
t Capturing Design
Rationale in Concurrent
Engineering Teams

Mark Klein, Boeing Computer Services

The few existing
systems that capture
the rationale behind
design decisions are

severely limited. This
new prototype offers an
integrated and generic
framework with much
broader capabilities.

January 1993

utput from the design of an artifact typically includes blueprints, CAD
files, manufacturing plans, and other documents that describe the result
of a long series of deliberations and trade-offs by the members of

concurrent engineering (CE) teams. The underlying intent and logical support
(that is, the rationale) for the decisions captured in these documents is usually lost
or, at best, represented in a scattered collection of paper documents, project and
persona1 notebook entries, and the recollections of the artifact’s designers. This
information can be very difficult to come by, and its representation is such that
computers can provide little support for managing and utilizing it.

Intensified global competition and increasingly complex artifacts are making it
more critical to capture the design rationale in a highly usable form. The potential
benefits are manifold. An explicitly represented rationale can help individual
designers clarify their thinking, and let all team members critique and augment the
reasoning behind decisions. I~5 Rationale capture helps identify design changes as
well as the causes and potential resolutions of conflicts between designers.6 It
documents design decisions for new team members, new designers, and artifact
users.’ Existing designs that address similar requirements can be retrieved, under-
stood, and modified to meet current needs. Perhaps more importantly, subsequent
CE teams can use the rationale in their design activities.

To achieve these benefits, however. significant challenges must be met. The
representation must allow designers to express their design reasoning in a natural
way; at the same time, it must be forma1 enough to support useful computational
services. Since CE teams include multiple participants working on overlapping
aspects of the design, the representation must support concurrent editing. In
addition, the process of describing rationale should impose the minimum possible
overhead on the design process.

Most existing rationale-capture approaches support only individual users and
are thus not suited to team contexts (though Yakemovic and Conklin’ and Lee
and La? describe some exceptions). More importantly. they capture the rationale
for decision-making in general, but not for design decisions in particular. They
simply add yet another document to the set produced by existing design tools. as
shown in Figure 1.

c Requirements Pqoject

geometry

Figure 1. Rationale captured as a distinct document.

Design reasoning model

Underlying the DRCS rationale language is a model of hydraulic systems can be viewed as collections of pipe,
how designers think. Rationale is essentially a record of switch, tank, and pump modules linked via hydraulic con-

Requirements Proiect schedules

Figure 2. Rationale as decision interdependencies.

manuals

+

the reasoning process an individual used to reach certain
conclusions. Hence, a description language expressed in
terms that accurately mirror the individual’s reasoning pro-
cess will be easier to use. A rationale language for the
medical domain, for example, would be much less useful if
it did not include terms like “hypothesis,” “evidence,”
“symptom,” and so on, since these are entities used in
medical reasoning.

nections (for example, threaded pipe).
In the DRCS model, artifact descriptions are refined using

an iterative least-commitment synthesize-and-evaluate pro-
cess. An artifact description starts as one or more abstract
modules representing the desired artifact (for example, “air-
plane, ” “computer,” or “software application”) with specifica-
tions represented as desired values on module attributes
(for example, “passenger capacity should be > 350”). This
is refined into a more detailed description by constraining
the value of module attributes, connecting module interfac-
es (to represent module interactions), decomposing mod-
ules into submodules, and specializing modules by refining
their class (Figure B).

Central to a design reasoning model is, of course, how
the design itself is represented and refined. This represen-
tation includes both the physical artifact produced and the
plans (that is, temporal artifacts) followed to define and ac-
tually produce it. In DRCS, physical artifacts are viewed as
collections of modules, which can represent entire sys-
tems, subsystems, or their components. As shown in Fig-
ure A, each module has its own characteristic attributes,
whose interfaces (which have their own attributes) have a
given type of connection. The resources that a module
uses, such as cost and weight, are
represented using a special class of
attribute.

A computer, for example, can be de-
scribed as a set of VLSI chip modules
with attributes describing their func-
tionality, power consumption, and so
on. The connections between module
interfaces (pins) are realized as (elec-
trical) deposited wires. At another lev-
el, we can view an entire board as a
module connected directly to the bus
and indirectly to other boards. The in-
terfaces and connections at this level

If we were designing an airplane, for example, we might
decompose the top-level “airplane” module into wing, tail,
and body section modules as well as electrical, hydraulic,
and mechanical subsystem modules. Interactions between
modules (for example, physically connected components)

describe the data and control proto- Figure A. Design description
cols between these systems. Similarly, scheme.

are represented as connections be-
tween module interfaces.

Plans are viewed as (perhaps partial-
ly) temporally ordered collections of
tasks (Figure C). The tasks include as-
sociated attribute constraints. An arti-
fact production plan would thus be rep-
resented as a sequence of tasks
corresponding to operations such as
machining, inspection, and the like. Ev-
ery task includes one or more primitive
actions that actually implement the
task.

Plans, like artifacts, are defined in an
iterative least-commitment manner. The
essential difference is that the basic

40 COMPUTER

Such approaches have limited expres-
siveness and therefore limited compu-
tational usefulness. The corresponding
rationale-capture tools provide spotty
capture of design rationale and may
generate descriptions that are inconsis-
tent with the design descriptions. De-
signers can waste their time on issues
that later prove unimportant, because
current rationale-capture tools do not
let them focus on issues revealed by
actual inspection of the evolving design
description.x

Overcoming these limitationsrequires
systems that let CE team members con-
veniently describe the dependencies
between the decisions captured by ex-
isting design tools. Figure 2 illustrates

this idea. It shows. for example, that the
rationale for a product geometry deci-
sion consists of the requirements it at-
tempts to satisfy, the time limits for
design dictated by the schedule, and the
other geometry decisions it logically de-
pends on. Similarly, a manufacturing-
plan decision is justified in terms of
supporting decisions that involve, for
example, project schedule and product
geometry.

While systems that integrate design
and rationale representations do exist
(see Fischer et al.8), their design repre-
sentations are highly domain specific
(for example, kitchen design) and do
not easily generalize to other domains.
The fundamental challenge, then. is to

providean integratedandgenericframe-
work for capturing rationale in team
contexts.

DRCS is a design rationale cap-
ture system that meets this challenge.
Its underlying rationale language is
based both on previous work in
decision-rationale capture and on a
generic model of design reasoning
(see the sidebar “Design reasoning
model”). The language is designed
to capture all important aspects of
design decisions and their inter-
relationships in a natural way. DRCS
itself explores how to enhance
design systems so that they will sup-
port collaborative editing of designs
and their rationale.

entity is a task rather than a module, and tasks are tempo-
rally ordered rather than connected via interfaces. For
both physical and temporal artifacts, DRCS provides a
constraint language that allows indefinite descriptions and
thus least-commitment design. A constraint language is a
common approach to supporting conflict avoidance and
early conflict detection.‘,2

In parallel with the iterative refinement of the design de-
scription, the design is evaluated with respect to how well
it achieves the specifications. Based on this analysis, we
may choose to select one design option over another or to
modify a given option so that it addresses an identified de-
ficiency. The stages of specification identification, design
option definition, evaluation, and selection/modification
can be interleaved arbitrarily throughout the design pro-
cess.

In addition to reasoning about the design itself (that is,
reasoning at the domain level), designers also reason at
the metalevel about the process they use to define the de-
sign.’ A designer may have a plan for how to create the
design. The plan might include tasks such as “collect re-
quirements,” “develop options,” and “perform trade study.”
If several design options are available, a designer may re-
flect on which option to select. If a conflict between two or
more design goals and actions occurs, the designer must
resolve the conflict. The design-reasoning process is gen-
erally goal driven, in the sense that actions are taken as
part of strategies intended to achieve goals such as meet-
ing a specification, refining a design option, making a con-
trol choice, or resolving a design conflict.

This generic model of design reasoning is based on
classical systems engineering as well as Al models of arti-
fact planning’ and design.2J These models have been ap-
plied successfully to a wide variety of domains including
electrical, electronic, hydraulic, and mechanical systems,
as well as software.

References

1. M.J. Stefik, “Planning With Constraints (Molgen: Parts 1 and 2),”
A~jficialIntelligence, Vol. 16, No. 2, 1981, pp. 111-170.

2. M. Klein, “Supporting Conflict Resolution in Cooperative Design
Systems,” /EEf Trans. Systems, Man, and Cybernetics, Vol. 21,
No. 6. Dec. 1991, pp. 1,379-1,390.

3. C. Tong, “Al in Engineering Design,” Artificial Intelligence in Engi-
neering, Vol. 2, No. 3, 1987, pp. 130-l 66.

Figure B. Design refinement process.

Figure C. A plan description.

January 1993 41

Figure 3. Artifact synthesis entities and relationships.

has-value

i
Constraint

is-of-type c/ Connection has-submodule

t

has-specialization
is-of-fype

connects

CT

I$9
is-of-type

C has-attribute

DRCS rationale
language

The DRCS rationale language uses a
vocabulary of assertions to capture de-
sign reasoning. The assertions consist
of entities such as modules, tasks, spec-
ifications, and versions, as well as claims
about these entities.

Claims come in two main types. A
predefined vocabulary of relation claims
describes relationships between asser-
tions. Any claim can serve as part of the
rationale for another claim. Hence, we
can make claims about the design (for
example, module-l has-submodule mod-
ule-2), claims describing the rationale
for design decisions (for example, val-
ue-l is-derived-from procedure-l).
claims concerning why we should be-
lieve this rationale (or not), and so on
recursively. There is also an all-purpose
text claim for capturing information not
otherwise expressible.

The net result of describing designs
and rationale in this way is a graph of
entity- and text-claim instancesconnect-
ed by relational claims. The following
discussion of the vocabulary of claims
and entities that make up the DRCS
rationale language divides the language
into five components.

Synthesis. This language component
captures the actions used to define arti-
facts and their plans. Figure 3 shows the
language entities relevant to artifacts.
(In this and the following figures, prim-
itive language entities appear in plain
font, while relation claims appear as
directed arcs with italic labels. The lat-
ter signify that the given relationship
can hold between the entities at the arc

has-priority
has-greater-priority-than

has-subtask
has-temporal-relationship

is-of-type
A

Assertion+ has-action -Task f has-plan - Module

has-attribute

+
Attribute - has-value *Constraint

Figure 4. Plan synthesis entities and relationships.

source and target. Entities with the “is- have submodules or specialization!
of-type” relation have an associated type Attributes can have values, expressed
taxonomy that a user can select from.) using a constraint language. (Constraint

The basic entities for artifact descrip- languages expressindefinite descriptions
tion include modules, attributes. inter- and have been used extensively in nu-
faces, and connections. Modules can merous design and planning systemsY)

Examples of DRCS in use

Imagine some designers working on the preliminary design for a new airplane.
Figure D shows some of the initial specifications and commitments: The final
airplane will cost less than $10 million, have a turning radius of less than 180
feet, and so on. It will be made of either aluminum or graphite, have a passen-
ger capacity that is a given function of its length, and consist of interconnected

Airplane
k
has-attribute + Cost - has-specification + (4 O,OOO,OOO dollars)
w---.
has-attribute --+ Paint - has-specification *(or blue red)
II\ \\\ \
has-attribute

!\L-&ibute

--+w T$zig - has-specification -(cl80 feet)

iL\.\,tt>b-+ Material - has-value + (or aluminum graphite)

I\\ \ ---+ Length
has-attribute

i&;mok cawiv
Passenger - has-value + (* (the length of airplane) 3)

\\Ll -’

has-r-

Wing has Interface *wing mount +----.
is-connected-to

Body - has-interface + body mount +---’
has-production-plan

L wp,,, - - ” has attnbute + Uses resource <time>
I

\ I
has-subtask has-subtask has-subtask has-specification

i i t JI
Acquire Build Assemble (~3 months)

outsource parts
components cokes-before

comes-before -2

Figure D. Example of initial design specs and commitments.

42 COMPUTER

The DRCS constraint lan-
guage provides a wide range
of constructs including abso-
lute constraints such as ine-

is-of-type has-subspecification
has-importance

is-more-important-than
is-more-important-than

has-importance
has-subattribute

qualities, ranges, and sets as
well as relational constraints
such as Boolean and mathe-
matical equations.

is-of-type

Figure 4 illustrates the cap-
ture of plan descriptions. The
basic entities here are tasks. i
Plans to produce an artifact
are related to the artifact’s

Figure 5. Evaluation entities and relationships.

- Version

top-level module via a “has-
plan” claim. Every plan is rep-
resented as the hierarchical

include time, weight, mon-
ey, tools, people, and so on.

Evaluation. The evalua-
tion component of the DRCS
rationale language captures
not only design specifications
but also how well they have
been achieved. Figure 5 il-
lustrates the evaluation en-
tities and relationships. De-
sign and plan specifications
are defined as desired val-
ues for design and plan at-
tributes. Attributes and spec-
ifications can have different

decomposition of a top-level task into claims. Task actions can be any asser- types, priorities, and subsumption rela-
temporally ordered subtasks with asso- tion. Plans can have priorities. tionships. Attributes and specifications
ciated primitive actions. The DRCS For both artifacts and plans, an im- can have types. Specification types in-
language captures this decomposition portant kind of attribute is the “uses- cludeobjectives,requirements, andpref-
using “has-subtask,” “has-action,” and resource” attribute. Defining this re- erences. How critical these elements
“has-temporal-relationship” (for exam- quires specifying the type of resource as are differs from one specification type
ple, “comes-before” or “comes-after”) well as the amount used. Resources can to another, and thus by implication, so

wing and body submodules. The manu-
facturing process should take no more
than 3 months per plane and consist of
partially ordered subtasks including
“acquire outsource components,” etc.

As the design process continues, the
designers begin to address achieving
the turning-radius specification. One
possible strategy is to use folding
wings. Figure E illustrates how the lan-
guage captures this reasoning: The de-
signers raised the decision problem of
figuring out how to achieve the turning-
radius specification, proposed a strate-
gy to do so, and took actions (in this

Airolane
has-attribute + ‘,u6z,“g - has-specification -+ (4 80 feet)

I
raises-issue

v
Achieved by?

I
has-strategy

has-submodule v

L Wing

Use folding wings

has-specialization -
action-of

v
Folding-type wing

case, specializing the wing module) 1

with the intent of implementing this Figure E. Rationale for folding wing tips.

strategy.
The specification concerning the air-

plane turning radius, however, turns out to be controversial.
Figure F captures the line of pursuant argumentation: A de-
signer asks what the turning radius of existing big planes is,
then claims that the new airplane need do no better. Should
the new airplane’s original specification be replaced by a less
stringent one, the designers can use the rationale graph to
determine what derived decisions, such as the choice of fold-
ing wings, potentially need to be reconsidered.

DRCS can also represent the rationale for metalevel deci-
sion making, for example, deciding to try a particular option
at a choice point or to resolve a conflict in a particular way. In
both these cases, an assertion representing the decision
problem (for example, resolved-by for conflicts or is-the-best-
option-for for choice points) is linked via a strategy to the ac-
tions (for example, creating a new design option for conflicts,
or choosing an existing one for choice points) that address
the decision problem.

January 1993

Airplane turning radius (cl80 feet

has-answer
denies

About 200 feet.

supports

We don’t need to do better than 200 feet.

Figure F. Argumentation concerning the turning-
radius specification.

43

has-priority
has-greater-priority-than

9 B
.t$ B Assertion - , + F;;kF; - g -(Top-level,task for)
B Strategic plan
.v1

9
t? s -c

does our willingness to relax
them. We can say that a de-
sign version achieves a given
specification; precisely how is
described in the rationale for
that claim (see the discussion
under “Versions”).

Intent. When taking some
kind of design action, a de-
signer is usually pursuing a Figure 6. Intent model entities and relationships.
strategy to find an answer for
some problem; that is, the
designer has some intent when
taking that action.

Figure 6 illustrates the in-
tent model for the DRCS lan-

Decision problem
I

has-option
is-the-best-option-for

guage. Any assertion in a de-
sign description can raise a
decision problem. There is, in
fact, a preenumerated set of
decision problem types-one
for every relation defined for
a given assertion type. For ex-

Figure 7. Versions model entities and relationships.

ample, there is a decision
problem for the “has-submod-
ule” relation on modules suppoi?s
(where the problem is deter- qualifies
mining how to decompose denies

the module), a decision prob-
presupposes

lem for the “has-value” rela-
tion on attributes (where the
problem is determining what
the attribute value should
be), and so on. Some decision
problems can have greater L

has-input

priority than others. The strat-
egy used to address a decis-

Figure 8. Argumentation model entities and relationships.

ion problem is represented as
a “has-strategy” link to the
top-level task of a plan.

Second, DRCS can capture
design rationale on the basis
of programmatic concerns.
For example, it can use links
between plan resource lim-
its and design attributes to
keep the design definition or
manufacturing process from

Versions. The versions model, illus-
trated in Figure 7, captures how the
designer creates and explores the space
of design alternatives. The designer cre-
ates new versions whenever tentative
decisions are defined and/or alterna-
tives are explored, that is, whenever
options are defined for a decision prob-
lem. Every option for a given decision
problem is asserted in a different ver-
sion. The versions storing the options
can have differing priorities as well as
statuses. If a given version has the status
“conflict,” we can indicate which alter-
nate version resolves that conflict. The
preferred option for a decision prob-
lem is represented by an “is-the-best-
option-for” claim.

is the argumentation model, illustrated
in Figure 8. It describes the reasons for
and against believing claims. The basic
entities include both relation and text
claims as well as procedures and ques-
tions.

Argumentation.The fifth component

Claims can support, qualify, deny, or
presuppose one another. Designers can
use the “has-result” and “has-input”
claims to link claims to the procedures
used to derive them and the inputs to
those procedures. Procedures can be
mathematical equations or less struc-
tured information such as textual refer-
ence sources, handbooks, catalogs, and
standard engineering tables. An indi-
vidual can raise “questions” about the
validity of a claim and assert that given
claims answer these questions. Any syn-
thesis, evaluation, intent, versions, or
argumentation claim can itself be the
subject of argumentation claims.

being too resource intensive. DRCS also
incorporates a model of intent-some-
thing absent from most decision ratio-
nale work. For example, while DRL
includes a “goal” entity, it provides no
way to link goals to the strategy for
achieving them and to the actions that
implement the strategy. The DRCS in-
formation-theoretic content is thus sig-
nificantly higher, but not at the cost of
being domain specific (as it is, for exam-
ple, in Janus*).

Third, DRCS’s explicit semantics in-
crease the possibilities for computational
support. Since the problem and specifi-
cation semantics for decisions are known,
for example, it is much easier to fetch
previous design cases that dealt with
similar challenges. We can more easily
find the differences and similarities be-
tween candidate design versions by iden-
tifying how the designs diverged and

44 COMPUTER

Advantages of DRCS
language. The DRCS de-
sign rationale language is an
extension, with substantial
modification, of previous
work in decision-rationale
capture. Its main contribu-
tion is to integrate the ratio-
nale language with a generic
design-description language
applicable to a wide range
of design domains. This ap-
proach offers a number of
advantages over previous
work.

First. the DRCS language
is more expressive. Generic
decision-rationale languages
such as gIBIS’ and DRL* use
natural-language text to de-
scribe the requirements, de-
cision problems, and options.
By contrast, DRCS uses a
structured language with ex-
plicit semantics. It describes
requirements as a desired
attribute value and design
options as interconnected
modules and tasks; it selects
decision problems from a
preenumerated set with
known semantics.

/

/
/
/

I

!

/

!
!
/
/

I
!
/

/

,
/
/

I

I
I
/
/

I

,

/

I

I

!

/

/

j 1n

why. Integrated desigmratio-
nale capture supports conflict
detection, classification, and
resolution6 Controversial de-
sign decisionscan be searched
by looking for underlying
claims that include many in-
stances of support and deni-
al. Users can determine the
consequences of withdraw-
ing a design choice by delet-
ing all derived decisions
without independent support;
they can review the options
explored for a given problem
by checking all the has-
option claims stemming
from the decision problem,
and so on.

.

? v
CE team-
member e
interface

v
CE team-
member ++
interface

Network

5

Figure 9. DRCS architecture.

Finally, DRCS is more natural than
most previous languages for describing
design rationale. Designers can attach
the rationale directly to the design as-
pect it refers to (module decomposi-
tion, attribute value, etc.), rather than
to a piece of text. In DRL, specifica-
tions are represented as subgoals of
decision problems, and a new copy of
this subgoal must be created for every
decision problem affected by the speci-

fication. DRCS represents specifications
simply as desired values for module at-
tributes.

DRCS

Current design tools, as noted earli-
er, do not in general support rationale
capture as an integrated component of
their operation, nor do they support

groups as opposed to indi-
viduals. DRCS was devel-
oped to improve understand-
ing of how existing design
systems can be augmented
to address both these pur-
poses.

DRCS is currently imple-
mented in Common Lisp on
several networked Symbol-
its workstations. Figure 9 il-
lustrates its architecture. CE
team members receive inter-
faces that let them view the
design and rationale infor-
mation on a shared black-
board. They can also make
changes on their private
scratchpads and “publish”

the scratchpad contents so that the con-
tents update the blackboard. Users can
publish their changes as they are made,
allowing essentially real-time collabo-
rative editing, or they can choose to
publish them periodically.

DRCS provides CE team members
with a direct-manipulation graphical
interface, shown in Figure 10. Users can
create windows that present a subset of
the design data from many possible per-

[I FILE WINDOWS SPECIRLE
I

Default Mode in NERGE-1

Cllose Refresh RCllose Refresh

Close Refresh

Module airplane in Version MERGE4

Production Plans
Has Plan build airplane

Specializations

Has Subnodule body
Has Subnodule wing

has attribute naterial

Figure 10. Example of the DRCS interface in use.

January 1993 45

spectives, each highlighting different
aspects of the design/rationale descrip-
tion. For example. one window can dis-
play the current artifact design as rect-
angular modules with lines representing
connections. Another can show PERT
charts of the ordering of tasks in a given
plan. Another can graph the argument
structure affecting a given claim or
present the current set of versions as a
lattice, and so on. These windows dy-
namically update themselves whenever
the product-data subset they view chang-
es, so they are continuously up to date.
In addition to simply displaying prod-
uct data in some predefined format,
users can create instances of “analysis”
windows that present information such
as pointers to circular or incomplete
argument structures or to questionable
decision choices.

DRCS integrates
design-decision and

design-rationale capture
in a single tool.

ates an instance of that attribute con-
nected to the module via a “has-at-
tribute” claim.

To connect two module interfaces,
the user selects the “Make Connection”
option for one interface and then se-
lects the interface to connect to. To add
support for a claim, the “is-supported-
by” option is selected for that claim and

The topmost window in the Figure 10
display contains the menubar. Each item
in it produces a menu of options when
selected. The File menu options include
saving the current state of the user in-
terface and publishing the user’s pri-
vate scratchpad. The Windows menu
supports the creation of new perspec-
tive windows or the ability to cycle
through existing ones, while the Special
menu lets users create analysis windows.
Other views in Figure 10 are the ver-
sions graph (lower right), the artifact
design in one of the versions (upper
right), a description of one component
in that design (lower left), and a de-
scription of the plan used to produce
that component (upper left). The print-
ed representation of every entity and
claim is mouse sensitive: When the point-
ing device clicks on it, the system dis-
plays a menu of options that make sense
in the context of that assertion.

then either an existing claim is selected
or a new one is created. DRCS automat-
ically creates the appropriate “supports”
relation between these claims. A few
mouse operations usually describe de-
sign decisions and their interdependen-
ties (that is, their rationale), though
text entry is sometimes required.

There are two classes of options for
any assertion: perspective creation and
editing. Perspective creation options
generate windows that view the asser-
tion from a given perspective. When
clicking on a plan’s top-level task, for
example, users can create windows that
view it either as temporally ordered leaf
tasks or as a task decomposition hierar-
chy. Editing options let users update
the design rationale database; for any
assertion, the menu will include a list of
all the types of claims possible to make
about that assertion. To add an attribute
to a module, for example, the user clicks
on the module and selects the “Define
Attribute” option. A prompt then asks
for an attribute name, and DRCS cre-

The DRCS interface builds upon ra-
tionale-capture systems such as gIBIS,l
Sibyl,? and Janus8 and to a lesser extent
on hypertext systems without an explic-
it rationale language (for example, see
Uejio’O and Lakin et al.“). The key dif-
ference between DRCS and these sys-
tems is that DRCS integrates in a single
tool a general approach to both design-
decision and design-rationale capture.
Users thus have no need to switch tools
when describing the design as opposed
to its rationale. They can attach ratio-
nale directly to the design claims of
interest and focus their efforts on de-
scribing rationale that the evolving de-
sign description reveals as critical.

Future directions

DRCS was developed to explore how
current rationale-capture approaches
can be extended to provide more effec-
tive support for the capture of comput-
er-interpretable rationale from multi-
function CE design teams. It has been
used successfully to record rationale for
a variety of simple new designs and to
re-represent information from more
complex existing designs. The resulting
information has supported computation-
al services that generic decision-ratio-
nale representations could not support.

This experience shows that the DRCS
approach is valid.

There are, moreover, rich possibili-
ties for future growth. The rationale-
capture language must be augmented to
capture geometric information (by in-
corporating a feature-based geometric
representation) and tentative or “fuzzy”
argumentation.2 In addition, better
methods must be developed to allow
effective display and use of anticipated
large and highly complex product data/
rationale networks.

Rationale-capture systems impose
significant overhead on the design pro-
cess. This is exacerbated by the fact that
the people who benefit from rationale
capture often are not those who are
asked to perform it. The challenge is to
make the cost/benefit ratio attractive to
the individuals asked to enter rationale.

While the point-and-click interface
metaphor reduces DRCS’s overhead,
we need to do more. In addition to
maximizing its current services to users,
DRCS may add support for rationale
capture via English text. This is less
daunting than one might imagine: Prob-
ably only a limited subset of English is
needed to express design rationale, and
the current design context can help re-
duce the semantic ambiguity of natural-
language text.

D RCS is currently a stand-alone
research prototype. To have
significant impact, the technol-

ogy must be added to the decision-cap-
ture tools actually used by CE design
teams. This requires advances on sever-
al fronts. Current product data and/or
interapplication link standards must be
augmented to include a design ratio-
nale representation. This will involve
both adding rationale-description prim-
itives to current standards and defining
the mapping between the existing and
DRCSproduct-datarepresentations. CE
team-member interfaces must be up-
dated to let users collaboratively view,
edit, and link different kinds of shared
product data.

One approach is to enhance existing
design tools so that they can provide
additional product-data display formats
(for example, the addition of manufac-
turing-data displays to a CAD tool) and
can also allow linkages among this data.
Another approach is to provide support
at the operating-system level, in effect
extending the cut-and-paste metaphor

46 COMPUTER

used in the Macintosh operating system 5. .I. Mostow and M. Barley, “Automated
to support creation of cross-application Reuse of Design Plans,” Proc. Int’l Conf.

rationale links. Both approaches are Eng. Design, IEEE, Piscataway, N.J.,

currently under evaluation for viability
1987, pp. 632-647.

in Boeing’s computing context. n 6. M. Klein, “Supporting Conflict Resolu-
tion in Cooperative Design Systems,”
IEEE Trans. Systems, Man, and Cyber-
netics. Vol. 21, No. 6,Dec. 1991. pp. 1,379.

References 1,390.

1. K.C.B.YakemovicandE.J.Conklin;‘Re- 7. R. Balzer, “Capturing the Design Pro-

port on a Development Project Use of an
cess in the Machine,” Proc. Rutgers Work-

Issue-Based Information System,” Proc.
shop on Knowledge-Based Design Aids,

CSCW 90, ACM Press, New York, 1990,
New Brunswick, N.J.. 1984.

cessing Medium,” Visual Computer. Vol.
5, No. 4, 1989, pp. 214-226.

pp. 105-l 18.
8. G. Fischer et al., “Making Argumenta- Mark Klein is an artificial intelligence spe-

2. J. Lee and K.Y. Lai, “What’s in Design tion Serve Design,“J. Human Computer cialist in the Boeing Computer Service’s

Rationale?” Human-Computer Interac- Interaction, Vol. 6, Nos. 3-4. 1991, pp. Collaborative Computing Program, where

tion, Vol. 6, Nos. 3-4, 1991, pp. 251.280. 393-419. his work focuses on collaborative problem-
solving with human and machine-based

3. R. McCall, “PHIBIS: Procedurally 9. M.J. Stefik, “Planning with Constraints agents. His research interests address dis-

Heirarchical Issue-Based Information (Molgen: Parts 1 and 2),“Artificial Intel- tributed AI systems that use multiple kinds

Systems,” Proc. Conf Planning and De- ligence. Vol. 16, No. 2,1981, pp. 11 l-170. of potentially conflicting expertise to solve

sign in Architecture, ASME. Boston, 1987.
problems.

10. W.H. Uejio, “Electronic Design Note-
Klein received his PhD in artificial intelli-

pp. 17-22.
book for the DARPA Initiative in Con-

gence from the University of Illinois in 1989.

4. A. MacLean et al.. “Questions. Options current Engineering,” Proc. Second Ann.
and Criteria: Elements of a Design Ra- Concurrent Engineering Co@, CERC,
tionale for User Interfaces,” J. Human- Morgantown, W.Va.. pp. 349-362. Readers can contact Klein at Boeing Com-
Computer Interaction, Special Issue on puter Services. PO Box 24364. 7L-64, Seat-
Design Rationale, Vol. 6, Nos. 3-4,1991, 11. F. Lakin et al., “The Electronic Design tie, WA 98124-0346: e-mail mklein@atc.
pp. 201-250. Notebook: Performing Medium and Pro- boeing.com.

Editors+@Gef ”
YehosbmCY. Zewi
E&&on-lsraal institute of Te&kgy, Haifa, and CA/P Center,
@@#$5 Unive@$‘, Piscataway, New Jersey

,ijif r. Rus&&.@sing
‘, -: #3ell Cork%Mnications Research, Morristown, New Jersey, and

‘b%iPCente~, Rg@?n University, Piscataway, New Jersey

etiphasis on~t~& tecRn&gies and theoretical work in

journal of Parallel and
Distributed Computing
Allan Cottlieb, Editor, Hardware and Software Systems
New York University, New York City

Kai Hwang, Editor, Special Issues
University of Southern California, Los Angeles

Sartaj Sahni, Editor, Algorithms and Applications
University ofF/orida, Gainesville

Side by Side
Parallel and distributed computing systems, side by side,

are improving the ability of computers to solve increasing
numbers of difficult and complex problems as quickly and as
efficiently as possible. The Journal of Parallel and Distributed
Computing publishes original research papers and timely
review articles on the theory, design, evaluation, and use of
parallel and/or distributed computing systems.

Volumes 17-l 9 (1993), 12 issues In the U.S.A. and Canada: $324.00
ISSN 0743.7315 All other countries: $407.00

thi; multidisciplinary area oipure and applied research.
The field of visual communication and image representation
is considered in its broadest sense and covers both digital

Increase your performance.
Subscribe to computer science journais from Academic Press.

and analog aspects as well as processing and communication
in biological visual systems.

Sample copies a&l privileged personal rates are available upon request.
For more information, please write or calf:

Volume 4 (19931, 4 issues In the U.S.A. and Canada: $142.00 ACADEMIC PRESS, WC., Journal Promotion Department
ISSN 1047.3203 All other countries: $171 .OO 1250 Sixth Avenue, San Diego, CA 92101, U.S.A.
. (619) 699-6742
All prices are I” U S. dollars and are subject to change wthout notice. Canadian customers: Please add 7% Gods and Services Tax to your order. S3239

Reader Service Number 2

