design).
Implementation was defined just as writing and compiling

statements in a programming language, and was relatively
easy to identify. Testing was also straightforward. The
date the software was released marked the beginning of the
maintenance phase. See Table 1 for some example
questions, the targets we identified from the questions, and
the attributes and target creation stages.

Why should I have two tasks running simultaneous tasks Why Design
simultaneously when I want to get to local
data?
Zf I [i.e., a user] have a diagram on the specification for printing What & How Requirements
screen, what do I need to do to print it? a diagram

Table 1. Typical questions from Design and Requirements stages. The last question mentions both the what and the rhow
attributes of the target. The relation between these attributes is realize, since it is asking about the way some functionality
will be accomplished, or realized.

We also wanted to see how the knowledge needs of a
software design team changed over time. As mentioned
above, the videotapes were selected in order to have an
example of a meeting in early requirements specification,
late requirements specification, and preliminary design.
The minutes were taken from 38 meetings which spanned
these same stages. In order to divide the questions from
these meetings (to a rough approximation) into these same
three stages, we simply put the questions in temporal order
and divided them into thirds. In this way, we were able to
look at how distributions of target and question types
changed over these early project stages.

In order to establish the reliability of our coding, we
independently coded the attributes and target creation
stages of three samples of questions, and obtained
interrater agreement rates from 68-73%. As we discussed
our differences, we discovered that they were nearly
always due to a failure of the person less familiar with a
dataset to understand the terms or the context of the
question, or to language problems in translating between
Japanese and English. Upon discussion, we agreed in
virtually every case. We each then coded the dataset with
which we were most familiar, so we believe the agreement
rates substantially underestimate the accuracy of the
coding, and are acceptable for data of this type.

As mentioned earlier, many questions had more than one
target. Targets were not randomly bundled in a single
question, but rather the targets were generally related in
some way, and the relation was an important, often the
central, aspect of the question. In order to investigate these
relations, we categorized them into one of five categories:
1) evolve is the relation between an earlier and later
version of a component, 2) task assignment is the relation
between persons and tasks they are performing, 3)
interface is the relation between communicating
components or systems, 4) realize is the relation between a
higher-level function or behavior and the lower-level
pieces which actually carry it out, and 5) same is a
question about whether targets are identical in some way.
In order to establish reliability of this coding, we separately
coded a sample of questions and achieved an agreement
rate of over 90%.

RESULTS
One of the most interesting and surprising findings is the
extraordinary degree of similarity in our results between
the two datasets. Table 2 gives the correlations between
the videotape and minute data for the basic frequencies we
report. This degree of similarity was quite
unexpected, given the enormous differences between the
projects from which the data were drawn.

10

INT~RCHI 93 i 24-29 April 1993

Table 2. Correlations between the basic frequencies for
the two datasets.

Target Characteristics.
In both datasets, as one would expect, targets created in the
requirements stage were by far the most frequently asked
about. (61%), and design was a distant second (36%).
None of the other stages exceeded 1.5%. This is not
terribly surprising, since the projects themselves were in
the requirements and early design stages. On the other
hand, it is a little surprising that targets which would be
created during the later stages were almost never asked
about.

As the projects themselves moved from early requirements
into the design phase, the percentage of requirements
targets declined linearly from 81% to 48%, while the
design targets rose from 19% to 52% (chi-squared = 89.48,
df=8, p=.OOOl).. The direction of change was expected,
but it is significant that even well into the design stage,
nearly half the targets asked about were requirements.

who

when
B
a
$ how
u

I I I

0% 50% 100%

Percentage of Targets

Figure 1. Percentage of targets for which the given
attributes were asked about.

Figure 1 shows that the what attribute was asked about
much more often than any other, with how also at a
relatively high frequency. So the engineers asked about
twice as many questions about the basic functionality or
external behavior of a target as they did about the details
of how it would work. This would certainly seem to
support the notion that understanding what the software is
supposed to do is a bigger problem than figuring out how
to make it behave properly once “properly” is understood.

These values changed somewhat over time. What targets
increased from 55% to 69%. while how declined from 39%
to 25% (chi-squared = 34.96, df=8, p=.OOOl).. Why
remained at a constant 6%. So how questions were
generated most often in the requirements stage of the
project, asking, for example, how a user would do X with a
given set of system functions.

One of the biggest surprises here is the relatively low
frequency of why questions. This is the sort of knowledge
that design rationale notations are designed to capture, and
given the very high level of interest and expected benefits
from such systems, we anticipated that we might see a
great many why questions.

Table 3 shows the most frequently occurring pairs of
attributes and target creation stages. By far the most
frequent is the requirements-what combination, with
requirements-how, design-what, and design-how each
around one-third as frequent.

Requirements Design
what 404 143% 153 116%
why 33 14% 2012%
how 118 / 13% 156/ 17% ,

Table 3. The frequencies I percentages of the six most
frequent combinations of attributes and target creation
stages (out of 940 total targets). No omitted cell contains
more than I ..5% of the targets.

Relations Between Targets.
About half (48%) of the questions in our sample had

multiple targets. Nearly all of these (97%) had two targets,
a few had three, and one had four. In all, nearly two-thirds
(65%) of our targets appeared in multiple-target questions.

evolve

0% 50% 100%

Percentage of Multiple-Target
Questions

Figure 2. Distribution of relations among targets in
multiple-target questions.

11

24-29 April 1993 INTf RCHI ‘93
By far the most frequent relation among targets, as shown
in Figure 2, was realize, with a significant portion of
interface and same, but very few task assignment and
evolve relations. Clearly, realize is a very broad category,
including, e.g., the relation between an external behavior
and software components, a module function and an
algorithm, a function and OS calls, and so on. The
extremely high frequency of realize relations is perhaps
best illustrated by the fact that 30% of all targets in our
data (278 out of 940) enter into a realize relation. We take
this very high frequency of questions concerning the
realize relation as an indicator of its importance, so we
decided to examine the attributes of the targets that enter
into this relation more closely.

In order to perform this additional analysis, we extracted
only those questions which involved the realize relation.
Disregarding the very few questions involving more than
two targets, each of the two-target questions involves a pair
of attributes, one for each target, e.g., what-how.
Examining the frequencies of these pairings gives us an
indication of the kinds of realize questions most often
asked. It is also instructive to look at the creation stages of
the targets, to see, for example, if the designers are asking
most frequently about realizing some requirement in the
design, or realizing a user requirement with given system
functions.

Tables 4 and 5 show the results of these analyses. Table 4
reveals that over 90% of the questions involving the
realize relation, targets have one of three pairs of
attributes: what-how, what-what, and how-how. (Each of
the other pairings accounts for less than 3% of the total.)

Table 4. The frequencies and percentages of attribute
pairs for targets joined by realize relation.

Table 5 shows that most of these relations join targets
created in the requirements stage. In particular, by far the
most common occurrence of a realize relation is in
questions

Requirements-Requirements
Requirements-Design

I 107 1 52%
47 I 23%

Design-Design 44 22%
All Others 6 3%
Table 5. The frequencies and percentages of target
creation stage pairs for targets joined by the realize
relation.

with requirements-how and requirements-what targets
(33%, or 69 of 208 total questions with realize relations).

These questions asks about the particular ways (how) a user
would accomplish goals using some particular function of
the system under design (what). For example, “How would
you [i.e., a user] use it [some functionality to be provided
by the system]?” These data clearly show that user
scenarios are a frequently asked about type of informaltion
in software design.

Summary of results.
. Different types of data from software design meetings in

different corporations and even different countries
showed an astonishing degree of similarity in the
frequency with which different types of questions were
asked.

l Most questions in our sample of software design
meetings concerned the requirements. In particular,
developers tended to ask questions about what the
requirements are, and this continued to be the most
frequent sort of question as the project progressed from
early requirements definition through preliminary
design.

l User scenarios were frequently asked about. This is
shown both by the significant overall percentage of
requirements-how targets, and by the high proportion
of multi-target questions which ask how a user will make
use of some particular functionality of the system.

l Most questions concerned what function the target was to
perform and how it would be performed.

l Very few questions asked why a decision was made, or
solicited evaluations or comparisons of alternatives.

DISCUSSION
This degree of similarity between the questions taken from
the minutes of design meetings at NTT and from
videotaped design meetings at AC and MCC is qjuite
startling. The questions in the minutes were filtered
through a scribe, and represent an extended and
continuous sample of a single subgroup on a single prqject.
The videotaped data is unfiltered and unreconstructed, and
is taken from three unrelated meetings. The data cmome
from different projects, different corporations, and even
different countries.

This similarity is important for two reasons. First, it
greatly strengthens the findings. Any single data set is
subject to many biases, and may be atypical with regard to
software design in general. But similar results with widely
different kinds of data suggest that the findings have
considerable generality. Second, we think it is very
important to establish a baseline against which questions
from meetings supported with different sorts of tools, or
using different methods, can be compared. The uniformity
in our results gives us considerable confidence that they
will be useful for this purpose.

As we mentioned earlier, a result that was particularly
unexpected is the low frequency of why questions. There
are several possible explanations for this finding. One is
that the kind of information elicited by why questions, i.e.,

12

INT-f RCHI ‘93 24-29 April 1993

the rationale behind decisions, is simply relatively
unimportant.. This certainly runs counter to the intuitions
of many individuals experienced in software development,
but it is not ruled out by our data. A variation on this
theme is that this information is simply perceived to be
unimportant, and perhaps even actively avoided by
designers wishing to escape the overhead of becoming
domain experts. A second possibility is that why questions
and the information they elicit are very important, but they
are relatively unlikely to arise in meetings as compared
with other settings in which design work is done. One
plausible line of reasoning is that in meetings, the context,
as well as the content, is generally clear to all the
participants. Why questions may often be used to establish
this context when it is unclear. A third possibility is that
the information that could be directly elicited with a why
question is often elicited with how or what questions. If
one knows enough about the possible rationales behind a
decision, one may be able to infer the correct rationale by
using clues obtained in this indirect way. If this turns out
to be the case, it suggests that there is considerable overlap
between design rationale tools (focusing on why questions)
and other design tools which focus on creating the design
itself. In other words, a good representation of the what
and how of the design may enable one to infer many of the
whys Finally, it may be that why questions are seldom
asked in meetings because the participants realize that they
cannot generally be answered in current practice, with
current tools. This interpretation, of course, suggests that
representations of design spaces or histories would often be
consulted if available.

One suggestion concerning the why questions that we find
somewhat less plausible than the ones just discussed is that
although why questions are low in frequency, they are
more important than other kinds of questions. Our
skepticism stems from the observation that the percentage
of why questions is nearly identical in the minutes and the
videotapes. If the why questions tended to be more
important than the other types of questions, one would
expect to see them represented more often in the minutes,
since the questions recorded there have been filtered by a
scribe and selected for their importance. The nearly
identical frequencies imply that the why questions in our
sample were not more important than the other questions,
at least as importance was judged by the scribes.

In any case, it is clear that more research is needed to sort
out all of these importantly different possibilities. Given
the extremely high level of interest in design rationale
notations and tools, it is critical to begin to look at how,
when, and in what settings such representations might be
most useful. Without such research, there is a grave risk of
building tools that provide the answers to the wrong
questions.

The fact that the requirements are very often asked about
supports those who have suggested that particular attention

should be paid to tools, methods, and notations for this part
of the software life cycle, e.g., [4, 51. The most frequent
single type of target asked about (43% of all targets) is
simply what the system is supposed to do, i.e., what the
requirements are.

The data also strongly suggest that the scenario of use is an
extremely important type of information (see, e.g., [ll]).
What makes this finding particularly significant is that with
only a few exceptions that we are aware of (e.g., [lo]),
software design methods and notations do not provide rich
facilities for representing user scenarios. Data-flow
diagrams, for a typical example, represent users as a simple
node, a “terminator” (see, e.g., [22] pp. 64-73), which
functions as a source and a destination for flows of data.
There is typically no simple way to represent expected sets
of interactions with users. We suggest that this is a
relatively neglected area of potentially great importance.
In the area of user interface design, there are a number of
notations which can be used for expressing scenarios of
use (e.g., GOMS [2] and UAN [21]). Although for
questions that arise in upstream software design, these
notations are often too fine-grained, but extensions or
analogs might be very useful.

The high frequency of questions about realize relations
also suggests that notations and tools for design should
optimize for retrieval and display of this relation and the
objects (or components or functions, etc.) that enter into
realize relations. This property is often called traceability,
and the high frequency of realize relations supports those
who stress its importance.

ACKNOWLEDGMENTS
This work has been supported by the National Science
Foundation (Grant No. IRI-8902930), and by the Center
for Strategic Technology Research (CSTaR) at Andersen
Consulting, and by a grant from the Center for Japanese
Studies at the University of Michigan. We would
particularly like to thank Libby Mack, Nancy Pennington,
Barbara Smith, and Bill Curtis for their help in the
collection and analysis of the data. We also wish to
acknowledge the important contribution of the researchers
at NIT Software Laboratories who made data available to
us. We would also like to thank Kevin Crowston, Michael
Knister, Gary M. Olson, Judith S. Olson, and Atul Prakash
for their valuable comments and suggestions.

REFERENCES
1. Brooks, F.P., No silver bullet. IEEE Computer, 1987.
20: p. 10-19.

2. Card, S.K., T.P. Moran, and A. Newell, The
psychology of human-computer interaction. 1983,
Hillsdale, NJ: Erlbaum.

3. Conklin, E.J. and K.C.B. Yakemovic, A process-
oriented approach to design rationale. Human-Computer
Interaction, 1991.6: p. 357-391.

13

24-29 April 1993 INWRCMI ‘93
4. Curtis, B., H. Krasner, and N. Iscoe, A field study of
the software design process for large systems.
Communications of the ACM., 1988.31: p. 1268-1287.

5. Davis, A.M., Software requirements: Analysis and
specification. 1990, Englewood Cliffs, NJ: Prentice Hall.

6. Ghezzi, C., M. Jazayeri, and D. Mandrioli,
Fundamentals of software engineering. 1991, Englewood
Cliffs, NJ: Prentice Hall.

7. Guindon, R., Knowledge exploited by experts during
software system design. International Journal of Man-
Machine Studies, 1990.33: p. 279-304.

8. IEEE. Guide for sofnvare requirements specifications,
1984, Std 830-1984.

9. IEEE Recommended practice for software design
descriptions, 1987, Std 10161987.

10. Jacobson, I., Object-oriented software engineering.
1992, Reading, MA: Addison-Wesley.

11. Karat, J. and J.L. Bennett, Using scenarios in design
meetings -- a case study example, in Taking software
design seriously, J. Karat, Editor. 1991, Harcourt Brace
Jovanovich: Boston. p. 63-94.

12. Karat, J. and J.L. Bennett, Working within the design
process.. Supporting effetive and efficient design, in
Designing interaction: Psychology at the human-computer
interface, J.M. Carroll, Editor. 1991, Cambridge University
Press: New York. p. 269285.

13. Kuwana, E. and J.D. Herbsleb. Representing
knowledge in requirements engineering: An empirical
study of what software engineers need to know. in IEEE

International Symposium on Requirements Engineering.
1993.

14. Lee, J. SIBYL: A tool for managing group design. in
CSCW ‘90. 1990. Los Angeles:

15. Lee, J. and K.-Y. Lai, What’s in design rationale.
Human-Computer Interaction, 1991. 6: p. 25 l-280.

16. MacLean, A., et al., Questions, options, and criteria:
Elements of design space analysis. Human-Computer
Interaction, 1991.6: p. 201-250.

17. Moran,, T. and J. Carroll, ed. Design Rationale. in
press.

18. Muller, M.J. Retrospective on a year of participatory
design using the PZCTNE technique. in CHI ‘92. 1992..

19. Nakajo, T. and H. Kume, A case history analysis of
software error cause-effect relationships. IEEE
Transactions on Software Engineering, 1991. 17: p. 830-
837.

20. Potts, C., Supporting software design: Integrating
design processes, design methods, and design rationale, in
Design Rationale, T. Moran and J. Carroll, Editor. in press,

21. Siochi, A.C., D. Hix, and H.R. Hartson, The UAN: A
notation to support user-centered design of direct
manipulation interfaces, in Taking software design
seriously: Practical techniques for human-computer
interaction design, J. Karat, Editor. 1991, Academic Fress:
Boston. p. 157-194.

22. Yourdon, E., Modern structured analysis. 1989,
Englewood Cliffs, NJ: Yourdon Press.

14

