
Working Paper Series
ISSN 1170-487X

A TAXONOMY OF
MODEL-BASED TESTING

Mark Utting,
Alexander Pretschner
and Bruno Legeard

Working Paper: 04/2006
April 2006

c© 2006 Mark Utting, Alexander Pretschner and Bruno Legeard
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand



A Taxonomy of Model-Based Testing

Mark Uttinga, Alexander Pretschnerb and Bruno Legeardc

aSchool of Computing and Mathematical Sciences, University of Waikato
Private Bag 3105, Hamilton, New Zealand

bInformation Security, ETH Zürich
ETH Zentrum, IFW C45.2, 8092 Zürich, Switzerland

cLEIRIOS Technologies and Laboratoire d’Informatique de l’Université de Franche-Comté
Besançon, France

Model-based testing relies on models of a system under test and/or its environment to derive test cases for the
system. This paper provides an overview of the field. Seven different dimensions define a taxonomy that allows the
characterization of different approaches to model-based testing. It is intended to help with understanding benefits
and limitations of model-based testing, understanding the approach used in a particular model-based testing tool,
and understanding the issues involved in integrating model-based testing into a software development process. To
illustrate the taxonomy, we classify several approaches embedded in existing model-based testing tools.

1. Introduction

Testing aims at showing that the intended and
actual behaviours of a system differ, or at gaining
confidence that they do not. The goal of testing is
failure detection: observable differences between
the behaviours of implementation and what is ex-
pected on the basis of the specification.

Model-based testing is a variant of testing that
relies on explicit behaviour models that encode
the intended behaviour of a system and possibly
the behaviour of its environment. Pairs of input
and output of the model of the implementation
are interpreted as test cases for this implemen-
tation: the output of the model is the expected
output of the system under test (SUT).

The use of explicit models is motivated by the
observation that traditionally, the process of de-
riving tests tends to be unstructured, barely mo-
tivated in the details, not reproducible, not docu-
mented, and bound to the ingenuity of single engi-
neers. The idea is that the existence of an artifact
that explicitly encodes the intended behaviour
can help mitigate the implications of these prob-
lems.

Obviously, the model of the SUT must be vali-
dated itself (validation is concerned with building

the right system, as opposed to verification that
helps with building a system right). This valida-
tion is a reciprocal activity: validating the model
usually means that the requirements themselves
are scrutinised for consistency and completeness.

In terms of model-based testing, the necessity
to validate the model implies that the model must
be simpler than the SUT, or at least easier to
check, modify and maintain. Otherwise, the ef-
forts of validating the model would equal the ef-
forts of validating the SUT. On the other hand,
the model must be sufficiently precise to serve as
a basis for the generation of “meaningful” test
cases. A model-based testing process must take
into account the involved abstractions, and it is
likely that omissions in the model mean that these
omitted parts cannot be tested on the grounds of
the model in question. Throughout this paper, we
will use the term “abstraction” to denote both,
the deliberate omission of detail and the encap-
sulation of detail by means of high-level language
constructs (see Section 3.1).

In this survey article, we define model-based
testing as the automatable derivation of concrete
test cases from abstract formal models, and their
execution. Models must be formal enough to al-
low, in principle, a machine to derive tests from

1



2 Utting, Pretschner and Legeard

these models, which is not the case for use case
diagrams, for instance. However, the manual
derivation of test cases from formal models is also
in the realm of model-based testing. We also in-
clude in our definition of model-based testing the
generation of test infrastructure from models, but
we do not concentrate on that aspect in this ar-
ticle.

We focus on testing functional rather than non-
functional properties—models can also be used
for encoding non-functional requirements such as
performance, security, or ergonomics, but this is
outside of the current mainstream trend in model-
based testing. We do not discuss the pragmat-
ics of using model-based testing tools, such as
their ease of use, speed, interoperability, sup-
port for evolving requirements (e.g., generating
tests for the subset of the requirements that have
changed), or support for traceability (i.e., relating
the generated tests back to the model, and per-
haps even back to the informal systems require-
ments). These issues are important in practice,
but are common to many kinds of software engi-
neering tools and are independent of the dimen-
sions in our taxonomy.

Contribution. The ideas of model-based test-
ing, then dubbed specification-based testing, date
back to the early Seventies. Recent emphasis
on model-based and test-centered development
methodologies as well as the level of maturity of
technology from the area of formal verification
have led to an increased interest in the subject
in the past decade. However, there is no compre-
hensive overview of the different perspectives on
the matter. This paper provides the overview.

It proposes a taxonomy of the various concep-
tual approaches to model-based testing. Seven
dimensions of model-based testing are identi-
fied. The usefulness of the taxonomy is then
demonstrated by showing how several existing ap-
proaches to model-based testing together with the
associated tools can be classified and related.

This paper is oriented towards users of model-
based testing. That is, the taxonomy has been
designed on the basis of the differentiating factors
when applying it for testing. It provides a frame-
work for comparing and qualitatively assessing
tools and techniques.

Organisation. The remainder of the article
is structured as follows. Section 2 introduces the
fundamental concepts of model-based testing and
introduces our terminology. Section 3 describes
the taxonomy, which is used in Section 4 to clas-
sify a collection of existing model-based testing
approaches and associated tools. Section 5 re-
flects on the assumptions underlying model-based
testing and discusses empirical evidence. Sec-
tion 6 discusses related work and Section 7 draws
conclusions, given the expected scope, benefits
and limits to model-based testing.

2. Process and Terminology

We use this section to fix terminology and de-
scribe the general process of model-based testing
(different scenarios are discussed in Section 3.2).

A test suite is a finite set of test cases. A test
case is a finite structure of input and expected
output: a pair of input and output in the case of
deterministic transformative systems, a sequence
of input and output in the case of deterministic
reactive systems, and a tree or a graph in the case
of non-deterministic reactive systems. The input
part of a test case is called test input. In general,
test cases will also include additional information
such as descriptions of execution conditions or ap-
plicable configurations, but we ignore these issues
here.

A generic process of model-based testing then
proceeds as follows (Fig. 1).

Step 1. A model of the SUT is built on the
grounds of requirements or existing specification
documents. This model encodes the intended be-
haviour, and it can reside at various levels of ab-
straction. The most abstract variant maps each
possible input to the output “no exception” or
“no crash”. It can also be abstract in that it ne-
glects certain functionality, or disregards certain
quality-of-service attributes such as timing or se-
curity (Section 3.1; [1]).

Step 2. Test selection criteria are defined. In
general, it is difficult to define a “good test case”
a-priori. Arguably, a good test case is one that is
likely to detect severe and likely failures at an ac-
ceptable cost, and that is helpful with identifying
the underlying fault. Unfortunately, this defini-



A Taxonomy of Model-Based Testing 3

Adaptor + Env

Test
Selection
Criteria

Requirements

Test Case
Specification

Model

Verdicts

Test
Cases

Test
Script

(1)

(2)

(3)

(4)(4)

(5−2)

(5−1)

SUT

Figure 1. The Process of Model-Based Testing

tion is not constructive. Test selection criteria try
to approximate this notion by choosing a subset
of behaviours of the model. A test selection cri-
terion possibly informally describes a test suite.
In general, test selection criteria can relate to a
given functionality of the system (requirements-
based test selection criteria), to the structure of
the model (state coverage, transition coverage,
def-use coverage), to stochastic characterisations
such as pure randomness or user profiles, and they
can also relate to a well-defined set of faults.

Step 3. Test selection criteria are then trans-
formed into test case specifications. Test case
specifications formalise the notion of test selec-
tion criteria and render them operational: given
a model and a test case specification, some au-
tomatic test case generator must be capable of
deriving a test suite (see step 4). For instance,
“state coverage” would translate into statements
of the form “reach σ” for all states σ of the (finite)
state space, plus possibly further constraints on
the length and number of the test cases. Each
of these statements is one test case specification.
The difference between a test case specification
and a test suite is that the former is intensional
(“fruit”) while the latter is extensional (“apples,
oranges, ...”): all tests are explicitly enumerated.

Step 4. Once the model and the test case spec-

ification are defined, a test suite is generated. The
set of test cases that satisfy a test case specifica-
tion can be empty. Usually, however, there are
many test cases that satisfy it. Test case genera-
tors then tend to pick some at random.

Step 5. Once the test suite has been gener-
ated, the test cases are run (sometimes, in partic-
ular in the context of non-deterministic systems,
generating and running tests are dove-tailed).
Running a test case includes two stages.

Step 5-1. Recall that model and SUT reside
at different levels of abstraction, and that these
different levels must be bridged [2]. Executing a
test case then denotes the activity of applying the
concretised input part of a test case to the SUT
and recording the SUT’s output. Concretisation
of the input part of a test case is performed by a
component called the adaptor. The adaptor also
takes care of abstracting the output (see immedi-
ately below).

Step 5-2. A verdict is the result of the com-
parison of the output of the SUT with the ex-
pected output as provided by the test case. To
this end, the output of the SUT must have been
abstracted. Consider the example of testing a
chip card that can compute digital signatures [3].
Such a chip card is likely to provide functionality
that computes random numbers. It seems prob-
lematic to actually implement a random number
generator at the level of the model—its random
numbers will not be those of the chip card. As
a consequence, one might conceive the model to
provide an abstract command getRandom(n) to
provide n random bytes. The output is the ab-
stract term rnd(n). Concretization of the input
means transforming the input into the bytes the
chip card can understand. This input is applied
to the chip card which yields n actual random
bytes. This result is essentially abstracted into
the length of the result, that is, a term rnd(n).
This is where a verdict can be built. Here, the
verdict relates to the number of generated bytes
only and does otherwise not allow an assessment
of the chip card’s random number generator; yet
it is useful when the main purpose is to test the
procedure of computing a digital siganture.

The verdict can take the outcomes pass, fail,
and inconclusive. A test passes if expected and



4 Utting, Pretschner and Legeard

actual output conform. It fails if they do not,
and it is inconclusive when this decision cannot
be made (yet).

A test script is some executable code that ex-
ecutes a test case, abstracts the output of the
SUT, and then builds the verdict. The adaptor is
a concept and not necessarily a separate software
component—it may be integrated within the test
scripts.

Summary. Model-based testing involves the
following major activities: building the model,
defining test selection criteria and transforming
them into operational test case specifications,
generating tests, conceiving and setting up the
adaptor component (in practice, this takes a sig-
nificant proportion of the workload) and execut-
ing the tests on the SUT. The model of the SUT
is used to validate requirements and check their
consistency, as well as to generate test cases.

3. The Taxonomy

This section identifies seven different dimen-
sions of model-based testing and discusses the
possible instantiations for each dimension. The
dimensions are concerned with orthogonal con-
cepts yet do influence each other. For instance,
if a project uses a continuous model rather than
a discrete one, this is likely to limit its choice of
modelling paradigm, of test selection criteria, and
of test case generation technology.

Fig. 2 gives an overview of the taxonomy. The
vertical arrows indicate a continuous range of pos-
sibilities, the ‘A/B’ alternatives at the leaves in-
dicate mutually exclusive alternatives, while the
curved lines indicate alternatives that are not nec-
essarily mutually exclusive (for example, some
tools may use more than one generation technol-
ogy, and it is common and desirable to support
several kinds of test selection criteria).

3.1. Model Subject
The first dimension is the subject of the model,

namely the intended behaviour of the SUT or
the possible behaviour of the environment of the
SUT. Most often, both models will be used.

The model of the SUT serves two purposes.

Redundancy

Technology

On/OfflineExecution
Test

Test Selection
Criteria

Paradigm

Generation
Test

Subject

Model

Discrete / Hybrid / Continuous

Manual
Random generation
Graph search algorithms
Model−checking
Symbolic execution
Theorem proving

Structural Model Coverage
Data Coverage
Requirements Coverage
Test Case Specifications

Fault−Based

Transition−Based
History−Based
Functional
Operational

Online / Offline

Shared test&dev model

Separate test model

Timed / Untimed

SUT

Environment

Deterministic / Non−Det.

Pre−Post

Random&Stochastic

Characteristics

Figure 2. Overview of the Taxonomy

Firstly, it acts as an oracle for the SUT in that
it encodes the intended behavior. Secondly, its
structure can be exploited for the generation of
test cases. The model of the environment is used
to restrict the possible inputs to the model. As
such, it restricts the set of possible behaviors of
the model of the SUT, and in this sense, it acts
as a test selection criterion (Section 3.5). Envi-
ronment models defined by stochastic user pro-
files describe “typical” interactions with a system
under test [4,5, Chapter 2], i.e. they describe typ-
ical patterns of stimuli to the SUT. Environment
models can also be defined by stimuli that exert
certain “parts” of a system. This can be done
on the grounds of structural requirements on the
possible input data, or by restricting oneself to
one particular functionality.

Figure 3 illustrates the possibilities of combin-
ing models of the environment and the SUT. The
vertical axis shows how much of the behaviour
of the SUT is modelled, while the horizontal axis
shows how much of the environment is modelled.
The shaded area shows all the possible models
that can be used for model-based testing. Let us
consider some extreme models.

A model at position S is a model that includes



A Taxonomy of Model-Based Testing 5

SUT

Env

Model−Based
Testing

E

S SE

M3

Abstraction

M1
M2

Figure 3. Model-based testing uses models of the
SUT and its environment.

all the details of the SUT but says nothing about
the expected environment. That means that no
“sanity constraints” on the input space of the
SUT are imposed.

Model E is the opposite. It has full knowl-
edge of the environment that the SUT will be
placed in, but knows nothing about the desired
SUT behaviour. This means that the model spec-
ifies all the legal test inputs, but gives no infor-
mation about the expected outputs of the SUT.
The (implicit) expectation that no exception oc-
curs would already form an abstract model of the
SUT.

Position SE is the most extreme case. Every-
thing about the SUT and its environment is mod-
elled. This is in general too much detail to be
practical; the model would be as complex as the
SUT itself. Consequently, they do not occur in
practice. Abstraction is essential, so models like
M1–M3 are typical for model-based testing.

We have not said how abstraction—obviously
a crucial component of model-based testing—can
be performed. Prenninger and Pretschner [1]
point out that abstraction can (a) be induced by
the modelling language itself—e.g., by not pro-
viding any means to cater for security-related
issues—or (b) by the modeller who explicitly dis-
cards certain information, e.g. timing issues. In
practice, both variants are used. Issues that are
subject of abstraction in the second sense include
the following.

Function Abstraction. The model omits
some of the SUT functionality. This is a widely
applied abstraction principle. In many cases, cer-
tain parts of the functionality are deemed uncriti-
cal or so simple that there is no need for explicitly

building a model.
Data Abstraction. This applies to abstrac-

tions of both the input and the output. Input
abstraction means that the model omits or sim-
plifies some inputs of an SUT operation. One
example is the abstraction of a set of four-digit
PINs in the into two classes, “correct PIN”, and
“incorrect PIN”. Output abstraction means that
the model omits or simplifies some outputs of an
SUT operation. This simplifies the model, but
may also reduce its oracle power. One example
is given by the abovementioned model of a ran-
dom number generator in a chip card. There are
also situations where it is deemed appropriate to
abstract input and the desired output into one
single signal [6].

Communication Abstraction. This ab-
straction principle is exemplified by the ISO/OSI
stack where the lower levels are sequences of stim-
uli that are abstracted into one single signal at an
upper level. Even within one level, sequences of
stimuli, or permutations of the stimuli in one se-
quence, can be represented by one single signal.
This abstraction is often used in the context of
protocol testing where, for instance, it is possible
to represent some handshaking in the beginning
by one single abstract signal. It is also possible
for the model of the SUT to ignore certain signals
altogether.

Abstraction from Quality-of-Service.
This general abstraction principle is often used to
abstract from concerns such as timing, security,
memory consumption, etc. In case of timing, for
instance, one might stick to some definition of a
logical rather than to actual physical time.

3.2. Model Redundancy Level
Model-based testing can be applied in many

different scenarios. Roughly, these differ in the
level of redundancy between modelling for test-
ing and/or for implementation. In the following,
we briefly review two possible scenarios [2]. The
first scenario considers one model that is used to
generate both test cases and code. The second
scenario considers a testing-specific model that is
built from the specification documents, while the
SUT is implemented manually.

One shared model for test cases and



6 Utting, Pretschner and Legeard

code. In some cases, executable code can be gen-
erated from behavior models. For instance, Mat-
lab Simulink block diagrams can be compiled into
executable code, and there are some CASE tools
that provide generation facilities for both simu-
lation and production code from statechart-like
formalisms. These facilities suggest that we use
the same model to generate tests and also code.

Models for the generation of code have to be
very detailed, so are not always ideal for test gen-
eration, which is best done with more abstract
models. Furthermore, in this scenario, there is
no redundancy. In a sense, the system is tested
against itself. This means that verdicts beyond
“no exception was thrown” would have to be built
manually. One might argue that this missing re-
dundancy does not pose any problem since the
model is required to be valid, anyway. In prac-
tice, however, it is usually the case that problems
in both the model and the implementation are
detected during testing (e.g., [7]).

Even though this approach is not really suited
to test the functionality of a system, it can be
used to test the code generator or test generator,
and (implicitly) to gain confidence in the assump-
tions on the environment that are made in the
model.

Separate model for testing purposes. The
idea behind this scenario is that the SUT is built
manually, based on an existing informal specifi-
cation. Furthermore, a test model is manually
derived from the specification and used for test
generation. Since test cases and code are not gen-
erated from the same formal document, the neces-
sary redundancy is provided. This approach, one
dedicated model for testing inside a more tradi-
tional design and coding process, currently is the
most common in the literature (e.g. [7–9,3]).

Once an independent test model has been built,
it is possible to use that model as detailed speci-
fication of the system. It even seems attractive to
assign a dual use to these models: they serve as
specification and also as a basis for model-based
testing—a characteristic that is particularly ap-
pealing in development contexts where the im-
plementation and the specification (or the model)
are designed by different parties. However, test
models are rather complex artifacts, so usually

require additional documentation to make them
useful as specifications. Moreover, abstractions
for testing and specification purposes might be
different, which explains why we see a dynamic
range between one exclusive model for test and
one model for both testing and code generation:
only some parts of the model may be usable for
both purposes.

3.3. Model Characteristics
Model characteristics relate to nondetermin-

ism, to the incorporation of timing issues, and
to the continuous or event-discrete nature of the
model.

Nondeterminism occurs in both the model and
the SUT. If the SUT exhibits jitter in the time
or value domains, this can often be handled when
the verdict is built (which might be possible only
after all input was applied). If the SUT exhibits
genuine nondeterminism, as a consequence of con-
currency, for instance, then it is possible that test
stimuli as provided by the model depend on prior
reactions of the SUT. In these cases, the non-
determinism must be catered for by the model,
and the test cases, respectively (they are not se-
quences anymore but rather trees or graphs). Fi-
nally, nondeterminism in the model can be used
for testing deterministic systems. One example
is given by non-deterministic timeouts to avoid a
detailed timing model (e.g., [7, p. 395]).

Evidently, timing issues are particularly rele-
vant in the large class of real-time systems. Be-
cause of the additional degree of freedom, these
systems are notoriously hard to test. Applying
the ideas of model-based testing to real-time sys-
tems currently is the subject of intense research
activities [10].

Finally, in terms of dynamics, models can be
discrete, continuous or a mixture of the two (hy-
brid). Most work in model-based testing has fo-
cused on event-discrete systems, but continuous
or hybrid models are often common in many em-
bedded systems. Like model-based real-time test-
ing, testing continuous systems is the subject of
current research [10].

The distinction between different characteris-
tics is important, because it impacts the choice of
the modeling paradigm, technology for case test



A Taxonomy of Model-Based Testing 7

generation, and the interleaving of generating and
executing tests.

3.4. Model Paradigm
The fourth dimension is what paradigm and

notation are used to describe the model. There
are many different modelling notations that have
been used for modelling the behaviour of systems
for test generation purposes. We group them into
the following paradigms, adapted from van Lam-
sweerde [11].

State-Based (or Pre/Post) Notations.
These model a system as a collection of variables,
which represent a snapshot of the internal state
of the system, plus some operations that modify
those variables. Rather than defining the opera-
tions using code as with programming languages,
each operation is usually defined by a precondi-
tion and a postcondition. Examples for these no-
tations include Z, B, VDM, and JML.

Transition-based Notations. These focus
on describing the transitions between different
states of the system. Typically, they are graphical
node-and-arc notations, like finite state machines
(FSMs), where the nodes of the FSM represent
the major states of the system and the arcs repre-
sent the actions or operations of the system. Tex-
tual or tabular notations are also used to specify
the transitions. In practice, transition-based no-
tations are often made more expressive by adding
data variables, hierarchies of machines and paral-
lelism between machines. Examples of transition-
based notations include FSMs themselves, stat-
echarts (e.g. UML State Machines, Statemate
statecharts and Simulink Stateflow charts), la-
belled transition systems and I/O automata.

History-based Notations. These notations
model a system by describing the allowable traces
of its behaviour over time. Various notions of
time can be used (discrete or continuous, linear
or branching, points or intervals etc.), leading to
many different kinds of temporal logics.

We also include message-sequence charts and
related formalisms in this group. These are
graphical and textual notations for specifying se-
quences of interactions between components.

Functional Notations. These describe a sys-
tem as a collection of mathematical functions.

The functions may be first-order only, as in the
case of algebraic specifications, or higher-order,
as in notations like HOL. Algebraic specifications
tend to be more abstract and more difficult to
write than other notations, so they are not widely
used for model-based testing.

Operational Notations. These describe a
system as a collection of executable processes, ex-
ecuting in parallel. They are particularly suited
to describing distributed systems and communi-
cations protocols. Examples include process al-
gebras such as CSP or CCS on the one hand, and
Petri net notations on the other hand.

Stochastic Notations. These describe a sys-
tem by a probabilistic model of the events and in-
put values and tend to be used to model environ-
ments rather than SUTs. For example, Markov
chains are used to model expected usage profiles,
so that the generated tests exercise that usage
profile.

Data-Flow Notations. These notations con-
centrate on the data rather than the control flow.
Prominent examples are Lustre and the block di-
agrams as used, for instance, in Matlab Simulink
to then end of modeling continuous systems.

3.5. Test Selection Criteria
The fifth dimension defines the facilities that

are used to control the generation of tests. Ac-
cordingly, tools can be classified according to
which kinds of test selection criteria they sup-
port. In the following, we briefly discuss the most
commonly-used criteria. Defining the “best” cri-
terion is not possible in general; rather, it is the
task of the test engineer to configure the test gen-
eration facilities and choose adequate test selec-
tion criteria and test case specifications.

Structural Model Coverage Criteria.
These criteria exploit the structure of the model,
such as the nodes and arcs of a transition-based
model, or conditional statements in a model in
pre/post notation.

The modelling notation often suggests specific
kinds of structural coverage criteria. For exam-
ple, with pre-post notations, cause-effect coverage
or disjunctive normal form coverage of the post-
condition are common coverage criteria, while for
algebraic model notations, coverage of the axioms



8 Utting, Pretschner and Legeard

is an obvious coverage criteria.
For transition-based models, which use explicit

graphs containing nodes and arcs, there are many
graph coverage criteria that can be used to con-
trol test generation. Some of the coverage cri-
teria commonly used are all nodes (that is, all
states), all transitions, all transition-pairs, and all
cycles. The FSM isomorphism-checking methods
developed for testing protocols (W-method, Wp-
method, D-method etc.) [12,13] are also based on
structural coverage of FSM models.

Another set of structural coverage criteria are
useful for exercising complex boolean decisions
within models. This same need arises in white
box testing (code-based testing), so many of the
well-known code-based structural coverage crite-
ria [14,15, Section 2.1.1] that require certain com-
binations of atomic conditions and decisions to
take certain values, have been adapted to work on
models. Similarly, many data-flow coverage cri-
teria [16] for code have been adapted to models.
These criteria can be applied to any modelling
notation that contains variables.

Data Coverage Criteria. These criteria deal
with how to choose a few test values from a large
data space. The basic idea is to split the data
space into equivalence classes and choose one rep-
resentative from each equivalence class, with the
hope that the elements of this class are “equiva-
lent” in terms of their ability to detect failures.
For ordered data types, this partitioning is usu-
ally complemented by picking extra tests from
the boundaries of the intervals. Boundary anal-
ysis [17] and domain analysis [18, Chapter 7] are
widely accepted as fault detection heuristics and
can be used as coverage criteria for test genera-
tion (for comparison with random testing, see the
respective seminal papers [19–22] and the recent
summary by Gaston and Seifert [23]).

Requirements-Based Coverage Criteria.
When elements of the model can be explicitly as-
sociated with informal requirements of the SUT,
coverage can also apply to requirements. For ex-
ample, requirement numbers can be attached to
transitions of a UML state machine or to pred-
icates within the postconditions of a pre-post
model.

Ad-hoc Test Case Specifications. Explicit

test case specifications can obviously be used to
control test generation. In addition to the model,
the test engineer writes a test case specification in
some formal notation, and these are used to deter-
mine which tests will be generated. For example,
they may be used to restrict the paths through
the model that will be tested, to focus the testing
on heavily used cases, or to ensure that partic-
ular paths will be tested. The notation used to
express these test objectives may be the same as
the notation used for the model, or it may be a
different notation. Notations commonly used for
test objectives include FSMs, regular expressions,
temporal logic formulae, constraints and Markov
chains (for expressing intended usage patterns).

Random and Stochastic Criteria. These
are mostly applicable to environment models, be-
cause it is the environment that determines the
usage patterns of the SUT. The probabilities of
actions are modelled directly or indirectly [4,5].
The generated tests then follow an expected us-
age profile.

Fault-based Criteria. These are mostly ap-
plicable to SUT models, because the goal of test-
ing is to find faults in the SUT. One of the most
common fault-based criteria is mutation coverage.
This involves mutating the model, then generat-
ing tests that would distinguish between the mu-
tated model and the original model. The assump-
tion is that there is a correlation between faults
in the model and in the SUT, and between mu-
tations and real-world faults [24,25].

3.6. Test Generation Technology
The sixth dimension is the technology that is

used during test generation [26]. In many cases,
models of the SUT lend themselves to the man-
ual derivation of test cases, which is often the
case in model-based development environments
where graphical models are built with sophisti-
cated CASE tools.

On the other hand, one of the most appeal-
ing characteristics of model-based testing is its
potential for automation. Recall that the auto-
mated generation of test cases necessitates the ex-
istence of test case specifications. Given a model
of the SUT and the test case specification—
possibly given as an environment model with



A Taxonomy of Model-Based Testing 9

further constraints—test cases can be derived
stochastically, or by using dedicated graph search
algorithms, model checking, symbolic execution,
or deductive theorem proving.

Random generation of tests is done by sampling
the input space of a system. In the case of reactive
systems, finite traces can be selected randomly by
sampling the input space and applying it to the
model of the SUT in order to infer the expected
output part. A random walk on the model may
result in test suites with different characteristics.
Random walks can also be performed on usage
models given in the form of usage models, and
obviously, this results in certain transition prob-
abilities for the SUT [27].

Dedicated graph search algorithms include
node or arc coverage algorithms such as the Chi-
nese Postman algorithm [28], which covers each
arc at least once. See a recent compilation [29]
for an overview.

(Bounded) model checking is a technology for
verifying or falsifying properties of a system. For
certain classes of properties, model checkers can
yield counter examples when a property is not
satisfied. The general idea of test case genera-
tion with model checkers is to first formulate test
case specifications as reachability properties, for
instance, “eventually, a certain state is reached,
or a certain transition fires” (e.g., [30,31]). A
model checker then yields traces that reach the
given state or that eventually make the transi-
tion fire. Other variants use mutations of models
or properties to generate test suites.

The idea of symbolic execution is to run an (ex-
ecutable) model not with single input values but
with sets of input values instead (e.g., [32–34]).
These are represented as constraints. In this way,
symbolic traces are generated: one symbolic trace
represents many fully instantiated traces. The in-
stantiation with concrete values obviously must
be performed in order to get test cases for a SUT.
Symbolic execution is guided by test case specifi-
cations. Often enough, these boil down to reacha-
bility statements as in the case of model checking.
In other cases, test case specifications are given
as explicit constraints, and symbolic execution is
done randomly by respecting these constraints.

Finally, deductive theorem proving can also be

used for the generation of tests (e.g., [35,36]).
One variant is similar to the use of model check-
ers where a theorem prover replaces the model
checker. Most often, however, theorem provers
are used to check the satisfiability of formulas
that directly occur as guards of transitions in
state-based models.

3.7. On-line or Off-line Test Generation
The last dimension is concerned with the rela-

tive timing of test case generation and test exe-
cution.

With on-line testing, the test generation al-
gorithms can react to the actual outputs of the
SUT. This is sometimes necessary if the SUT is
non-deterministic, because the test generator can
see which path the SUT has taken, and follow
the same path in the model (Section 3.3). Off-
line testing means that test cases are generated
strictly before they are run. Off-line test gen-
eration from a non-deterministic model is more
difficult, and involves creating test cases that are
trees or graphs rather than sequences.

The advantages of off-line testing, when appli-
cable, are mostly pragmatic. The generated tests
can be managed and executed using existing test
management tools, which means that less changes
to the test process are required. One can gener-
ate a set of tests once, then execute it many times
on the system under test (for example, regression
testing). Also, the test generation and test ex-
ecution can be performed on different machines
or in different environments, as well as at differ-
ent times. It is also possible to perform a sep-
arate test minimisation pass over the generated
test suite, to reduce the size of the test set. Fi-
nally, if the test generation process is slower than
test execution, then there are obvious advantages
to doing the test generation phase just once.

4. Classification of Approaches and Tools

In this section, we classify some typical model-
based testing approaches and associated tools
within the dimensions defined in Section 3. The
purpose is to show the characteristics of those ap-
proaches and the choices made for each dimension
in order to target various application domains.



10 Utting, Pretschner and Legeard

This classification is useful as a snapshot of
the state of the art in model-based testing ap-
proaches and tools. It also shows that the taxon-
omy is useful for discriminating between different
approaches to model-based testing.

We consider three approaches to model-based
test case generation and two approaches to
model-based test input generation in the follow-
ing subsections. We discuss a representative tool
for each approach, and mention a few similar
commercial and academic tools.

4.1. TorX
This is an example for automated test gener-

ation from a behaviour model of the SUT. The
TorX system is an academic model-based test-
ing tool developed in the late nineties [37]. The
purpose was to implement the testing theory of
conformance relations between models and imple-
mentations [38]. This tool is representative of the
family of test generation tools based on an Input-
Output Labelled Transition System (LTS) model
of the system under test. This kind of system
manages non-determinism via on-line test gener-
ation and execution, and uses ad-hoc test case
specifications (called “test purposes” in TorX) as
test selection criteria. TorX also provides a batch
mode (off line) and some model coverage crite-
ria as test selection criteria. Similar tools include
TGV [39], STG [40], and AutoLink [41]. A typ-
ical target application domain of those tools is
telecommunication and protocol systems.
Subject of the model: The model is a behaviour
model of the SUT. Some environmental aspects can
be taken into account at the level of the model, but
also at the level of test selection criteria within the
test purposes.
Model redundancy level: The TorX case stud-
ies [42,43] show that a dedicated model for test gen-
eration was used.
Model Characteristics: TorX manages non-
deterministic, untimed, discrete models.
Modelling Paradigm: The underlying paradigm
used by TorX is that of LTS; compilers from the LO-
TOS and SPIN modelling languages have been devel-
oped.
Test Selection Criteria: The TorX test generation
algorithm is based on a walk through the state space
of the specification. This walk can be done randomly

or controlled by the test purpose, which is anything
that represents a set of traces over the model. A test
purpose acts as a test case specification and makes it
possible to drive the random walk (i.e; the random
decisions are constrained by the traces from the test
purpose).
Technology: Automated test case generation using
on-the-fly state space exploration techniques.

On line/Off line: Both.

4.2. LTG
LEIRIOS Test Generator (LTG) [44], from

LEIRIOS Technologies, is a commercially avail-
able model-based testing tool. Test cases are gen-
erated from a behaviour model of the SUT using
model coverage as test selection criteria. LTG
accepts two input notations: UML models (class
and object diagrams as well as Statecharts, with
OCL annotations) and B abstract machines (B
is a Pre/Post notation). Some other commer-
cially available tools based on model coverage cri-
teria are: T-Vec Rave and Test for Simulink, the
ATG module of I-Logix, Conformiq Test Gener-
ator from Conformiq, Reactis from Reactive Sys-
tems. Typical application domains of those tools
are reactive systems, embedded software, smart
card or e-Transaction applications.
Subject of the model: The input model of LTG is
usually an SUT behaviour model–this also provides
the oracle for each generated test case.
Model redundancy level: Dedicated testing
model.
Model Characteristics: Models must be determin-
istic, untimed and discrete and finite.
Modelling Paradigm: LTG supports both
State/Transition oriented modelling style (i.e. UML
State Machines) and Pre/Post style (i.e. B abstract
machines).
Test Selection Criteria: A range of structural
model coverage criteria are supported. For state-
chart models (i.e. UML State Machines), the criteria
include state coverage, all transitions, all extended
transitions and all transition pairs. For Pre/Post
notations, several kinds of effect coverage are sup-
ported (all effects, all pair of effects). In both cases,
complex conditions within guards or predicates can
be tested more thoroughly using structural coverage
criteria like MC/DC. Data values can be chosen on
the basis of data coverage criteria: One/many values,
random values, boundary values and all values.
Technology: Automated test case generation uses



A Taxonomy of Model-Based Testing 11

constraint based symbolic execution of the model and
search algorithms. The generated abstract test cases
are then translated into executable test scripts using
an adaptor component specific to the target test ex-
ecution environment.
On line/Off line: LTG uses a batch mode: the exe-
cutable test scripts are generated, then can be stored
in a configuration management system.

4.3. MatLab Simulink V&V
The Simulink Verification and Validation mod-

ule (www.mathworks.com) is aimed at testing con-
tinuous and hybrid Simulink models. The main
functionalities are traceability from requirements
to Simulink / Stateflow models, and model cov-
erage analysis.
Subject of the model: Simulink / Stateflow models
specify the intended behaviour of the SUT. These are
usually composed with environment models.
Model redundancy level: Simulink / Stateflow
models are generally used for both test case and code
generation.
Model Characteristics: Simulink supports deter-
ministic and non-deterministic models, timed models
with continuous functions and data types. Hybrid
systems are supported as well.
Modelling Paradigm: Simulink / Stateflow com-
bine a data flow paradigm (the Simulink function
blocks) with a transition-based notation (Stateflow
charts).
Test Selection Criteria and Technology: Tests
are derived manually and can then be subjected to au-
tomated coverage analysis on the level of the model.
For Stateflow charts, the classic state coverage and
transition coverage are provided. Simulink blocks
rely on dedicated criteria such as lookup table cov-
erage, which records the frequency of table lookups
in a block. For both kinds of models, other struc-
tural coverage criteria are provided for data coverage
(boundary values, signal range analysis) and for com-
plex boolean decisions (decision coverage, condition
coverage, modified condition/decision coverage).

On line/Off line: Test cases are run on the model

itself. To run tests on the SUT, one must first record

the tests, then adapt them to the SUT interface. This

is an off-line approach.

4.4. JUMBL
The J Usage Model Builder Library

(JUMBL) [27] is an academic model-based statis-
tical testing tool [4] developed at the University

of Tennessee. JUMBL supports the development
of statistical usage based models (using Markov
chains), analysis of models and the generation of
test cases. Test input is generated via a traversal
of the usage model on the basis of transition
arc probabilities. Therefore, the test cases with
greatest probability are generated first. The us-
age model does not provide the expected response
of the system. Similar tools are the Matelo sys-
tem from ALL4TEC and the CleanTest tool from
CleanSoft.
Subject of the model: The usage model is a model
of the expected environment.
Model redundancy level: The model is a dedi-
cated testing model.
Model Characteristics: Models are untimed and
discrete. The choice between determinism and non-
determinism is not relevant, since only test inputs are
generated and SUT behaviour is not modelled.
Modelling Paradigm: JUMBL models are written
in the TML language, which is a stochastic notation
for describing Markov chain usage models. A Markov
chain usage model has a unique start state, a unique
final state, a set of intermediate usage states, and
transition arcs between states. The transition arcs are
labelled by the corresponding event and the probabil-
ity of occurrence. Transition probabilities are based
on expected use of the SUT.
Test Selection Criteria: Statistical testing provide
random and statistical criteria (based on the transi-
tion arc probability of the usage model).
Technology: Automated generation of the test
inputs using statistical search algorithms and the
Markov model.

On line/Off line: The generated test cases need to

be translated into a script language of a test execution

environment (or executed manually). The JUMBL

uses an off-line approach and provides an API to link

with test execution environments.

4.5. AETG
In combinatorial testing the issue is to reduce

the—in practice very high—number of possible
combinations of input variables to a few “repre-
sentative” ones. AETG (Automatic Efficient Test
Generator [45]) is a model-based test input gen-
erator for combinatorial testing. To reduce the
number of test data, it uses a pair-wise algorithm
to ensure that all combinations of the data val-
ues for each pair of variables are tested. It also



12 Utting, Pretschner and Legeard

supports all-triples or all-quadruples testing, but
the size of the generated test suite grows quickly.
The oracle for each test input has to be provided
manually. There are a large number of tools ded-
icated to pair-wise testing (www.pairwise.org).
A typical application domain for this approach is
testing different configurations, for example de-
vice combinations or possible options to configure
some product.
Subject of the model: Pair-wise testing (and other
n-way testing) uses a simple static model of the input
data of the SUT, defining the domains of variables
and any unauthorised combinations of values. This is
an environment model.
Model redundancy level: The model is dedicated
to test input generation only.
Model Characteristics: Models are untimed and
discrete. The choice between determinism and non-
determinism is not relevant, since AETG models only
test inputs, not SUT behaviour.
Modelling Paradigm: There is usually no mod-
elling of the behaviour, just the static data domains.
Test Selection Criteria: This class of tools use
data coverage criteria such as all-pairs coverage.
Test Case Derivation: Automated generation of
the test inputs using n-way search algorithms.

On line/Off line: Off line

5. Assumptions and Evidence

Our description of model-based testing in Sec-
tion 1 included several assumptions [46] on its
successful deployment. We will now make these
assumptions explicit and provide links to some
evidence. Because model-based testing can and
has been applied in a variety of contexts, it is
difficult to come up with large-scale studies that
would generalise the positive evidence that we re-
port on in this section.

In sum, all assumptions are concerned with
both fault-detecting effectiveness and cost-
effectiveness of model-based testing when com-
pared to competing approaches to quality as-
surance, such as traditional forms of testing or
reviews and inspections. Recall that testing is
about detecting failures whereas reviews target at
faults. The assumptions relate to the following.

Models aid requirements. This assumption
states that building the model alone helps with

straightening out the requirements.
Existence of an adequate model. This as-

sumption is concerned with the trade-off between
abstraction and precision. It postulates the ex-
istence of an adequate model that can be used
effectively for model-based testing. On the one
hand, models must be abstract so that they are
easy to validate or even amenable to formal ver-
ification. On the other hand, they must be suffi-
ciently precise so that all the “important” parts
can be tested. Usually, additional details are in-
troduced at the level of the adaptor components
that take care of bridging the different levels of
abstraction. That is, complexity is distributed
between the model and the adaptor.

Effectiveness. This assumption states that
model-based testing does reveal errors in the
SUT.

Effort and Quality. Probably the most fun-
damental assumption is that the cost of building,
maintaining, and validating a model, test case
specifications, and the adaptor (with test case
generation being a push-button technology), is
less than the cost of building, maintaining, and
validating a manually designed test suite. It also
comes in a form stating that any additional cost
is justified by the quality of model-based tests.

Reuse. This assumption relates to testing
product lines, or multiple releases of a product
with evolving requirements. The assumption is
that it will be easier to reuse and adapt the high-
level artifacts of model-based testing (models,
test selection criteria and adaptor components),
than it would be to reuse low-level test scripts or
manually designed tests. If this is true, then the
cost-effectiveness of model-based testing will be
higher for such applications.

We now report on evidence in terms of detect-
ing flaws in requirements as well as on evidence
in terms of detecting flaws in SUTs. We also
cite a few studies that take into account cost-
effectiveness.

Flawed Specifications and Requirements
Documents. In general, the assumption that
building the model alone helps with straighten-
ing out the requirements, goes unchallenged. We
focus on effectiveness in the context of model-



A Taxonomy of Model-Based Testing 13

based testing here and disregard cost. Blackburn
et al. [47] describe several stages of the model of a
flight guidance control system and show how dif-
ferent analysis techniques (reviews, model check-
ing, derivation of model traces for manual inspec-
tion) help with detecting an increasing number of
defects in the model. Pretschner et al. [7] note
that building the model reveals a significant num-
ber of problems in the specification. However,
they also note that remaining omissions in the
specification documents are detected only when
model-based testing of the SUT was performed.

Flawed SUTs. The evidence that we report
on here relates to the assumptions on effectiveness
and cost-effectiveness of model-based testing.

Horstmann et al. [48] have compiled some case
studies that report on the effective deployment of
model-based testing technology. All these studies
state that model-based testing helps with detect-
ing failures, even if the SUT has been in the field
for some time. Comparisons with competing ap-
proaches to quality assurance are not provided.

Bernard et al. [8] describe a case study in the
domain of smart card testing. Models are spec-
ified with the B abstract machine notation and
tests are generated using structural coverage of
the model. They define a notion of subsumption
between test cases that is based on requirements
rather than detected failures and show that auto-
matically generated model-based tests in general
cover existing manual test suites. They show that
the time to build the model and generate the tests
is significantly lower than the time that was used
to hand-craft the tests: 18 as opposed to 30 days.

Farchi et al. [9] report on model-based tests
for a POSIX API and parts of some Java garbage
collector’s implementation. Models are specified
in a variant of the specification language of the
model checker Murφ and boil down to Mealy ma-
chines. Tests are derived on the grounds of re-
quirements, i.e., test case specifications are ex-
plicitly provided. They can show that model-
based tests detect errors that have gone unde-
tected before, even in the case of the POSIX API
for which a test suite for testing standard confor-
mance exists. In this case, model-based testing is
reported to take 10 person months as opposed to
the 12 person months used for manually generat-

ing the standard test suite.
Pretschner et al. [7] evaluated model-based

tests on the grounds of communicating extended
finite state machines with a functional language
to specify the transitions’ guards and assignment.
Their study is concerned with testing a network
controller for automotive systems. The authors
contrast different test suites: randomly gener-
ated, manually built without model, manually
built on the grounds of the model, and auto-
matically derived from the model by taking into
account test case specifications that reflect the
systems “major” operational modes. They doc-
ument that (a) modelling itself reveals a num-
ber of problems in existing specification docu-
ments, (b) that in terms of failure detection, au-
tomated model-based tests are approximately as
good as manually derived model-based tests, (c)
that problems in the system under test are de-
tected regardless of whether or not models are
used, and (d) that if both problems with the spec-
ification and the SUT are taken into account,
model-based tests outperform all other kinds of
tests, in particular hand-crafted tests that were
built without a model. In this study, cost is not
taken into account,

Dalal et al. [49] report on evidence obtained
with model-based testing deployed in four larger
projects. Their approach to model-based test-
ing relies on environment (usage) models only:
verdict building must be done manually. They
can show that model-based testing detects signif-
icantly more errors than other testing approaches.

Clarke [50] and Blackburn et al. [47] report on
significant gains in terms of both efficiency and ef-
fectiveness when model-based testing is deployed.
Probably for reasons of confidentiality, they do
not provide much detail which makes it difficult
to fully appreciate the underlying studies.

In sum, ranging over a wide variety of systems,
model-based testing has repeatedly been reported
to be effective. All case studies report this [51–57,
49,3,6–9,47,24] (list not intended to be complete).

Consequences. We do see good arguments
for deploying model-based testing: models help
with clarifying requirements specifications, can
be used as specifications, and, in addition, can
be used to generate tests. This seems partic-



14 Utting, Pretschner and Legeard

ularly appealing where specification and imple-
mentation are done by different parties. However,
the cost of building and maintaining the models
is clearly not negligible. Whether or not it is cost-
effective, and whether or not it outperforms com-
peting technologies, remains to be studied. We
believe that because test case generation technol-
ogy has now matured to a rather impressive ex-
tent, researchers in the field can and should tackle
this important question. While we acknowledge
the difficulties, and while we are clearly aware
that not all successful technology has had prior
empirical evidence on its side (e.g., OO technol-
ogy), we are convinced that more empirical stud-
ies are definitely needed.

6. Related Work

The last three decades have seen substantial re-
search in the area of model-based testing. Broy
et al. have provided a comprehensive overview
of research in the field [29]. An early focus of
this research was conformance testing between fi-
nite state machines; see Gargantini’s review [58].
Binder’s book concentrates on the idiosyncrasies
of testing OO software [59].

Tools for test case generation have been sur-
veyed by several authors [60,61]. While rather
comprehensive, there is no underlying taxonomy.
We chose to not present a full list of tools but
rather some typical approaches because there are
many commercial and academic tools in the field,
and the situation is quickly evolving with new de-
velopments and projects. Case studies in model-
based testing and empirical investigations have
been referenced in Section 5.

Research topics deal with the underlying al-
gorithms, theory and technology of model-based
testing. The focus of this paper is more on the
user perspective of model-based testing. We feel
that the field of model-based testing has moved
from a research topic to an emerging practice in
industry, with some commercial tool support. We
are not aware of any taxonomies in this field.

7. Conclusions

The idea of model-based testing is to use ex-
plicit abstractions of a SUT and its environ-
ment to possibly automatically derive tests for
the SUT: the behaviour of the model of the SUT
is interpreted as the intended behaviour of the
SUT. This approach is particularly appealing be-
cause it assigns a threefold use to models: they
are used to come to grips with precise require-
ments descriptions, they can be used as parts of
specification documents, and they can be used to
the end of test case generation.

Abstraction is crucial to the approach, and dif-
ferent flavors of model-based testing take into ac-
count different abstractions: some rely on envi-
ronment models only—which makes the gener-
ation of test data rather cheap but necessitates
a human oracle when test results more detailed
than “exception” vs. “no exception” are sought
after; some rely on models of the SUT—which
solves the oracle problem but is more costly; and
many approaches combine the two extremes by
using environment models as a basis for test case
specifications.

The emerging nature and increasing popular-
ity of the field of model-based testing have led to
a plethora of publications that, due to a lack of
a unifying conceptual framework, are not always
easy to put in contrast. The taxonomy of this
paper provides this framework. We have demon-
strated its utility along the lines of a deliberately
partial comparison of different approaches and as-
sociated tools. In particular, the taxonomy pre-
sented in this paper is intentionally oriented to-
ward a model-based testing practitioner point of
view.

The technology of automated model-based test
case generation in particular has matured to the
point where the large-scale deployment of this
technology seems possible. We have highlighted
the fundamental assumptions that underly its ef-
fective use and have provided an overview of
existing evidence. In terms of positive failure-
detecting effectiveness, the body of evidence is
rather large. In terms of cost effectiveness, there
is room for further empirical investigations.

In terms of test case generation technology, the



A Taxonomy of Model-Based Testing 15

increasing number of tools in both the commercial
and academic sectors witness a significant level
of maturity that is likely to increase even fur-
ther due to industrial demand. In addition to
empirical studies, we see the research challenges
firstly in the definition of domain-specific test se-
lection criteria that, in terms of their fault de-
tection power, are empirically underpinned. Sec-
ondly, little methodological guidance as to how
to build models is currently available, and tool
support for building, versioning, and debugging
models can be improved. Thirdly, the question
of model-based testing for non-functional require-
ments such as security or usability, is still an open
issue.

REFERENCES

1. W. Prenninger, A. Pretschner, Abstractions for
Model-Based Testing, ENTCS 116 (2005) 59–71.

2. A. Pretschner, J. Philipps, Methodological Issues
in Model-Based Testing, in: [29], 2005, pp. 281–
291.

3. J. Philipps, A. Pretschner, O. Slotosch,
E. Aiglstorfer, S. Kriebel, K. Scholl, Model-
based test case generation for smart cards, in:
Proc. 8th Intl. Workshop on Formal Meth. for
Industrial Critical Syst., 2003, pp. 168–192.

4. G. Walton, J. Poore, Generating transition prob-
abilities to support model-based software testing,
Software: Practice and Experience 30 (10) (2000)
1095–1106.

5. J. Musa, Software Reliability Engineering, Au-
thorHouse, 2nd ed., 2004.

6. A. Pretschner, O. Slotosch, E. Aiglstorfer,
S. Kriebel, Model based testing for real–the in-
house card case study, J. Software Tools for Tech-
nology Transfer 5 (2-3) (2004) 140–157.

7. A. Pretschner, W. Prenninger, S. Wagner,
C. Kühnel, M. Baumgartner, B. Sostawa,
R. Zölch, T. Stauner, One evaluation of model-
based testing and its automation, in: Proc.
ICSE’05, 2005, pp. 392–401.

8. E. Bernard, B. Legeard, X. Luck, F. Peureux,
Generation of test sequences from formal spec-
ifications: GSM 11.11 standard case-study, SW
Practice and Experience 34 (10) (2004) 915 – 948.

9. E. Farchi, A. Hartman, S. S. Pinter, Using a
model-based test generator to test for standard
conformance, IBM Systems Journal 41 (1) (2002)
89–110.

10. K. Berkenkötter, R. Kirner, Real-Time and Hy-
brid Systems Testing, in: [29], 2005, pp. 355–387.

11. A. van Lamsweerde, Formal specification: a
roadmap, in: Proc. ICSE’00, 2000, pp. 147–159.

12. A. Aho, A. Dahbura, D. Lee, M. U. Uyar, An
optimization technique for protocol conformance
test generation based on UIO sequences and ru-
ral chinese postman tours, IEEE Transactions on
Communications 39 (11) (1991) 1604–1615.

13. D. Lee, M. Yannakakis, Principles and methods
of testing finite state machines — A survey, Pro-
ceedings of the IEEE 84 (2) (1996) 1090–1126.

14. H. Zhu, P. Hall, J. May, Software Unit Test Cov-
erage and Adequacy, ACM Computing Surveys
29 (4) (1997) 366–427.

15. S. Ntafos, A Comparison of Some Structural Test-
ing Strategies, IEEE TSE 14 (6) (1988) 868–874.

16. P. Frankl, E. Weyuker, An Applicable Family of
Data Flow Testing Criteria, IEEE TSE 14 (10)
(1988) 1483–1498.

17. N. Kosmatov, B. Legeard, F. Peureux, M. Ut-
ting, Boundary coverage criteria for test gener-
ation from formal models, in: Proc. 15th Intl.
Symp. on SW Reliability Engineering, 2004, pp.
139–150.

18. B. Beizer, Black-Box Testing : Techniques for
Functional Testing of Software and Systems, Wi-
ley, 1995.

19. D. Hamlet, R. Taylor, Partition Testing Does Not
Inspire Confidence, IEEE TSE 16 (12) (1990)
1402–1411.

20. J. Duran, S. Ntafos, An Evaluation of Random
Testing, IEEE TSE SE-10 (4) (1984) 438–444.

21. W. Gutjahr, Partition testing versus random test-
ing: the influence of uncertainty, IEEE TSE
25 (5) (1999) 661–674.

22. V. Nair, D. James, W. Ehrlich, J. Zevallos, A
Statistical Assessment of some Software Testing
Strategies and Application of Experimental De-
sign Techniques, Statistica Sinica 8 (1998) 165–
184.

23. C. Gaston, D. Seifert, Evaluating Coverage-Based
Testing, in: [29], 2005, pp. 293–322.

24. A. Paradkar, Case studies on fault detection effec-
tiveness of model based testing generation tech-
niques, in: Proc. ICSE 2005 Workshop on Ad-
vances in Model-Based Software Testing, 2005.

25. J. Andrews, L. Briand, Y. Labiche, Is mutation
an appropriate tool for testing experiments, in:
Proc. ICSE’05, 2005, pp. 402–411.

26. L. Lúcio, M. Samer, Technology of Test-Case
Generation, in: [29], Springer LNCS 3472, 2005,



16 Utting, Pretschner and Legeard

pp. 319–350.
27. S. Prowell, Jumbl: A tool for model-based statis-

tical testing, in: Proc. HICSS’03, IEEE, 2003, p.
337.3.

28. M. Kwan, Graphic programming using odd and
even points, Chinese Mathematics 1 (1962) 273–
277.

29. M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker,
A. Pretschner (Eds.), Model-Based Testing of
Reactive Systems, no. 3472 in LNCS, Springer-
Verlag, 2005.

30. A. Offutt, S. Liu, A. Abdurazik, P. Ammann,
Generating test data from state-based specifica-
tions, J. Software Testing, Verification and Reli-
ability 13 (1) (2003) 25–53.

31. H. Hong, I. Lee, O. Sokolsky, H. Ural, A Tem-
poral Logic Based Theory of Test Coverage and
Generation, in: Proc. TACAS’02, 2002, pp. 327–
341.

32. A. Pretschner, Classical search strategies for test
case generation with Constraint Logic Program-
ming, in: Proc. Formal Approaches to Testing of
Software, 2001, pp. 47–60.

33. B. Marre, A. Arnould, Test Sequences Generation
from LUSTRE Descriptions: GATEL, in: Proc.
15th IEEE Conf. on Automated SW Engineering,
2000, pp. 229–237.

34. S. Colin, B. Legeard, F. Peureux, Preamble com-
putation in automated test case generation us-
ing Constraint Logic Programming, J. Software
Testing, Verification and Reliability 14 (3) (2004)
213–235.

35. J. Dick, A. Faivre, Automating the generation
and sequencing of test cases from model-based
specifications, in: Proc. 1st Intl. Symp. of For-
mal Methods Europe: Industrial-Strength Formal
Methods (FME 1993), Vol. 670 of LNCS, 1993,
pp. 268–284.

36. S. Helke, T. Neustupny, T. Santen, Automating
test case generation from Z specifications with Is-
abelle, in: Proc. 10th Intl. Conf. of Z Users, Vol.
1212 of LNCS, 1997, pp. 52–71.

37. J. Tretmans, E. Brinksma, Côte de Resyste – Au-
tomated Model Based Testing, in: Progress 2002
– 3rd Workshop on Embedded Systems, 2002, pp.
246–255.

38. J. Tretmans, Test Generation with Inputs, Out-
puts and Repetitive Quiescence, Software – Con-
cepts and Tools 17 (3) (1996) 103–120.

39. C. Jard, T. Jéron, TGV: theory, principles and al-
gorithms, J. Software Tools for Technology Trans-
fer 7 (4) (2005) 297–315.

40. D. Clarke, T. Jéron, V. Rusu, E. Zinovieva, STG:
A symbolic test generation tool, Vol. 2280 of
Springer LNCS, 2002, pp. 470–475.

41. B. Koch, J. Grabowski, D. Hogrefe, M. Schmitt,
AutoLink – a tool for automatic test generation
from SDL specifications, in: Proc. IEEE Intl.
Workshop on Industrial Strength Formal Speci-
fication Techniques (WIFT 1998), 1998, pp. 114–
127.

42. L. du Bousquet, S. Ramangalahy, S. Simon,
C. Viho, A. Belinfante, R. de Vries, Formal
test automation: The conference protocol with
TGV/Torx, in: Proc. TestCom’00, 2000, pp. 221–
228.

43. R. G. de Vries, A. Belinfante, J. Feenstra, Au-
tomated testing in practice: The highway tolling
system, in: Proc. TestCom’02, 2002, pp. 219–234.

44. F. Bouquet, B. Legeard, F. Peureux, E. Tor-
reborre, Mastering Test Generation from Smart
Card Software Formal Models, in: Proc. Intl.
Workshop on Construction and Analysis of Safe,
Secure and Interoperable Smart devices, Vol. 3362
of Springer LNCS, 2004, pp. 70–85.

45. D. Cohen, S. Dalal, M. Fredman, G. Patton, The
AETG System: An approach to testing Based on
Combinatorial Design, IEEE TSE 23 (7) (1997)
437–444.

46. A. Pretschner, Model-Based Testing in Practice,
in: Proc. Formal Methods, Vol. 3582 of Springer
LNCS, 2005, pp. 537–541.

47. M. Blackburn, R. Busser, A. Nauman, Why
model-based test automation is different and
what you should know to get started, in: Proc.
Intl. Conf. on Practical Software Quality and
Testing, 2004.

48. M. Horstmann, W. Prenninger, M. El-Ramly,
Case Studies, in: [29], 2005, pp. 439–461.

49. S. R. Dalal, A. Jain, N. Karunanithi, J. M.
Leaton, C. M. Lott, G. C. Patton, B. M.
Horowitz, Model-based testing in practice, in:
Proc. ICSE’99, 1999, pp. 285–294.

50. J. Clarke, Automated Test Generation from Be-
havioral Models, in: Proc. 11th Software Quality
Week, 1998.

51. H. Kahlouche, C. Viho, M. Zendri, An indus-
trial experiment in automatic generation of ex-
ecutable test suites for a cache coherency proto-
col, in: Proc. IFIP TC6 11th Intl. Workshop on
Testing Comm. Systems, 1998, pp. 211–226.

52. A. Belinfante, J. Feenstra, R. d. Vries, J. Tret-
mans, N. Goga, L. Feijs, S. Mauw, L. Heerink,
Formal test automation: A simple experiment,



A Taxonomy of Model-Based Testing 17

in: Proc. 12th Intl. workshop on Testing of Com-
municating Systems, 1999, pp. 179–196.

53. L. Fournier, A. Koyfman, M. Levinger, De-
veloping an Architecture Validation Suite—
Application to the PowerPC Architecture, in:
Proc. 36th ACM Design Automation Conf., 1999,
pp. 189–194.

54. J. Shen, J. Abraham, An RTL Abstraction Tech-
nique for Processor Micorarchitecture Validation
and Test Generation, J. Electronic Testing: The-
ory&Application 16 (1-2) (1999) 67–81.

55. J. Dushina, M. Benjamin, D. Geist, Semi-formal
test generation with Genevieve, in: Proc. 38th
conf. on Design automation, 2001, pp. 617–622.

56. D. Clarke, T. Jéron, V. Rusu, E. Zinovieva, Au-
tomated Test and Oracle Generation for Smart-
Card Applications, in: Proc. E-smart, 2001, pp.
58–70.

57. I. Craggs, M. Sardis, T. Heuillard, AGEDIS Case
Studies: Model-Based Testing in Industry, in:
Proc. 1st Eur. Conf. on Model Driven Software
Engineering, 2003, pp. 129–132.

58. A. Gargantini, Conformance Testing, in: [29],
2005, pp. 87–111.

59. R. V. Binder, Testing Object-Oriented Systems:
Models, Patterns, and Tools, Addison-Wesley,
1999.

60. A. Hartman, AGEDIS - Model Based Test Gen-
eration Tools (2002).

61. A. Belinfante, L. Frantzen, C. Schallhart, Tools
for Test Case Generation, in: [29], Springer LNCS
3472, 2005, pp. 391–438.


