

TAMPERE UNIVERSITY OF TECHNOLOGY

Department of Information Technology

Mikko Satama

Event Capturing Tool for Model-Based GUI Test
Automation

Master of Science Thesis

Subject Approved by Department Council
8th February 2006

Supervisors: Professor Ilkka Haikala
 Senior Researcher Mika Katara

 2

Acknowledgements

This thesis work is conducted at Tampere University of Technology (TUT)
commissioned by the Institute of Software Systems as a part of TEMA research project.
TEMA is a joint project consisting of the contributions of the Institute of Software
Systems at TUT and five business partners: Nokia, Conformiq Software, F-Secure,
Plenware Group and Mercury Interactive. TEMA is funded by the Finnish Funding
Agency for Technology and Innovation (TEKES). I wish to thank these participants for
financing the TEMA project and thus making this thesis possible.

My supervisors and colleagues at the Institute of Software Systems have been
indispensable to me. Consequently, I wish to give them special appreciation. I would like
to thank my supervisor Ilkka Haikala for expert criticism and for the interest he has
shown in my work. Similarly, I wish to thank my instructor Mika Katara very warmly for
all the encouragement, support, advice and numerous valuable comments that have made
this thesis possible. I also wish to thank my colleagues Mika Maunumaa, Antti Kervinen
and Antti Jääskeläinen for all the expert advice and useful tips for my software
development. Very special thanks go to my parents Riitta and Jorma Satama for all the
love, support and patient attitude that they have shown me.

Finally, I would like to give the greatest thanks of all to my Lord and Saviour, Jesus
Christ, who gave everything for me by dying in my place. He answered my prayers,
helped me enormously in my work – sometimes supernaturally – and remained on my
side in the loneliest moments when all others were gone.

“Praise the Lord, my soul, and do not forget all the good things he has done for you!”
(Psalm 103:2)

Mikko Satama

Tampere, Finland
28th August 2006

 3

Abstract

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Information Technology
Institute of Software Systems

SATAMA, MIKKO: Event Capturing Tool for Model-Based GUI Test Automation
Master of Science Thesis
51 pages, 4 enclosure pages
September 2006

Supervisors: Professor Ilkka Haikala (TUT)
 Senior Researcher Mika Katara (TUT)
Funding: Tampere University of Technology (TUT)
Keywords: Software testing, test automation, model-based testing

Model-based testing (MBT) provides a notable improvement to conventional scripted
testing by automating the creation of test cases. However, model-based methods are
generally not well-embraced in large-scale industrial environments. The lack of well-
developed and easy-to-use tools is a major problem that hinders the utilisation of MBT.
Especially the tools for creating test models have been insufficient in many efforts of
deploying the model-based methodology in industrial contexts. A crucial question is how
an average tester without expert knowledge could construct a test model capable of
finding defects effectively.

The aim of this thesis is to provide an answer to this question by conducting constructive
research. By developing an event capturing tool for graphical user interface (GUI) test
automation, a proposal is introduced for easing the model construction performed by
average testers that do not necessarily possess programming or software developing
skills. Likewise, further knowledge is sought by conducting a test modelling case study
with the tool in an industrial context.

The work is based on a domain-specific approach to the model-based GUI testing that
should be easier to adopt than more generic solutions. The method is premised on the
basis of keywords and action words that are considered as best practice in conventional
GUI test automation. Action words model user behaviour at a high level of abstraction
while keywords correspond to GUI navigation. The idea is to capture GUI events directly
and produce keywords from them automatically. These keyword sequences are then
developed into action words and constructed as labelled transition system models.

The results of this study suggest that test modelling without expert knowledge is
conceivable and can be eased by the development of a proper tool. In industrial use it is
especially significant to bring theoretical knowledge into productive action. The event
capturing tool appears to function well for this aim and should ease the adoption of MBT.

 4

Tiivistelmä

TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan osasto
Ohjelmistotekniikan laitos

SATAMA, MIKKO: Käyttöliittymätapahtumien kaappaustyökalu mallipohjaiseen

graafisen käyttöliittymän testausautomaatioon
Diplomityö, 51 sivua, 4 sivua liitteitä
Syyskuu 2006

Ohjaajat: Professori Ilkka Haikala (TTY)
 Vanhempi tutkija Mika Katara (TTY)
Rahoitus: Tampereen teknillinen yliopisto (TTY)
Avainsanat: Ohjelmistojen testaus, testausautomaatio, mallipohjainen testaus

Mallipohjainen testaus merkitsee huomattavaa parannusta tavanomaiseen skripti-
testaukseen automatisoimalla testitapausten luonnin. Mallipohjaisia menetelmiä ei ole
kuitenkaan otettu kovin hyvin vastaan teollisuudessa. Kehittyneiden ja helppokäyttöisten
työkalujen puute on merkittävä ongelma, joka estää mallipohjaisen testauksen
käyttöönottoa. Varsinkin testimallien luontiin käytettävät työkalut ovat olleet
riittämättömiä monissa tapauksissa, joissa on yritetty ottaa mallipohjaista testausta
teolliseen käyttöön. Olennainen kysymys on, kuinka tavanomainen testaaja, jolla ei ole
erityisosaamista, voi rakentaa virheiden tehokkaaseen löytämiseen kykenevän testimallin.

Diplomityön tarkoituksena on pyrkiä löytämään vastaus tähän kysymykseen
konstruktiivisen tutkimuksen muodossa. Työssä kehitetään käyttöliittymätapahtumien
kaappaustyökalu graafisen käyttöliittymän testausautomaatioon. Tällä tavoin pyritään
helpottamaan mallien rakentamista erityisesti tavallisten testaajien kannalta, joilla ei
välttämättä ole ohjelmointitaitoja. Samoin pyritään hankkimaan lisätietoa suorittamalla
konkreettinen testimallinnustapaus työkalulla teollisessa ympäristössä.

Työ perustuu sovellusaluekohtaiseen lähestymistapaan graafisen käyttöliittymän malli-
pohjaiseen testaukseen. Sen pitäisi olla helpompi omaksua kuin yleisemmät ratkaisut.
Menetelmä perustuu avainsanoille ja toimisanoille, joita pidetään parhaana käytäntönä
perinteisessä testausautomaatiossa. Toimisanat mallintavat käyttäjän toimia korkealla
abstraktiotasolla, ja avainsanat vastaavat käyttöliittymässä navigointia. Ideana on kaapata
käyttöliittymätapahtumia suoraan ja tulkita ne avainsanoiksi automaattisesti. Näin
syntyvät avainsanajonot kehitetään edelleen toimisanoiksi, joista koostetaan testimallit.

Diplomityön tulokset osoittavat, että testimallinnus ilman erityisosaamista on mahdollista
ja helpottuu oikeanlaisen työkalun kehittämisen kautta. Teollisessa käytössä on erityisen
tärkeää muuttaa teoreettista tietoa tuottavaksi toiminnaksi. Kehitetty työkalu näyttää
toimivan tässä mielessä hyvin helpottaen mallipohjaisen testauksen käyttöönottoa.

 5

Table of Contents

Acknowledgements... 2

Abstract ... 3

Tiivistelmä .. 4

Definitions and Abbreviations .. 7

List of Figures ... 8

1. Introduction... 9

2. Background... 12

2.1 TEMA Research Project .. 12

2.2 TEMA Tool.. 13

2.3 Tampere Verification Tool .. 16

2.4 Event Capturing Tool as Part of TEMA Tool.. 17

2.5 Testing Target .. 17

3. Theory ... 19

3.1 Principles of Model-Based Testing.. 19

3.2 GUI Test Automation .. 20

3.3 Testing with Action Words and Keywords.. 21

3.4 Labelled Transition Systems.. 21

3.5 Three-Tier Test Model Architecture.. 22

3.6 Choosing Test Modelling Language.. 25

3.7 On-Line vs. Off-Line Testing .. 25

4. Event Capturing Tool.. 27

4.1 Needs for Event Capturing Tool .. 27

4.2 Overall Description.. 28

4.3 Constructing Domain-Specific Test Models.. 29

4.3.1 Top-Down Approach .. 29

4.3.2 Bottom-Up Approach.. 30

4.4 Description of Use ... 31

 6

4.5 Analysis and Design Decisions.. 34

4.6 Implementation Issues ... 35

4.7 Architecture and Class Diagrams... 37

5. Case study ... 41

5.1 Testing in Real Environment ... 41

5.2 Problem Setting and Solving ... 44

5.3 Evaluation .. 45

6. Conclusion .. 46

References... 48

Appendices.. 52

 7

Definitions and Abbreviations

API Application Programming Interface

CSV Comma Separated Values

DLL Dynamic Link Library

GUI Graphical User Interface

IDE Integrated Development Environment

LSTS Labelled State Transition System

LTS Labelled Transition System

MBT Model-Based Testing

MDD Model-Driven Development

MFC Microsoft Foundation Classes

MFTW Mercury Functional Testing for Wireless

MSLU Microsoft Layer for Unicode

MVC Model-View-Controller architecture

QTP Mercury Quick Test Pro

SUT System Under Test

TEKES Teknologian Kehittämiskeskus (Finnish Funding
Agency for Technology and Innovation)

TEMA Test Modelling using Action Words

TTCN Testing and Test Control Notation

TUT Tampere University of Technology

TVT Tampere Verification Tool

UML Unified Modelling Language

 8

List of Figures

Figure 1: TEMA Tool Architecture Diagram p. 14

Figure 2: Mobile Phone Screenshot as seen from MFTW p. 15

Figure 3: Three-Tier Test Model Architecture p. 22

Figure 4: Refinement Machine for Camera Action Machine p. 23

Figure 5: Camera Action Machine p. 24

Figure 6: MBT Process – On-Line vs. Off-Line Testing p. 26

Figure 7: Example of CSV file p. 32

Figure 8: Main Window of Event Capturing Tool p. 33

Figure 9: File Scope of Event Capturing Tool p. 36

Figure 10: Architecture Diagram p. 38

Figure 11: Recorder Class Diagram p. 39

Figure 12: Model Visualisation Example p. 43

Appendix A: Example of LSTS file p. 52

 9

1. Introduction

Model-based testing (MBT) is technologically superior to conventional scripted testing
by automating the creation of test cases and has obvious advantages [1]. Nevertheless,
there have been problems deploying this methodology in industrial environments.
According to Robinson [2] the most common problems in introducing formal testing
methods are 1) managerial problems, 2) problems of making easy-to-use tools, and 3)
problems in reorganising the work with the tools. In this thesis the focus is on the second
problem.

In MBT the test suites are derived from a high-level model that describes the
functionality of the system under test (SUT), and not from test scripts as in conventional
test automation. Accordingly, MBT requires a radically new way of thinking in testing.
This paradigm shift becomes a serious hindrance in industrial deployment unless special
attention is given to the ease of introduction [3].

Moreover, introductory approaches of MBT have been used mostly for testing through
various kinds of application programming interfaces (API). However, this can be
considered a somewhat constricted practice. Another equally important area of
application is testing through a graphical user interface (GUI). This, nonetheless, has
challenges of its own.

Testing a system through a GUI is definitely one of the most complicated testing
manners. Usually this kind of testing is performed by domain experts who are easily able
to confirm the client requirements. However, they do not necessarily possess
programming skills and they need especially easy-to-use tools to support their work.
Compared to testing through an API, testing through a GUI is complex due to the
numerous user interface issues that must be taken into account such as the input of user
commands and the interpretation of output results.

 10

Difficulties in the utilisation of MBT in GUI test automation can be eased by developing
proper conventions and tools. Katara & al. [4] have suggested that a domain-specific
approach to model-based GUI testing is easier to adopt than more generic solutions. This
approach, which is followed in this thesis, also carries a promise to find defects more
efficiently than conventional GUI testing methods.

Although promising proposals for introducing MBT into GUI test automation have been
constructed by e.g. Rosaria & Robinson [5] and Katara & al. [4] there are still open
questions that need to be answered. Firstly, how could an average tester construct a
productive test model that is capable of detecting defects efficiently? Secondly, how to
build an easy-to-use tool for model creation purposes in model-based GUI test
automation?

The aim of this thesis is to provide an answer to these questions by conducting
constructive research. By developing an event capturing tool for GUI test automation, a
proposal is introduced for easing the model construction performed by average testers.
Moreover, further knowledge is sought by conducting a test modelling case study with
the tool in an industrial context.

The event capturing tool, whose development is described in this thesis, is part of a larger
model-based test automation tool being developed within the TEMA research project [6].
The larger tool is called TEMA Tool and the event capturing tool is called Recorder
within TEMA Tool.

The TEMA research project aims at studying MBT thoroughly in GUI test automation.
The project concentrates on developing a domain-specific test modelling language,
developing and describing the required tool set, re-defining testing personnel roles for the
new model-based approach, and performing the actual testing on-line in the Symbian OS
[7] environment. The testing is based on keywords and action words which are seen as
best practice in conventional GUI test automation [8].

It has been suggested that the introduction of MBT tools is eased by developing a
domain-specific modelling language [4]. In an ideal case this could be done by obtaining
test models from design models. However, the problem in this option is that usually the
design models do not exist and there are no tools available for such transformation. In
practice it is often necessary to implement the test models by designing them by hand
from scratch. Test modelling can be eased by capturing GUI events directly and

 11

producing keywords from them automatically. The keyword sequences are then easy to
process further into action words. The event capturing tool is intended for these purposes.

A concrete aim of the event capturing tool is test modelling with keywords and action
words, and the formation of a test model by adding state information in order to enable
loops and branching in the test flow. Accordingly, this tool must not be associated with
the first generation capture/replay tools which have proven to be ineffective [9, pp. 103-
104]. Replay is not conducted at all and the capture functionality is very different. The
event capturing tool records GUI events just like the old capture/replay tools, but instead
of producing scripts that are difficult and laborious to maintain, it produces sequences of
keywords. These sequences are transformed into higher level abstractions called Labelled
Transition Systems (LTS) [10] where action words are used as labels of transitions.
Action words model user behaviour at a high level of abstraction while the keywords
correspond to the GUI navigation. The event capturing tool can be used to define action
word implementations by recording keyword sequences.

The results of this thesis include the event capturing tool for GUI test automation, which
is part of the larger MBT tool being developed within the TEMA project. The event
capturing tool is a proposal for easing the model construction performed by average
testers. Furthermore, the results of the test modelling case study show that modelling
without expert software knowledge is conceivable and can be eased by the development
of a proper tool. In industrial use it is particularly important to bring theoretical
knowledge into productive action. The event capturing tool seems to function well for
this purpose. Likewise, the results of the thesis show that a properly chosen and
developed methodology, and a suitable tool that implements it, improve the ease of use in
an industrial case study and thus make the introduction of MBT easier.

The rest of the thesis is structured as follows. In Chapter 2 the background of the TEMA
research project is discussed to provide essential information on the context of the
research. Chapter 3 describes the theoretical background that is necessary for
understanding and following this thesis. The software development process of the event
capturing tool is presented in Chapter 4. The focus is on the tool design and
implementation issues. Chapter 5 describes the test modelling case study for utilising the
tool in a real environment. The solutions to the research questions are presented as well.
Finally, Chapter 6 draws conclusions on the work performed.

 12

2. Background

This section describes the essential background information that is necessary for
understanding the work of the thesis. The TEMA research project and TEMA Tool are
presented to describe the overall environment to which the event capturing tool is
adopted. The event capturing tool as part of TEMA Tool is discussed as well. In addition,
the testing environment is described briefly.

2.1 TEMA Research Project

This thesis is implemented as part of the TEMA research project (Test Modelling using
Action Words) which is funded by the Finnish Funding Agency for Technology and
Innovation (TEKES). TEMA is a joint project consisting of the contributions of the
Institute of Software Systems at Tampere University of Technology (TUT) and five
business partners: Nokia, Conformiq Software, F-Secure, Plenware Group and Mercury
Interactive.

The aim of the TEMA research project is to study software test automation in the scope
of testing through graphical user interfaces (GUI). The approach is based on the
development of necessary methods and tools. By developing a proper method and a tool
platform for GUI test automation, the testing process in this context is made easier. The
applied methodology is model-based testing (MBT) which denotes that in addition to
automating the execution of test cases the generation of test cases is automated as well.
The method being developed in the TEMA project will be based on test models which
specify the functionality of the system under test (SUT). The test models contain logical
and reusable components that are fabricated with the tools developed in earlier projects.

 13

Accordingly, model-based testing in the scope of GUI test automation is studied
thoroughly within the project. There are a few areas which are considered especially
important to explore. Firstly, the attention is focussed on developing and describing the
required tool set which is necessary for further research. Secondly, a domain-specific test
modelling language is developed as well for test modelling purposes. Thirdly, testing
personnel roles are re-defined for the new model-based approach. The actual testing is
performed in a Symbian OS environment by employing keywords and action words [8].

The underlying general methodology of the TEMA project is based on model-driven
development (MDD). This denotes not only raising the level of abstraction but also the
automatic creation of test cases, and behavioural and functional models of the SUT. A
promising approach to MDD is the utilisation of a domain-specific modelling language.
In theory UML could also be used. However, it is considered too generic and it requires
knowledge that is not necessary in the utilisation of MDD in testing. UML is originally
developed for coding purposes, not for testing purposes, and system testers are not
necessarily fluent with it or with other generic modelling languages. Nevertheless, UML
has been found suitable in MBT introductions as a simulating and structuring language
providing a framework to follow and giving ideas on organising the work [11].

2.2 TEMA Tool

An important contribution of the Institute of Software Systems to the TEMA project is a
large MBT-utilising test automation tool called TEMA Tool. The idea of the tool is to
pilot MBT in on-line testing (Chapter 3.7) through a GUI by performing case studies in
real industrial contexts. The following description is based on reference [4].

TEMA Tool is founded on three components that are being developed. Firstly, the tool
includes a model-based test generator whose tests are run on-line through a GUI.
Secondly, it utilises a commercial GUI test automation system which is extended with
MBT capabilities. Thirdly, its models are developed by a proper design tool set, whose
concepts rely on a particular test model architecture (Chapter 3.5). The model
architecture consists of three tiers that separate important concerns in GUI testing:
navigation in the GUI, high-level actions, and test control related issues.

The architecture of TEMA Tool (Figure 1) consists of three parts: the test tool part, the
model execution part and the design tool part. The test tool part provides an adaptation to
the SUT. The model execution part sees the test tool part as a high-level interface through

 14

which it can execute keywords and follow the execution results. The design tool part
operates as a model creation and design entity.

Design Tool

Adapted Test Tool

MFTW

QuickTestPro

Get keyword

Model Execution Tool

kw

Test Control Test Engine

select

GuidanceCoverage

Get
guidance

Covered?

Test Control Model Test Model

Get control Get data

Model Designer

create Refinement
Machine

Model Composer

create

Test Data

create

Get test

Tool
Adaptation

Test Modeler

execute

Action tier

Test Log

status

SUT 1

SUT N

Test
Visualizer

Execution
info

select

instantiate

Recorder

Test steps

Control tier

Test Manager

Test Model Execution
Specialist

Keyword
Library

status

kw

observe

Action
Machine

Figure 1: TEMA Tool Architecture Diagram [4]

There are two commercial components in the test tool part with which TEMA Tool
interacts: Mercury Functional Testing for Wireless (MFTW) and Quick Test Pro (QTP).
They provide the necessary interaction with the SUT. MFTW creates a connection to a
mobile phone (our SUT) and transfers the SUT’s GUI (display and physical controls) to a
Windows application window (as an image and buttons). MFTW refreshes the screenshot
of the SUT constantly in the application window (Figure 2). It is also able to recognise
text in the screenshot. MFTW can connect several mobile devices at the same time.

 15

Figure 2: Mobile Phone Screenshot as seen from MFTW

MFTW receives events from QTP (which is a general GUI testing tool for Windows
applications) and transfers the events directly to the SUT. The keywords are implemented
with VBScript (the scripting language provided by QTP). This is conducted by
converting the keywords to GUI events in the window of MFTW. There is also a small
communication module (Test Tool Adapter) which connects to the model execution part
of TEMA Tool. The model execution part is a separate application that could be running
in another computer.

As seen in the architecture diagram in Figure 1, the first active component in the model
execution part is the Test Control. When the system is started a Test Control component
is initialised and new Guidance and Coverage components are created to guide the test
run. A visual tool (Model Designer) is used for designing and developing test models. A
test model that can be run is built using the Model Composer.

 16

When a new test run is arranged the Test Model component is initialised and new
Guidance and Coverage components are created. Test Control starts the test run by
passing these three components (Guidance, Coverage, Test Model) to the Test Engine.
During the test run information on the test is sent to the Test Log component. The
contents of Test Log can then be visualised with the Test Visualizer, which can be utilised
both in on-line and off-line modes to observe how the current test is progressing.

The roles connected to the architecture in Figure 1 reflect a re-definition compared to
conventional testing personnel roles. The Test Manager decides the coverage criteria,
defines the entry and exit criteria to the test model execution, and specifies which metrics
are collected. Additionally, the Test Manager focuses on communicating the testing
technology aspects. For example, he explains how MBT differs from conventional testing
and provides recommendations on proceeding with the new approach.

The Test Modeler is essentially a novel role compared to conventional definitions of
testing personnel roles. The central aim of this role is the construction of test models by
utilising the Recorder and Model Designer tools. This can be conducted according to the
product specifications by utilising either the bottom-up or the top-down approach
(Chapter 4.3). Furthermore, the Test Modeler may be responsible for the execution
design along with the model.

The Test Model Execution Specialist investigates the test execution within the test model
to confirm that the model is utilised in accordance with the principles specified by the
Test Manager. The central aim of this role is to report the results and failures onwards.
Additionally, the Test Model Execution Specialist documents the utilisation of test
models and testing software. He should ensure that test models can be reused.

2.3 Tampere Verification Tool

The Model Designer tool is still under construction within the TEMA project and
therefore cannot be utilised yet. In the meanwhile, TEMA Tool and the test modelling
case study of this thesis (Chapter 5) exploit another visualisation tool. This temporary
tool is part of a larger tool set called Tampere Verification Tool (TVT) [12].

TVT is a tool set for error detection and automatic verification of concurrent and reactive
systems. It supports both action and state based verification which are enabled by the
labelled state transition system (LSTS) (Chapter 3.4). LSTSs are utilised for representing
the behaviour of a complete system, or alternatively the behaviour of a component of a

 17

system. TVT comprises tools for advanced state space methods, and a framework for
further tool development. [13]

The visualisation tool (TVT Drawing Tool) is utilised for some modelling tasks within the
TEMA project. It is basically a graphical viewing and editing tool for LSTSs which
calculates layouts for states and transitions and opens a window for a visual presentation.
The dash patterns of the transitions are drawn as coloured arrows and the states are
painted as coloured circles. An illustration of the tool is presented in Chapter 5.

Different line styles are used to differentiate actions. For instance, those actions that are
related to each other could be drawn with shades of the same colour and with different
dash patterns. The dash patterns can be utilised to denote a specific property of the action.
For example a dash pattern consisting of a long line and a short line could indicate
“message 1” and a pattern consisting of a long line and two short lines could indicate
“message 2”. [13]

2.4 Event Capturing Tool as Part of TEMA Tool

In the utilisation of TEMA Tool the Design Tool part (Figure 1) has to be well-
developed. It is essential to design and implement tools that ease the model development
and make it possible for people who might not possess any programming skills, etc. The
event capturing tool (Recorder) functions as a model construction tool in the overall
design process.

One goal of the TEMA project is the development of domain-specific languages for
model-based GUI testing with action words and keywords. This can be done with the
help of the Recorder which converts GUI events into sequences of keywords. These
keyword sequences are associated with action words that correspond to concepts of the
problem domain. The test modelling can be performed with the defined domain-specific
language that includes the action words implemented with the Recorder.

2.5 Testing Target

The piloting and case studies of the TEMA project are performed in a Symbian OS
environment. As Symbian OS is an operating environment designed specifically for
mobile devices the actual testing is implemented on cellular phones (in this case S60-

 18

based). However, there is nothing in the methodology of the TEMA project that prevents
conducting the piloting work in other environments as well. From a technological point
of view, MBT piloting is not restricted to Symbian OS alone.

In Symbian OS, S60 is a mobile phone platform that provides applications a compatible
and common look-and-feel. It is basically a user interface library with some standard
applications. S60 controls essential phone functionality as well as more advanced
applications. Consequently, it makes mobile phones increasingly similar to small
computers. [14]

In the TEMA project, S60 is a common architecture for the product family in which the
case studies are performed. A domain-specific language is developed for S60 enabling
the common utilisation and testing of several products in the S60 product family. The
domain-specific approach is exploited in the TEMA project mainly due to the product
family approach to Symbian OS piloting.

The term “product family” denotes an underlying product platform architecture which is
based on similarity and commonality. It enables developers to reuse and differentiate
products. That is, varying products can be derived from the architecture. Product family
engineering aims at reusing components and structures as much as possible.

S60 is one example of how smart phones and other modern mobile devices have become
increasingly computer-like and increasingly different from embedded systems. However,
they still possess a large number of features that are machine dependent. Therefore, MBT
is seen as an especially suitable approach for testing mobile devices since it eases the
product family testing by raising the level of abstraction while remaining independent
from test script creation and maintenance. Due to the non-deterministic nature of mobile
devices, on-line testing (Chapter 3.7) is a preferred choice in MBT utilisation.

 19

3. Theory

In this section the technological and theoretical background of the work is presented.
Firstly, the principles of model-based testing and the differences between MBT and
conventional test automation are described. Secondly, the special nature of GUI test
automation is taken into account and it is compared to conventional API testing.

3.1 Principles of Model-Based Testing

Model-based testing (MBT) is an advanced software testing methodology in which the
test suites are derived from a high-level model that describes (partly) the functionality of
the SUT and not from test scripts as in conventional test automation. The models can be
developed in parallel with the software design or created afterwards by analysing the
SUT functionality.

MBT is occasionally considered a sort of black-box testing because the test cases are
obtained from a behavioural model and not from the code itself. However, this is not a
correct point of view. Although MBT is usually black-box testing, it can be
interconnected with code-level mechanisms, and the models can be based on source code.

In conventional test automation, test execution is based on some forms of test scripts that
run automatically without human interaction. However, these test scripts are laborious to
manage. When the SUT is changed every test script relating to the change must be
changed. Additionally, test scripts are mostly linear by their nature which hinders their
ability to find defects. The test flow is tied to the script and follows the script execution.
There is a need for looping and branching in the test flow.

 20

Model-based testing carries a promise to solve these problems. It automates not only the
execution of tests but also the creation of test suites. In conventional test automation,
testing denotes executing the test code while in MBT the tests are generated from higher-
level models describing the behaviour of the SUT.

However, it should be noted that MBT is no silver bullet. It is not a solution to all testing
problems. The benefits of MBT are in control variation (enabling looping and branching
in the test flow) and in data variation. Additionally, MBT is suggested to be effective
especially in detecting concurrency related defects [15]. A specific limitation of model-
based GUI test automation is that it can only be utilised relatively late in the software
development process. Hence, a considerable amount of testing has already been
performed prior to the utilisation of MBT through a GUI.

3.2 GUI Test Automation

In most cases MBT has been used for testing through various kinds of APIs. However,
this kind of approach is a limited one. An equally important area of application is system
testing through a GUI. Software developers are usually unwilling to design system-level
APIs solely for testing purposes. In addition, the general-purpose testing tools must be
tailored in order to adapt and use such APIs in an effective way.

There are many general-purpose GUI testing tools available that can be easily utilised.
However, GUI testing tools are usually not greeted without reservations among the test
automation community. This scepticism is often a result of bad experiences in utilising
capture/replay tools that capture mouse movements and key presses, and replay those in
the regression tests.

Capture/replay tools were the first generation test automation tools and had several
problems [9, pp. 103-104]. For example, defects, if any, were found during the capture
phase. Replaying did not provide additional benefit. There were also high maintenance
costs with such tools because the GUI is usually changed more frequently than the other
system and changes to it create a need for change in the GUI test automation scripts.

The times have changed since the introduction of capture/replay tools. As Fewster &
Graham [16] have described, the evolution of test automation moved on to structured test
scripts and later on to data-driven scripts. However, the key problem of scripted testing,
the laborious maintenance, still remained. No real ease was found until the introduction
of keywords and action words.

 21

3.3 Testing with Action Words and Keywords

According to Buwalda [8] the most recommended practice in the test design process is
that the test designers concentrate on high-level concepts, i.e. business process modelling.
This way they can pick the chains of events that are interesting for discovering potential
defects. These concepts (high-level events) are called “action words”. Action words, of
course, require concrete implementations in order to be useful in the test automation.
These simpler implementing events are called keywords.

Action words reflect the actions of users at a high level of abstraction. In the case of a
mobile phone, for example, action words can be such as “add a new contact”, “send an
SMS”, “answer a call”, “browse the calendar” etc. Keywords, instead, map every action
word to a sequence of key strokes, e.g. menu navigation, text inputting etc. Action words
may involve several alternative keyword sequences that implement them.

An example of a keyword in Symbian OS could be kwPressKey which models a key
press. This keyword could be used, for example, in an action word that starts the calendar
application, awStartCalendar. The keywords may include parameters that specify their
functionality. Pressing the key “5” in the keypad could be described as kwPressKey <5>.

Sometimes the difference between action words and keywords is not clear. The most
complicated or the most general keywords could be described as action words as well.
Therefore the conceptual difference must be kept in mind when keywords and action
words are defined. The level of abstraction and the purpose of use are the key factors that
define which events are keywords and which are action words. Keywords are usually
derived from a GUI while action words correspond to the operations of applications. [15]

3.4 Labelled Transition Systems

Labelled transition systems (LTS) are state machines in theoretical computer science,
especially in computational studies. An LTS comprises a set of states and labelled
transitions between the states. LTSs are, however, different from finite state automata
since the group of states in an LTS is not compulsorily finite. This applies to the
transitions as well. If an LTS contains a finite number of states and transitions, it can be
exemplified as a directed graph.

 22

We use basically two variations of labelled transition systems: conventional labelled
transition systems (LTS) and labelled state transition systems (LSTS). The latter differ
from the former in one specific way: the states of LSTSs may contain some information
while the states of LTSs do not. The state information can make the states increasingly
different from each other, thus enabling the expression of different functionality, for
instance. LTSs and LSTSs are used in TEMA Tool and in the event capturing tool for
modelling purposes.

3.5 Three-Tier Test Model Architecture

In order to conduct MBT successfully in GUI test automation, a proper test model
architecture should be designed. Kervinen & al. [17] have developed a three-tier test
model architecture with the intention of performing a case study with it in Symbian OS
environment. This architecture (Figure 3) is utilised in TEMA Tool and it is also the
conceptual basis for the event capturing tool development in this thesis.

Test Control Tier:
Test Control Machines

Action Tier:
Action Machines

Keyword Tier:
Refinement Machines

Adapter and SUT

Test finished,
verdict

Choose test model,
set coverage objectives

Execution
finished

Execute high level
action

Execution status:
success or failureExecute event

Figure 3: Three-Tier Test Model Architecture [17]

 23

The architecture consists of three tiers that distinguish the utilised concepts in GUI
testing:

1. Keywords for navigating in the GUI
2. Action words describing the high-level functional concepts
3. Control words which define the test control related matters

As seen in Figure 3, the lowest-level tier is the Keyword Tier which defines how to
navigate in the GUI. In this tier the LTSs are called refinement machines. They describe
the means of execution for GUI actions. Figure 4 offers an example of a refinement
machine for a S60 cellular phone. The hollow circles represent the states where execution
is led while the black dot denotes the initial state. The arrows define the taken actions.

Figure 4 illustrates implementations of two action words: awVerifyCam and awStartCam.
The latter, which is on the right hand side of the initial state, contains two alternative
keyword implementations. The action of starting the camera is executed by either
pushing the soft right key or making a selection in a menu. The implementation of
awVerifyCam verifies that the application is really running. This verification could
consist of checking whether a certain text appears on the screen as illustrated in Figure 4.

start_awVerifyCam start_awStartCam kwPressKey<SoftLeft>

kwSelectMenu<Camera>
end_awStartCamend_awVerifyCam

kwPressKey<SoftRight>

kw
Ve

rif
yT

ex
t

<C
am

er
a>

Figure 4: Refinement Machine for Camera Action Machine [17]

The intermediate tier is the Action Tier. The LTSs on this level, the action machines,
describe the testable behaviour by using action words which relate to the high-level
concepts. Action words are refined to sequences of keywords by refinement machines in
the keyword tier. When the interactions between two (or more) applications are tested the
required action machine can be built by combining the action machines of these
applications. An example of an action machine in a S60 cellular phone is illustrated in
Figure 5. The notation of circles is similar to the refinement machines. The arrows denote

 24

actions. Initials “aw” indicate an action word while the other names represent
interleaving events.

awStartCam awDeletePhoto awCreateMMS

awCancelMMSawQuit awTakePhoto

awVerify
NoC

am

awVerify
Cam

awVerify
Photo

awVerif
yM

MS

Sleep
TS

W
ak

e TS

W
ak

e TS

Sleep
TS

Sleep
TSW

ak
e T

S

Allow<UseImage>

Figure 5: Camera Action Machine [17]

There are usually Sleep and Wake actions in a typical action machine (Figure 5). These
actions denote points where the execution is allowed to overlap with other action
machines. Sleep is for releasing the control and Wake is for gaining it. The circles drawn
with dashes denote sleeping states. There can also be two other kinds of interleaving
actions: Allow and Req. They are for resource sharing. Allow denotes a point where a
reserved resource is released to be utilised by other action machines. On the contrary, Req
is for requesting and gaining a resource that is required by the action machine.

Due to the requirement of looping and branching in the test flow, there have to be
verifications of the states where the SUT must be in certain situations. Therefore,
effective modelling requires state verifications (sv) in addition to action words (aw).
Although state verifications act as action words in several cases, they should be notated
separately due to clarity reasons. Verifications of states are required in the modelling
because not every action word can be executed in every state of the SUT.

The highest-level tier is the Test Control Tier where the LTSs are called test control
machines. A test model can be constructed by designing LTSs in the two lower-level
tiers. However, in this tier the type of the test is defined (e.g. long period tests, smoke

 25

tests etc.) as well as the coverage objectives. The preferred test guidance heuristics are
also chosen.

3.6 Choosing Test Modelling Language

A major factor in the deployment of MBT is the choice of test modelling language.
Although a proper language is a notable benefit, choosing a modelling language involves
compromises in most cases [18]. The three major types of modelling languages in this
context are domain-specific, test-specific (e.g. TTCN-3 [19]) and generic languages (e.g.
UML).

The modelling languages that can be developed exclusively for the problem domain are a
promising approach to MBT in cases where system testers are not fluent with any generic
modelling language [20]. Due to the product family approach and the S60 platform
(Chapter 2.5), a domain-specific modelling language is a preferred choice in the TEMA
project. This way test modellers do not have to be software development experts, or even
possess programming skills. Moreover, the development costs of the language and the
associated tools are covered over a long period of time.

In the TEMA project, GUI test automation is emphasised and the purpose of the language
choice is to model the behaviour of the cellular phone user at a high level of abstraction.
Thus a domain-specific modelling language is a preferable choice because the focus can
be set on the GUI more accurately than in generic or test-specific options. The utilised
methods for developing the domain-specific language include Labelled Transition
Systems (LTSs) combined with action word and keyword techniques for the test
modelling as described earlier.

3.7 On-Line vs. Off-Line Testing

In addition to modelling the behaviour of the SUT, MBT entails the creation of test cases
and descriptions of test objectives. Similarly, the test case execution in the SUT and the
assessment of the results are involved. [1; 18] An illustration of these actions can be seen
in the upper part of Figure 6. This general approach is usually called off-line testing. On
the other hand, with some non-deterministic SUTs it may be necessary to proceed
according to the observed behaviour. Hence, the test steps can be executed once they are
created. This approach, which is called on-line testing, is sketched in the lower part of

 26

Figure 6. Thus testing becomes a game-like interaction between the SUT and the MBT
tool [21] while test cases and suites are implicit.

Test
Behaviour

Test
Objectives

On-Line?

Generate
Test Suite

Select Next
Test Step

Execute
Test Suite

Execute
Step on

Model & SUT

Evaluate
Test Results

Evaluate
Result

Report
Results

Objectives
Achieved?

No

Yes

No

Yes

Figure 6: MBT Process – On-Line vs. Off-Line Testing [18]

It must be taken into account that the selection between on-line and off-line testing
influences the architecture of the MBT tool. The tool that creates the test cases in the on-
line case needs to be linked to the SUT with an adapter. The adapter’s task is to interpret
all data transfer, input and output, between the SUT and the tool. The process in the off-
line approach is somewhat different: the test cases are created first and they are executed
later in the SUT.

There are also tools which apply both approaches. An example of this kind of tool is
Spec Explorer which is utilised within some Microsoft product groups [22]. In contrast,
TEMA Tool is a pure on-line tool. MFTW and QTP serve as adapters (in addition to
other tasks) between the S60 mobile phone (our SUT) and TEMA Tool. The on-line
approach is also taken into account in the event capturing tool although the execution is
not one of its tasks.

 27

4. Event Capturing Tool

In this chapter the technological body of the thesis is presented. The high-level
requirements for the event capturing tool are clarified first, prior to the overall
description. Test model construction with the tool is also discussed. Special attention is
given to the different types of modelling approaches. Examples of use as well as
implementation-specific issues are presented towards the end of this chapter.

4.1 Needs for Event Capturing Tool

There are two kinds of needs for the development of the event capturing tool for GUI test
automation. Firstly, there are academic needs, open questions and areas of scientific
discussion where progress is needed. Secondly, there are project-specific needs: the
TEMA project and TEMA Tool possess particular development needs and the tool set
needs to be extended.

As noted earlier, some promising proposals for introducing MBT in industrial/corporate
use have been presented in the scientific community. However, there are still open
questions that need to be answered. The manners in which an average tester could build
an effective test model must be explored. Likewise, a study must be conducted on the
development of an easy-to-use tool for model construction purposes in model-based GUI
test automation.

These questions are the main targets of study in this thesis. The development of an event
capturing tool for GUI test automation is a proposal for easing the modelling task of
average testers. Likewise, a test modelling case study is conducted with a commercial
SUT (a Symbian S60 mobile phone) to test the utilisation of the tool and to retrieve

 28

knowledge on how an average tester could build an efficient test model that can be used
for detecting defects effectively.

Within TEMA Tool the Design Tool part (Figure 1, p. 14) has to be designed well. It is
particularly important to develop tools that ease the model construction and make it
possible for people who have not acquired programming expertise. In this context the
event capturing tool operates as a model fabrication tool in the general design process.

One goal of the TEMA project is to develop domain-specific languages for model-based
GUI testing with action words and keywords. The event capturing tool can be useful in
this process for it converts GUI events into sequences of keywords that function as
implementations of higher-level action words that correspond to concepts of the problem
domain. The keyword sequences are associated with action words within the event
capturing tool with the intention of creating model material.

The test modelling can be performed with the defined domain-specific language,
including the action words implemented with the event capturing tool. The modelling is
made easier by catching GUI events directly and producing keywords from them
automatically. The keyword sequences are then easy to develop further into action words
which the LTSs consist of.

4.2 Overall Description

The event capturing tool records GUI events in a similar manner to the old capture/replay
tools. However, instead of generating scripts that are laborious and difficult to maintain,
it generates keyword sequences which are developed into LTSs in which action words are
utilised as transition labels. Keywords describe the GUI navigation while action words
correspond to the user behaviour at a high level of abstraction. The keyword sequences
recorded by the event capturing tool are linked to action words as implementations.

As noted earlier, the introduction of MBT tools can be eased by developing a domain-
specific modelling language. Ideally the language can be achieved from the design
model. Nevertheless, the difficulty in this alternative is that the design model does not
necessarily exist in a normal case and there are no available transformation tools. In
practice, it is usually recommended to construct the test models by developing them
manually from scratch. The event capturing tool is helpful in this process.

 29

It is important to emphasise that the event capturing tool must not be associated with the
first generation capture/replay tools which are generally ineffective [9, pp. 103-104]. The
event capturing tool does not conduct replay, and the capture functionality is very
different. The tool captures user events, interprets them as keywords, and interconnects
them as implementations of higher level action words that the behavioural model is
composed of. The idea of the tool is test modelling with keywords and action words and
the fabrication of a testing model by adding state information with the intention of
enabling branching and looping in the test flow (executed by other tools).

4.3 Constructing Domain-Specific Test Models

The utilised action words define a domain-specific language for the domain. In the
TEMA project this is applied to test modelling in two ways: top-down approach and
bottom-up approach [4].

4.3.1 Top-Down Approach

If the focus is on the maintenance of the test models the top-down approach is preferable.
In this approach the starting point of the modelling is the action word model. There are,
however, several options for proceeding.

Firstly, the test modeller might possess some action words that do not involve one or
more keyword sequences implementing them. In that case the top-down approach is
utilised as a complementing method for achieving a solid model. A second option is that
an implementation of an action word needs to be altered. For instance, this might be due
to changes in the keyboard for the next product in the product family. Thus, this option is
seen as a maintaining method.

A third way is to start the modelling from scratch by drawing an LTS of the action word
model and opening it in the event capturing tool. In this option there are no keyword
implementations for the action words at all at first. They are inserted one-by-one to
implement selected action words.

The event capturing tool can be used to record the keyword sequences in all of these
situations. Subsequent to selecting an action word the recording is started and the tool
adds the detected keywords to the sequence by using the GUI of Mercury Functional

 30

Testing for Wireless (MFTW). The modeller can also override or delete an existing
keyword sequence by recording a new one or by editing the implementation manually.

4.3.2 Bottom-Up Approach

When the test models are constructed for a product family the bottom-up approach is
preferable. In this approach the event capturing tool is utilised for building the test
models from scratch. The test modelling is started by recording a test with the event
capturing tool utilising the GUI provided by MFTW.

As the keywords are recognised the tool enters them into the end of the sequence. Free-
form text can be inserted between the keywords to define the states of the SUT where the
execution can, has to, or must not be. This allows branching and looping in the test model
afterwards. Without looping and branching the tests generated from the models would be
similar to linear and static test scripts with their limitations in finding defects effectively.

The recording requires also verification keywords (verification words) that check whether
the desired text exists on the screen or not. These verifications could be performed
subsequent to every event. However, that would weaken the performance. The other
option is to place the verifications only subsequent to whole action word sequences but
that would make debugging more difficult. Thus the choice between these two options is
always a compromise. The person who constructs the test model has to make a design
decision whether to emphasise performance or debugging ability.

When the test recording is finished the sequence of keywords is split into action words
with the Model Designer tool. Model Designer reads in the generated keyword sequences
and visualises them as LTSs. In the LTSs those states that carry equal names are equated
for retrieving loops. Whenever there are states that act as the ending and beginning points
of more than one loop (and the loops are equivalent to the same event sequences) the tool
asks the user whether or not to delete the redundant ones.

The Model Designer tool tries to find the keyword sequences that match the ones that
have been archived and suggests replacing them with the corresponding action words.
The user has to select keywords and enter an action word name in order to archive a new
sub-sequence. The sub-sequences must not contain branching. The process of recognising
keyword sub-sequences and replacing them with action word names is continued until the
model contains only action words. An alternative way of doing this is to recognise the
names of the beginning and ending states of the keyword sub-sequences, and if the names

 31

match with the ones in the archive, replace the corresponding sub-sequence with an
action word.

Subsequent to the replacement process, the model is finished by inserting sleeping states
to places where the execution is allowed to overlap with other action machines. In
addition, Allow and Req transitions can be inserted in these points for resource sharing.
Req is for requesting resources and Allow is for releasing them.

4.4 Description of Use

The event capturing tool recognises two file formats: labelled state transition systems
(.lsts) and comma separated values (.csv). In the case of LSTSs the opened files contain
all necessary information for defining a valid state machine. However, the tool reads in
only action words and state verifications and lists them in a list control in its main
window. State verifications act like action words in the event capturing tool. An example
of an LSTS file is shown in Appendix A.

CSV is the internal file format of the tool (Figure 7 illustrates an example). Within a
CSV file, action words are listed at the beginning of every line that does not start with a
comma. The lines that start with a comma are the keywords of the previous action word
in the file. In the same line with a keyword are its parameters separated with a comma but
not with a new line. A new line would indicate a new keyword. If there are several
alternative implementations of an action word, the name of the action word is repeated in
the file followed by another keyword sequence. CSVs can be opened for example in
Microsoft Excel and LSTSs with a visualising tool (e.g. TVT [13]).

In a typical CSV file (Figure 7) the text string initials denote the types of abstraction
which the strings represent. For instance, “kw” denotes a keyword, “aw” refers to an
action word, and “sv” indicates a state verification. The keyword parameters are usually
in angle brackets or in inverted commas. A tilde (~) denotes a negation of a keyword.
That is, the execution of the keyword is not successful. For example, ~kw_VerifyText,
'Gallery' means that the string “Gallery” must not be found on the screen.

 32

GalleryImages_s60.csv

awNext
, kw_PressHardKey, <South>
awVerifyImageSelected
, kw_PressHardKey, <SoftLeft>
, ~kw_VerifyText, 'Download'
, kw_PressHardKey, <SoftRight>
awOpenImage
, kw_PressHardKey, <CenterPush>
awToMain
, kw_PressHardKey, <SoftRight>
awToVideoClips
, kw_PressHardKey, <East>
awFromMain
, kw_PressHardKey, <CenterPush>
awFromVideoClips
, kw_PressHardKey, <West>
awBack
, kw_PressHardKey, <SoftRight>
awNext
, kw_PressHardKey, <North>
awVerifyImageSelected
, kw_PressHardKey, <SoftLeft>
, kw_VerifyText, 'Download'
, kw_PressHardKey, <SoftRight>
, kw_PressHardKey, <South>
awVerifyImageSelected
, kw_PressHardKey, <SoftLeft>
, kw_VerifyText, 'Download'
, kw_PressHardKey, <SoftRight>
, kw_PressHardKey, <North>
svGalleryImages
, kw_VerifyText, 'Images'
, ~kw_VerifyText, 'Gallery'

Figure 7: Example of CSV file

The event capturing tool is a dialog-based Windows application which denotes that its
main view is a Windows dialog. No menus exist. As can be seen in Figure 8 there are
several controls in the dialog that correspond to the associated actions. The controls
inside the Source Selection box are for file opening, shortcutting and viewing the type of
the model and the mobile phone. The Action Word Selection box contains the list of
action words and the corresponding numbers of their implementations. In this box new
action words can be created and existing ones deleted.

The keyword implementations of the selected action word are viewed and edited with the
controls of the Keyword Sequences box. The keywords and their parameters can be edited
freely. The list on the right (Figure 8) contains some common keywords. If a file

 33

“KwList.txt” (Figure 9) exists in the same directory as the main executable of the tool,
the keywords are taken from it. If it does not exist, the hard-coded keywords, seen in
Figure 8, are listed instead. (KwList.txt is not in CSV format. It is just a list where
keywords are separated by a new line.) The Recording box contains the start and stop
buttons for recording. The recording, once started, adds every recognised keyword to the
end of the keyword list on the left. From the Operations box the model can be saved to a
file and the application exited.

Figure 8: Main Window of Event Capturing Tool

In the case of an LSTS file there is only a list of action words (“aw” initials) and state
verifications (“sv” initials) at first. No keyword implementations exist. The modelling is

 34

started by selecting the desired action word in the list and adding keywords as its
implementation. This can be done by either recording the keywords from the GUI of
MFTW or entering and editing the keywords manually. When all the action words
involve at least one keyword implementation the model is complete and ready for later
processing.

CSV files might contain only action words but usually they also contain keyword
implementations and keyword parameters. In most cases CSVs are opened for altering or
extending the model. However, they might also be unfinished models when a large model
is constructed in a piece-by-piece manner.

4.5 Analysis and Design Decisions

It was clear in the beginning of the development that the event capturing tool would
require many GUI controls. The needs for manipulating action words, keywords and
keyword parameters affected the design decision whether to use classic menus, right-
click pop-ups, task bars or dialog controls. In this case dialog controls seemed to provide
the best usability. Thus the solution was built as a dialog-based application.

The fact that Mercury Functional Testing for Wireless (MFTW) is a Windows application
determined the operating environment of the event capturing tool. Cross-platform
solutions, although technologically advanced, would have required too much effort and
provided too little advantage. By contrast, Windows provides beneficial opportunities for
GUI event capturing and interpretation. Developing the event capturing tool as a
Windows application was therefore an easy design decision.

The requirements for the event capturing tool included the demand to process LSTS files.
However, it was still undecided what would be the file format for the models containing
keyword implementations. If the format was too complicated, it would limit the choices
for the model processing with other tools afterwards. The comma separated values (CSV)
file format seemed to be a suitable choice. It is simple and widely understood by
programs but it is also expressive enough for the purposes of test modelling. One specific
reason for choosing CSV was that Microsoft Excel supports it. CSV files can be opened,
edited and processed further in Excel.

Due to the decision that the event capturing tool will be a Windows application the GUI
event capturing techniques had to be Windows low-level mechanisms. Therefore, it was
not profitable to implement the application within Java Swing or .NET frameworks.

 35

Managed code in .NET and Windows interface in Java would have required a
considerable amount of additional unnecessary work and exposed the implementation to
many potential coding defects and difficulties. On the other hand, the native Win32 API
would have required unjustifiable effort regarding GUI-specific issues and control
implementation. Hence, the Microsoft Foundation Classes (MFC), which is basically a
large wrapper of Win32 API functions, seemed to be a suitable choice as the
development framework.

MFC is a framework strongly connected to Microsoft. Thus it seemed natural to take this
into account when selecting the integrated development environment (IDE). Although
IDE manufacturers emphasise the overall compatibility of their products, the experiences
of many senior software developers have shown that this might not always be the case.
Microsoft Visual Studio seemed to be a secure choice as the IDE due to its close
connection to MFC.

Since the choice was made to develop a dialog-based application, the architectural design
was a fairly simple task. The main window would be the main class that utilises various
other dialog classes (helper dialogs), clarifying concept classes and classes implementing
the recording properties. No real requirement occurred for separating the view layer from
the controller as the typical Model-View-Controller (MVC) architecture does. In dialog-
based applications the view and control parts are closely connected and thus it is not de
rigueur to apply the MVC style that is typical for the general GUI application
development. The architecture and class diagrams are illustrated in Chapter 4.7.

4.6 Implementation Issues

Microsoft Windows operating system provides a mechanism called “hooks” that allows
the programmer to catch messages before they reach their destination.
(Messages are a technique for the inter-process communication in Windows.) The hooks
must be situated in a separate DLL file (Hooks.dll in Figure 9). Furthermore, the
implementation requires a couple of MFC-dependent DLLs (mfc71.dll, mfc71d.dll,
msvrc71.dll, msvrc71d.dll) that need to be located in the environment variable path or in
the same directory with the main executable. The overall file scope of the event capturing
tool can be seen in Figure 9. Recorder.exe is dependent on Hooks.dll and uses MFC-
dependent DLLs. If KwList.txt exists in the same directory as the main executable, the
pre-defined keywords are taken from it.

 36

Recorder.exe

Hooks.dll

msvrc71.dll

mfc71.dll

mfc71d.dll

KwList.txt

msvrc71d.dll

Figure 9: File Scope of Event Capturing Tool

The implementation of the recording functionality required some functions that are
available only in Windows 2000/XP environment. This fact limits the number of
platforms on which the event capturing tool can be utilised. In theory Windows 98/ME
should provide the same functionality if the Microsoft Layer for Unicode (MSLU) is
installed properly. However, Windows 98/ME environment was seen as a less important
platform and thus the event capturing tool was not tested on it. It was more important to
prioritise the platform testing in emulator use. The event capturing tool was smoke tested
on Wine Windows emulator with no problems.

Due to the nature of GUI event capturing and the need for attaching the event capturing
tool to the MFTW’s user interface, the implementation was not a straight-forward task.
For example, the need to retrieve information from another program’s list-view control
required “stealing” its memory. Naturally a pointer must be passed to the target
application. However, the way that Windows uses virtual memory makes cross-
application pointers invalid.

Microsoft Windows allocates memory to all of its programs by using virtual memory. It
makes programs “believe” that they possess many gigabytes of memory. Furthermore,
Windows prevents programs from using each other's memory. Hence, if one program
fails the whole system is not terminated. Under these circumstances the only option for

 37

retrieving the correct information is to utilise Windows functions like VirtualAllocEx,
VirtualFreeEx, ReadProcessMemory and WriteProcessMemory to create an inter-process
memory bridge.

There were also other programming tricks like this that had to be accomplished in order
to achieve full access to the GUI of another application. Therefore, the implementation of
the event capturing tool was far from primitive programming. If the problems were not
fatal (i.e. did not prevent the utilisation) and a premium solution would have required far
too much effort, the problems were left unsolved. For instance, attaching the hooks
properly when two displays are connected to the system would have been a far too
complex task to accomplish in such a small project like a constructive study of a master’s
thesis. It should be noted that even various commercially available testing tools have not
been able to eliminate this problem.

4.7 Architecture and Class Diagrams

As noted in Chapter 4.5 there is no real separation between view and control parts in the
architecture of the event capturing tool. The application is constructed by utilising a
general IDE-provided application framework for dialog-based applications (Figure 10).
The main dialog with its helper dialogs serve as both view and control parts while the
journal processor and the hooks function only in control purposes. The data model is
separated from the view & control part and is used from within the main dialog.

This architecture allows a somewhat good separation of concepts. For instance, if the
recording functionality needs to be changed, because the linked application (currently
Mercury Functional Testing for Wireless) must be changed for some reason, only the
journal processor part has to be re-implemented. Moreover, if a need occurs for
additional properties that require user interaction, the main dialog does not have to be
altered. Only a new helper dialog class has to be added and implemented.

 38

Application Framework

Helper Dialogs Main Dialog

Journal ProcessorHooks

Control

View & Control

Data Model

GUI Application

Figure 10: Architecture Diagram

Since the event capturing tool is a dialog based application, the dialog window and its
controls are crucial and central. They are located in the main dialog class
CTEMARecorderDlg. As Figure 11 shows, this dialog class utilises most other classes in
the application. The classes on the left (CAboutDlg, CPropDlg, NewAwDlg,
RecogniseDlg) correspond to the other dialogs of the application. CAboutDlg is
responsible for the “About”-screen, CPropDlg is for editing the keywords and their
properties, NewAwDlg creates a new action word, and RecogniseDlg is used for text
recognition in the recording mode of the application. The classes on the top
(CTEMARecorderApp, CTEMARecorderDlgAutoProxy) are responsible for the general
Windows application routines. The AcionWord and KeyWord classes describe the domain
concepts.

 39

ActionWord

CAboutDlg

CTEMARecorderApp

CPropDlg

CTEMARecorderDlgAutoProxy

CTEMARecorderDlg

JournalProcessor

KeyWord

NewAwDlg

RecogniseDlg

CTemaHooksApp GLOBALS

<< helper dialogs >>

Container

<< application framework >>

*

*

1

<< data model >>

<< hooks >>

1

1

1

1
1

1

1 1

1

1

1 1

1 1

1

1

Figure 11: Recorder Class Diagram

 40

JournalProcessor class is responsible for all the recording properties of the event
capturing tool. It processes all the user events and interprets them as keywords.
JournalProcessor utilises the Hooks.dll file which contains the low level functionality to
capture Windows messages. Hooks.dll contains CTEMAHooksApp class, which is for the
application management, and GLOBALS file scope that contains low level operations for
attaching to the operating system’s message transmission.

 41

5. Case study

One of the objectives of this thesis work was to study how the event capturing tool could
be utilised in real test modelling and how it could simplify the tasks of an ordinary tester.
The test modeller’s job (Figure 1, p. 14) is to perform the actual modelling: setting
proper action words and refining them with keyword implementations. How would the
event capturing tool be employed in this process?

5.1 Testing in Real Environment

It was necessary to utilise the event capturing tool in a real environment subsequent to its
implementation. In addition, there was a prominent need for test modelling in the
Symbian S60 environment within the TEMA project. As a consequence, the key
functionalities of an S60 mobile phone were decided to be modelled with the event
capturing tool. The questions on the applicability of the tool and the ease of introduction
were taken into account during the modelling.

The concrete modelling was focussed on ten applications e.g. gallery and calendar. A few
dozen test models were constructed. Both top-down and bottom-up approaches (Chapter
4.3) were utilised. However, in several cases with the S60 mobile phone it appeared to be
effective to use a combined form of these approaches. That is, some action words are
constructed with the top-down approach and others with the bottom-up approach.

The case study was performed at a university location, but otherwise the testing
environment resembled as much as possible a real environment. The tester who
performed the actual test modelling in the case study was a summer job worker (a
student) at the Institute of Software Systems. Over a period of two months, he
concentrated on test modelling with the event capturing tool and visualising models with

 42

the temporary substitute of Model Designer – the visualisation tool of TVT (Chapter 2.3).
The tester had taken courses on programming etc., but did not possess prior experience
on software testing or industrial software development.

In the case of bottom-up approach the tester started the modelling by selecting the
application to be modelled in the SUT. First, prior to any technical action, the tester
sought an overall understanding on how the application operated. Subsequent to that the
tester attempted to decipher how to describe the functionality of the application with
action words. An action word model was constructed with the visual modelling tool
(Figure 12) of TVT.

When the top-down approach was used the tester sought all the possible ways in which
the action word model could be implemented as keywords. The tester opened the action
word models in the event capturing tool and either recorded the keyword
implementations or added them manually.

The utilisation in practice showed that the most difficult part of the modelling was the
functionality that required looping. The possible solutions appeared to be additional state
information added within the event capturing tool and the loop construction in a visual
modelling tool. A classic solution would require one action word per each loop iteration.
However, that would expand the model exponentially.

Some useful tips on improving the event capturing tool were reported as well during the
modelling. This showed that the maintenance of the test tool is important and must be
taken into account pending the introduction of the tool and subsequent to it. The old
wisdom seemed to be true: if the user’s needs for maintenance should cease it is a sign of
abandoning the tool.

Visualisation tools (Model Designer) are still under construction in the TEMA project.
Nonetheless, an acceptable first-phase tool already exists (i.e. TVT) to demonstrate the
model visualisations. An example of model visualisation can be seen in Figure 12. The
model of which visualisation is shown in Figure 12 describes the FileManager
application in an S60 mobile phone.

Various suggestions for improving the TVT visualisation tool were reported pending the
test modelling case study. They involved mainly usability and clarity issues. For
example, the names of the actions could be visible in the model aside the dash patterns.
This would clarify the model and make it more understandable for other people than the
modeller. Additionally, a requirement occurred for placing nodes and dash patterns in

 43

different layers (that can be set invisible when needed). Currently several models are
quite confusing due to this limitation. A possibility to change the order of action names in
the list was required as well. Subsequent to several additions, removals and fixes, the
actions were listed in a very arbitrary order. There was also a need for a snap-to-grid
property which would improve the visual representation by clarifying the layout. These
findings provide important feedback for the future development of Model Designer.

Figure 12: Model Visualisation Example

In model visualisations (Figure 12) the hollow circles represent the states of the SUT.
The circles filled with turquoise colour are sleep states where the test flow can be
transferred to other models. The other coloured circles represent state verifications (sv-
initials in the list on the left of Figure 12) which are utilised to assure that the test flow is

 44

in a correct state. The transitions (represented by arrows) correspond to the actions taken
described by action words (aw-initials in Figure 12).

5.2 Problem Setting and Solving

The research questions of the thesis are:

1. How to develop an easy-to-use tool support for model creation purposes in model-
based GUI test automation?

2. How could an average tester construct a productive test model that is capable of

detecting defects efficiently?

A solution to the first question is the event capturing tool and its development which are
described in Chapter 4. In practice it is often necessary to construct test models by
designing them by hand from scratch. Test modelling can be eased by capturing GUI
events directly and producing keywords from them automatically. The keyword
sequences are then easy to process further into action words. A tool that suits these aims
should advance the ease of use and thus simplify the introduction of MBT.

Moreover, the tool development showed that it is particularly necessary to take the
operating system specific issues into account. These issues may take a major amount of
development time. It was also noticed that the problem domain concepts must be
prioritised. Additionally, a practical architecture design improves the re-usability of the
tool and eases maintenance.

The second question was studied by performing the actual test modelling with the tool for
and within the TEMA project. The industrial case study was conducted on a S60 mobile
phone by modelling the most essential parts of its functionality from the testing point of
view. The case study showed that it was not necessary for the test modeller to possess
programming skills or understanding of the software development process. Some
requirements for improving the usability and editing properties were discovered. These
improvements would decrease the amount of manual manipulation of the models and
therefore reduce the need for understanding implementation-specific issues.

 45

5.3 Evaluation

The actual test modelling in a real environment provided a concrete way to observe how
the event capturing tool could be utilised and if it really concealed the programming side
and implementation-specific issues that easily become bottlenecks in conventional testing
deployments. It was observed that the modelling with the event capturing tool was
successful from an introductory point of view. No programming skills were required
during the test modelling case study. In addition, those parts that required some
knowledge on the implementation were possible to solve by improving the usability and
properties of the tool.

In terms of modelling complexity, the Symbian OS S60 mobile phone was found to be
intermediate but by no means trivial. There were some areas of logic, such as the SMS
functionality connected to contacts application, which required deeper acquaintance with
the SUT than an ordinary user would possess.

 46

6. Conclusion

Model-based testing (MBT) involves several significant benefits compared to
conventional scripted testing (e.g. automatic creation of test cases). However, problems
occur frequently in the deployment of this methodology in industrial and corporate
contexts. There are usually managerial problems, problems of making easy-to-use tools,
and problems with reorganising the work with the tools. The focus of this thesis is on the
tool problem.

Moreover, MBT introductions have been utilised mainly for API testing although it is
equally important to conduct the testing through a GUI. Especially in GUI testing the
testers must be aware of the client requirements and demands. Thus this kind of testing is
usually performed by environment experts who do not necessarily possess programming
skills and therefore need easy-to-use tools to support their work. The question of tools is
particularly important in GUI testing.

Notwithstanding some promising proposals of MBT for GUI test automation, presented
by e.g. Rosaria & Robinson [5] and Katara & al. [4], there are still open questions that
need to be answered. Firstly, how could an average tester construct a productive test
model that is capable of detecting defects efficiently? Secondly, how to build an easy-to-
use tool for model creation purposes in model-based GUI test automation? The intention
of this thesis is to provide solutions to these questions.

The outcome of the work is an event capturing tool, its development and a test modelling
case study (Chapter 5) conducted with it in an industrial context with a commercial SUT,
a Symbian S60 mobile phone. By developing an event capturing tool for GUI test
automation, a proposal is introduced for easing the model construction performed by
average testers that do not necessary possess programming or software developing skills.
In addition, a test modelling case study is conducted with a commercial SUT to test the

 47

applicability of the tool and to gain knowledge on how an average tester could construct a
productive test model that is capable of detecting defects efficiently.

As a result of the study, it was discovered that the test modelling without expert software
knowledge is conceivable and will be simplified by developing a proper tool. The test
modelling did not require understanding of the programming issues since the problem
domain concepts were emphasised in the tool. Some implementation-specific knowledge
was needed. However, this was fixed by improving the usability of the tool. In industrial
deployment it is particularly significant to bring theoretical knowledge into productive
action. The event capturing tool appears to function well towards this aim.

The results show that a properly selected and developed methodology and an appropriate
tool that implements it enhances the ease of use in an industrial case and thus make the
introduction easier. Further, the practical applications of this work include the ability to
link it to TEMA Tool and thus be a part of a larger technological study on MBT. The
results were as expected and support earlier research and findings by e.g. Kervinen & al.
[15] and Fewster & Graham [16].

The tool question is only one part of the process of easing the introduction of MBT in an
industrial environment. The questions regarding the test personnel roles and other
managerial problems need to be studied more thoroughly in the future. In addition, the
problems on reorganising the work with the tools are an area of application that must be
examined more in-depth. The parallel introduction of managerial and organisational
solutions with the technological solution has to be analysed carefully as well.

The contributions of this thesis challenge to take the model-based paradigm increasingly
to the very core of the whole software development process. Further research could be
conducted on how to combine MBT with model-based analysis, design, implementation
and maintenance of software to create a solid model-based software development theory
and its applications.

 48

References

[1] El-Far, I.K., Whittaker, J.A.

Model-based Software Testing.
In: Marciniak J.J. (ed.).
Encyclopedia of Software Engineering.
New York, USA 2001, Wiley.

[2] Robinson H.

Obstacles and Opportunities for Model-Based Testing in an Industrial
Software Environment.
In Proceedings of the 1st European Conference on Model-Driven
Software Engineering,
Nuremberg, Germany, December 2003.
Germany 2003, Imbus AG.
pp. 118–127.
Available at:
http://www.model-based-testing.org/ObstaclesAndOpportunities.pdf.

 [Referred May 2006]

[3] Blackburn, M., Busser, R., Nauman, A.

Why Model-Based Test Automation is Different and What You Should
Know to Get Started.
In Proceedings of the International Conference on Practical Software
Quality and Testing, PSQT/PSTT'2004 East.
Washington, D.C., USA,
March 22-26, 2004.
Software Productivity Consortioum, 2004.

 49

[4] Katara, M., Kervinen, A., Maunumaa, M., Pääkkönen, T., Satama, M.

Towards Deploying Model-Based Testing with a Domain-Specific
Modeling Approach.
In Proceedings of the Testing: Academia & Industry Conference –
Practice And Research Techniques, TAIC-PART 2006.
Cumberland Lodge, Windsor, UK,
August 29-31, 2006.
IEEE Computer Society, 2006.

[5] Rosaria, S., Robinson, H.

Applying Models in Your Testing Process.
Information and Software Technology 42(2000)12,
pp. 815-824.

[6] TEMA Research Project homepage.
 Available at: http://practise.cs.tut.fi/project.php?project=tema

[Referred July 2006]

[7] Symbian Ltd.

Symbian Operating System homepage.
Available at: http://www.symbian.com
[Referred May 2006].

[8] Buwalda, H.

Action Figures.
Software Testing and Quality Engineering 5(2003)2,
pp. 42–47.

[9] Kaner, C., Bach, J., Pettichord, B.

Lessons Learned in Software Testing.
New York, USA 2002, Wiley.
286 p.

[10] Bergstra, J.A., Klop, J.W.
 Algebra of Communicating Processes with Abstraction.
 Theoretical Computer Science 37(1985)1,
 pp. 77-121.

 50

[11] Cankar, N.
 Model-Based Testing Using UML.
 Master of Science Thesis.

Helsinki 2003.
 Helsinki University of Technology.

[12] Virtanen, H., Hansen, H., Nieminen, J., Erkkilä, T.

Tampere Verification Tool.
In Proceedings of TACAS 2004.
Vol. 2988 in Lecture Notes in Computer Science,
Springer, 2004.

[13] Tampere Verification Tool homepage.

Available at: http://www.cs.tut.fi/ohj/VARG/TVT
 [Referred July 2006]

[14] S60 homepage.
 Available at: http://www.s60.com
 [Referred July 2006]

[15] Kervinen, A., Maunumaa, M., Pääkkönen, T., Katara, M.

Model-Based Testing through a GUI.
In Proceedings of the Formal Approaches to Software Testing,
5th International Workshop, FATES 2005,
Vol. 3997 in Lecture Notes in Computer Science,
Edinburgh, UK, July 11, 2005.

 Springer, 2006.

[16] Fewster, M., Graham, D.

Software Test Automation: Effective use of test execution tools.
New York, USA 1999, Addison Wesley.
574 p.

[17] Kervinen, A., Maunumaa, M., Katara, M.

Controlling Testing Using Three-Tier Model Architecture.
In Proceedings of the 2nd International Workshop on Model-Based
Testing, MBT'06,
Satellite workshop of ETAPS 2006,
Vienna, Austria, March 25-26, 2006.

 51

[18] Hartman, A., Katara, M., Olvovsky, S.

On Choosing a Test Modeling Language.
Unpublished manuscript.

 Haifa, Israel, 2006.

[19] TTCN-3 homepage.
 Available at: http://www.ttcn-3.org/
 [Referred July 2006]

[20] Domain-Specific Modelling Forum.

DSM case studies and examples.
Available at: http://www.dsmforum.org/cases.html
[Referred May 2006].

[21] Nachmanson, L., Veanes, M., Schulte, W., Tillmann, N., Grieskamp, W.

Optimal Strategies for Testing Nondeterministic Systems.
In Proceedings of the International Symposium on Software Testing and
Analysis, ACM SIGSOFT 2004,
Boston, MA, USA, July 11-14, 2004.
ACM Press, 2004.
pp. 55–64.

[22] Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W.,

Tillmann, N., Veanes, M.
Testing Concurrent Object Oriented Systems with Spec Explorer.
In Proceedings of the Formal Methods 2005,
Vol. 3582 in Lecture Notes in Computer Science.
Springer, 2005.
pp. 542–547.

 52

Appendices

Appendix A: Example of LSTS file

The example in this appendix is an LSTS file that contains information concerning a
gallery application within a Symbian S60 mobile phone. The event capturing tool extracts
only action words (aw) and state verifications (sv) out of an LSTS file. The actual state
machine of a file such as this can be visualised with other tools.

Begin Lsts

Begin History

 1
 "gallery-aw-kw.lsts"
 "13.01.2005 11:52 <command line not given>"
 "States: 28. Transitions: 37."

End History

Begin Header

 State_cnt = 28
 Action_cnt = 36
 Transition_cnt = 37
 State_prop_cnt = 5
 Initial_states = 1;

End Header

 53

Begin Action_names

 1 = "start_awStartGallery"
 2 = "end_awStartGallery"
 3 = "start_awVerifyGallery"
 4 = "end_awVerifyGallery"
 5 = "start_awVerifyImage"
 6 = "end_awVerifyImage"
 7 = "start_awViewImageFS"
 8 = "end_awViewImageFS"
 9 = "start_awVerifyImageFS"
 10 = "end_awVerifyImageFS"
 11 = "?kwStartApp<'Gallery'>"
 12 = "?kwVerifyText<'Images',Invert_off>"
 13 = "?kwVerifyText<'Video clips',Invert_off>"
 14 = "?kwPressKey<CenterPush>"
 15 = "?kwPressKey<South>"
 16 = "?kwPressKey<SoftLeft>"
 17 = "~?kwVerifyText<'Options',Invert_off>"
 18 = "~?kwVerifyText<'Back',Invert_off>"
 19 = "start_awImageList"
 20 = "end_awImageList"
 21 = "start_awVerifyImageList"
 22 = "end_awVerifyImageList"
 23 = "start_awSoundClipList"
 24 = "end_awSoundClipList"
 25 = "start_awVerifySoundClipList"
 26 = "end_awVerifySoundClipList"
 27 = "?kwVerifyText<'Sound downlds.',Invert_off>"
 28 = "start_awGetBack"
 29 = "end_awGetBack"
 30 = "?kwPressKey<SoftRight>"
 31 = "?kwSelectMenu<'Full screen'>"
 32 = "?kwSelectMenu<'Sound clips'>"
 33 = "?kwSelectMenu<'Images'>"
 34 = "start_awGetBackFromSoundClipList"
 35 = "end_awGetBackFromSoundClipList"
 36 = "?kwPressKey<North>"

End Action_names

Begin State_props

 "Gallery main menu" : 2 15 18;
 "Gallery/Images, there is at least one image" :;
 "Gallery/Images/Image is showed" : 3 9;
 "Gallery/Images/Image in full screen" : 12;
 "Gallery/Sound clips" :;

End State_props

 54

Begin Transitions

 1: 5,1 2,3 9,5 3,7 12,9 15,19 17,21 18,23 20,25 22,
 28 24,34;
 2: 8,12;
 3: 11,16;
 4: ;
 5: 6,11;
 6: 1,2;
 7: 1,4;
 8: 7,13;
 9: 1,6;
 10: 1,8;
 11: 10,31;
 12: 14,17;
 13: 1,10;
 14: 13,18;
 15: 16,33;
 16: 1,20;
 17: 1,22;
 18: 19,32;
 19: 1,24;
 20: 21,27;
 21: 1,26;
 22: 23,30;
 23: 1,29;
 24: 28,30;
 25: 1,35;
 26: 27,36;
 27: 25,36;
 28: 26,36;

End Transitions

Begin Layout

 1 246 177
 2 386 -38
 3 542 414
 4 -6 -32
 5 246 -36
 6 285 49
 7 329 101
 8 381 48
 9 108 240
 10 302 244
 11 460 424
 12 409 482
 13 264 287
 14 310 382
 15 509 21
 16 474 87

 55

 17 92 154
 18 548 123
 19 489 179
 20 202 484
 21 193 312
 22 150 -25
 23 207 25
 24 563 255
 25 356 229
 26 466 288
 27 412 259
 28 528 320

End Layout

End Lsts

 "Run time: less than 5 sec."

