Title:

D.1.1.1
Specification of Test
Infrastructure and
Architecture

Version: 2.0
Date : 30/10/2005
Pages : 65

Tests & Testing Methodologies with | Author: FOKUS
Advanced Languages

To:
TT-MEDAL Consortium

The TT-MEDAL Consortium consists of: Printed on:

Conformiq Software, CWI, DaimlerChrysler, FOKUS, Improve Quality
Services, LogicaCMG, NetHawk, Nokia, Railinfrabeheer, Testing
Technologies, VTT Electronics

Status: Confidentiality:

[] Draft [X] Public - Intended for public use

[] To be reviewed [] Restricted - Intended for TT-MEDAL consortium only
[] Proposal [] Confidential - Intended for individual partner only

[X] Final/Released

Deliverable ID: D.1.1.1

Title:

Specification of Test Infrastructure and Architecture

Summary / Contents:

The specification of the TT-Medal test infrastructure and architecture aims to provide a comprehensive
overview and understanding of the test infrastructure elements and tools required to perform industrial
TTCN-3 tests. An introductory information including a market viewpoint and an overview on the overall
architecture of test infrastructure and platform components is given at the beginning. The major
contents of this document is the explanation of test infrastructure elements, i.e. general TTCN-3 test
system entities for a distributed test execution. In addition the document presents required features for
test logging, the integration of IDL or XML based information on the SUT, and extensions regarding
the adaptation to heterogeneous technical SUT interfaces in addition to Java or C++. Furthermore the
document includes an introduction of different test architectures used in TT-Medal case studies and a
catalogue of a basic terminology for testing that has been derived from various standardization bodies
in order to support a common understanding on the TT-Medal infrastructure.

Note: Since there is a strong relationship between Test Infrastructure and Test Methodology it is
recommended to consider als the contents of TT-Medal deliverable D1.1.2.

© Copyright TT-MEDAL Consortium

Page : 2o0f64

T’l Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

TABLE OF CONTENTS

L0 Y L 10 4
APPLICABLE DOCUMENT LISTiiiiiiiriiiii e iemre s s me e s s s s sm s s sms s s mn e s s s smn e s s snnns 5
EXECUTIVE SUNMMARY w......oiiiiiciiiriiimrrseme s ssmr s s ssssms s sassms e s s ms e s sams e s s s smn s eessnme e s sssmnesssssnnnesanan 6
INtrOdUCHION.....cci i ——————————————— 7
Market SUIVEY ... s s nr e e n e nnnnn e e 7

2 T =1 =Y [U] o] 4 =T o | RSP 7
A =11 e (1= (o] o] o 4 1= o OO EES 8
2.3 Testexecution and a@nalySiSccooiiiiiiiiiiiiieie e 8
A =11 (1T T o] =T o= OO REE 9
Overall ArChiteCtUreccciiiie 9

3.1 Overview on the test Infrastructure Components ... 10
3.2 Overview On The Test Platform Components..........ccueiiiiiiiiiiiiiiiie e 11
Initial INfrastrucCture........ .o 12

4.1 General Structure of a TTCN-3 Test System ..o 12
4.1.1 The TTCN-3 Executable (TE) ENtitycovviiiiiiiiii e 13
4.1.2 SUT Adapter (SA) and Platform Adapter (PA) entitiescccoveiiiee i, 13
4.1.3 The Component Handling (CH) Entity ... 14
4.1.4 The Test Management (TM) ENtitycccvviiiiiei i 14
4.1.5 The COdEC (CD) ENtitYcooi it e e et e e e e e e e e e eneeeeaenns 15
4.2 General structure of a distributed TTCN-3 test systemccccceveeiiiiiiiiiiiieee e, 15
4.3 Interfaces and AdApPIOrsoiiii i aeae s 17
0 e I USSR 17
4.3.2 TR ittt e e e e b e e e e e e e e e 19
4.4 Distributed Execution ENVIrONMENt ... 20
441 Architectural €lemMENtSc.uviiiiiiie i 20
S 10T o) o Yo i1 o U171 (=T S 21
8 o Yo T |1 o PSPPSR 22
4.51 Technical APPrOaChi i e e e et eaaaaeae 22
4.5.2 IMPIEMENTAtION a e e e 26
4.6 IDLINtegrationcoooiiiiiiiiie 27
4.6.1 Architectural OVErVIEWoiiiiii i e e e e e 28
4.6.2 AdAressing ODJECES........ccciiiiiiiiiiie e a e e 29
4.6.3 Exception HandliNg.........ccooviiiiiiiiiiiiiiiie e 29
A Y | I 0 (=T | = o] o [T 30
471 XML t0 TTCN-3 MaPPING .. .ccutteiiiieeiiiiiiiiiit e e e s e et e e e e s e e e e e e e e s ssarraaeeaaeesasnnnreeees 30
4.7.2 Implementation @apProachoooo i 31
4.7.3 XML processing prior to0 TTCN-3 Mappingccccciiiiiiieeeiiiciieeee e 32
4.8 CH+10 TTCN-3INtegrationoooiiiiiiiiiii e eee e 36
V23S T B OF 5 o (o B IO NV B Y/ =T o] o] T PR 36
4.8.2 TTCN-3 Test System for C++ ComponentsS........ccvvviiiieeiiiiiiiiiieee e 40
4.8.3 Approach to Realize the Adaptation ... 41
4.9 TT-Datagram protoCol ... 43
4.9.1 The TTdatagram protocol message enCOdiNgccuueeeeiiiiiiiiiirieeeieaeiiieee e e e 44
4.9.2 The Java DatagramTestAdapter..........ooovviiiiiiiiii 47

© Copyright TT-MEDAL Consortium

e

Specification of test infrastructure and
architecture

Deliverable ID: D.1.1.1

Page : 3o0f64

Version: 2.0
Date : 30/10/2005

Status : Final
Confid : Public

5.

6.
.
Il

5.1

~0 00T

Test System Architectures used in the Case Studies

SA as a separate executable
5.2 SA and TE within one executable
5.3 Simulated Time

Terminology
Basic Terms
Characteristics
Documents & Artefacts
Processes
Test Tools

Test Types

Glossary

© Copyright TT-MEDAL Consortium

Page : 4o0of64
Tk& AL Version: 2.0
Specification of test infrastructure and Date : 30/10/2005
architecture
Status : Final
Deliverable ID: D.1.1.1 Confid : Public
CHANGE LOG

Vers. [Date Author Description

0.1 01.11.04 | Axel Rennoch (FOK) [Initial version based on the German milestone Z21 with
contributions from Ina Schieferdecker (FOK), Justyna
Zander (FOK), Dimitrios Apostolidis (TT), Stephan
Pietsch (TT)

0.1.1 [11.11.04 |Edzard Hofig (FOK) |Update of Terminology section

0.2 22.11.04 | Axel Rennoch (FOK) | Addition of initial contributions from Richard Poppe
(CMG), Thomas Deiss (NOK), Matti Karki (VTT), Dirk
Tepelmann (TT)

1.0 29.12.04 |Edzard Hdfig, Consideration of reviewers comments;

Axel Rennoch (FOK) | Extension of the Terminlogy section

1.5 04.10.05 |Axel Rennoch (ed.) |Update of ch. 4.7 (E. Hofig, A. Hinnerichs) and 4.8 (M.
Karki), addition of new ch. 5 (T. Deiss)

2.0 20.10.05 |Axel Rennoch (ed.) |[Consideration of reviewers comments;

© Copyright TT-MEDAL Consortium

Page : 5o0f64
Tk& AL Version: 2.0
Specification of test infrastructure and Date : 30/10/2005
architecture
Status : Final
Deliverable ID: D.1.1.1 Confid : Public

APPLICABLE DOCUMENT LIST

Ref. |Title, author, source, date, status

Identification

[1 Methods for Testing and Specification; The Testing and Test Control Notation
Part 1 : Core Language, ETSI ES 201 873-1, v2.2.1

[2] Methods for Testing and Specification; The Testing and Test Control Notation
Part 3 : Graphical Presentation Format, ETSI ES 201 873-3, v2.2.1

[3] Methods for Testing and Specification; The Testing and Test Control Notation
Part 4 : Operational Semantics, ETSI ES 201 873-4, v2.2.1

[4] Methods for Testing and Specification; The Testing and Test Control Notation
Part 5: TTCN-3 Runtime Interface (TRI), ETSI ES 201 873-5, v1.1.1

[5] Methods for Testing and Specification; The Testing and Test Control Notation
Part 6 : TTCN-3 Control Interfaces, Draft ETSI ES 201 873-6, v1.0.0

[6] Z1: DaimlerChrysler Requirements

[7] Z1: Nokia Requirements

[8] ETSI TS 102 219 V1.1.1 (2003-06): IDL to TTCN-3 mapping

[9] Test Process Improvement, T. Koomen and M. Pol, Addison-Wesley / acm
press, 1999

[10] Structured Testing of Information Systems, M. Pol and E. v. Veenendaal,
Kluwer, 1998

[11] OMG CORBA (V2.4): "The Common Object Request Broker: Architecture
and Specification", Section 3, October 2000.

[12] http://www.corba.org/vendors/pages/roguewave.html

[13] MOST cooperation: http://www.mostnet.de/downloads/Specifications/MOST

[14] World Wide Web Consortium: XML Schema, W3C Recommendations, May
2001. http://www.w3.org/IXML/Schema

[15] World Wide Web Consortium: SOAP documentation. W3C Recommendation.
http://www.w3.org/TR/soap

[16] D.-M. Jeaca: XMLSchema to TTCN-3 Mapping. Diploma thesis. Fraunhofer
FOKUS, September 2004.

[17] Syntext dtd2xs v2.0 user's guide, Syntext Inc. 2003,
http://www.syntext.com/products/dtd2xs/doc/index.html

[18] IEEE Standard for Software Test Documentation, No. 829-1998

[19] Int. Software Testing Qualification Board: Glossary of terms used in Software
Testing. Version 1.0, December 2004,

[20] ISO/IEC 9126 - Information Technology, Software Product Evaluation,
Quality, Characteristics and Guidelines for their Use

[21] ISO 8402 - Quality management and quality assurance — Vocabulary
(revised by ISO 9000 - Quality management systems -- Fundamentals and
vocabulary)

[22] ITU-T X.290: OSI Conformance testing methodology and framework, 04/95

[23] OMG Adopted Specification: UML 2.0 Testing Profile Specification, ptc/03-08-
03

[24] S. Blom, N. luostinova, J v.d. Pol, Testing Railway Interlockings with TTCN-3,
TTCN-3 User Conference, Sophia-Antipolis, 2005

[25] C/C++ To TTCN-3 Mapping, version 0.3, 08.03.2005
http://portal.etsi.org/docbox/MTS/MTS/05-Meetings/200503-MTS40/

© Copyright TT-MEDAL Consortium

Page : 6o0f64

Tk& AL Version: 2.0
: Specification of test infrastructure and Date : 30/10/2005
architecture
Status : Final
Deliverable ID: D.1.1.1 Confid : Public

EXECUTIVE SUMMARY

The first deliverable in project task 1.1 reports on the initial specification of the TT-Medal test infrastructure
and architecture. It provides an overview on required test tools and focuses on test execution. The described
test infrastructure elements have been selected due to the requirements collected in WP4. The current
specification is related to implementations developed in WP 2 and 3. The development of an overall testing
methodology and the integrated use of the test tools is subject of a different task 1.1 report [D1.1.2].

© Copyright TT-MEDAL Consortium

Page : 7 of64

T’l Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

1.INTRODUCTION

TT-Medal develops a test platform based on TTCN-3 for various applications in mobile communication
systems (e.g. in GSM, GPRS and UMTS), automotive (e.g. in MOST and CAN), and — if possible - other
domains like financial software etc.

TTCN-3 is a test specification and implementation language (as it defines the test execution interfaces TRI
and TCI; part 5 and 6 of the TTCN-3 standard series), but it leaves open further aspects of a test platform
that addresses requirements of industrial testing environments. These requirements have been derived from
case studies. The requirements address architectural, methodological and tooling aspects, which all have an
impact on the overall architecture. This deliverable represents a first definition of the test infrastructure
architecture of TT-Medal. It should serve as a reference basis for the tool development within the project.

The main contents of this report is the presentation of the key elements of the TTCN-3 toolset as it will be
developed in the TT-Medal project, i.e. it explains the core elements of a TTCN-3 test architecture according
to the ETSI standardization and additional extensions which are needed due to the TT-Medal case studies.
Thus, the TT-Medal toolset and the specific technical interfaces are reflected to provide a coherent overview
of the required TTCN-3 infrastructure elements.

At the beginning of this report a section on a market questionnaire has been placed to give a background on
the conditions an innovative test infrastructure has to address from the customers viewpoint. The list of
questions and some details about the participating companies are given in the annex. The results from this
questionnaire have been available only recently and — as far as not done - will be considered for the updated
version of this report.

An additional effort is given to an annex about important testing and software quality terms collected from
various glossaries of standardization institutions.

2. MARKET SURVEY

The TTCN test specification language was originally developed in the telecom domain for protocol and
conformance testing. The goal of the TT-Medal project is to investigate in the TTCN-3 test specification
language so that it can be used in other domains as well. The telecom and automotive (embedded) domains
are supported well by TTCN-3, because of the message and procedure based approach. The financial
domain in which LogicaCMG is active uses a very different test approach, because it is almost always GUI
(Graphical User Interface) based.

A market survey about test environments is held at different domains, with a focus on the financial domain,
to compare test environments and to investigate whether improvements are needed for test methods and
test tools. The results shall be used to improve the TTCN-3 test specification language application.

The highlights of the questionnaire results are summarized in the next four sections. Section test equipment
describes the test equipment as well as some information about the System Under Test (SUT). The section
test development describes how the tests are developed and/or generated. Section test execution and
analysis describes how tests are executed, whether test automation is implemented and how results are
analysed. Also adapters (encoder/decoder and stubs) and tools are part of this section. The last section,
testing practices, describes whether testing is in place as a process, if improvements are needed for the
process and/or tooling and whether there is time/budget to implement improvements.

2.1 TEST EQUIPMENT

In the telecom domain UNIX and embedded systems are used for product implementation (SUT). Testing of
these SUTs is implemented on UNIX as well as on Windows systems. The UNIX testers are mostly used for
protocol testing (SMS, MMS, etc.) and occasionally for testing database content (subscriber information,
credits, etc.). UNIX testers are not (or rarely) used for GUI based testing (not X-window nor web-based

© Copyright TT-MEDAL Consortium

Page : 8of64

T’l Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

interface). Windows based testers are used for protocol testing (e.g. WAP) as well as GUI- and web-based
testing. The Windows tester is occasionally used for testing database content, but also then mostly via a GUI
interface.

In general the financial domain uses a Windows front-end to test their SUT. The SUT itself can be
implemented under Windows, but is in most cases a UNIX based system. The Windows test tools are
running on PC's under Windows versions 98, 2000/NT and XP. Older versions of Windows are not in use
anymore.

2.2 TEST DEVELOPMENT

Test case generation is not in place in the financial domain, which means that tests are created manually.
Input for test creation is normally a functional specification or system requirements document. E.g.
TestFrame method with the TestFrame Toolbar can be generally used to develop test cases. Its Language
with ActionWords is used to describe the test conditions, test cases and test steps. Sometimes a proprietary
test description language is used, which is directly related to a proprietary test tool. Test validation is only
done by reviews or inspections.

The most appreciated features of the test development tools:
« readability and simplicity
¢ intuitive and easy to learn
¢ test data separated from test case
« possibility in test specification for reading dynamic values to be used in the rest of the test
« reuse of test specification / scripts / ActionWords
e test specification can be used to execute test manually (automation not required)

Improvements for test development tools could be:
« link to the requirements for traceability
« conditions and loops in test case design

2.3 TEST EXECUTION AND ANALYSIS

Customers are interested in test automation or are using automated testing for regression test already. Test
execution for GUI based testing on Windows is mostly managed by the test execution tool (e.g. WinRunner)
and occasionally by a proprietary (Unix) tool. Test results from the Test Engine are e.g. in RTF format (word
document), and are in most cases verified manually. Proprietary test execution tools can give an overview of
the total results.

Debugging of the test case by stepping through the script is an important feature, which is supported by most
test automation tools. However, when a DLL-function is called, e.g. WinRunner does not stop the test
execution anymore because it cannot set a correct breakpoint. It is very wishful that the test execution tool
supports stepping through test cases, even when DLL-functions are called.

WinRunner is experienced as relatively slow for test execution compared to the actions executed on the
SUT. This means that execution of the complete test suite is limited by the performance of this test tool
instead of the SUT. This should not be the case.

Interfaces to the SUT, which are not supported by the GUI test tool, are generally implemented as
proprietary tools with a commandline interface. The GUI test tools are able to start the proprietary tools and
to enter the necessary commands.

The features that are appreciated most in currently used GUI-based test automation tools are:
¢ debugging test cases by step through the script
e extensions possible for protocol adapters

© Copyright TT-MEDAL Consortium

Page : 9of64

T’l Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

e overall reporting functions

Topics that could be improved:
e performance of the test tool
e selection for one or multiple test cases or complete test suite
» custom data types for calling API
e compiler function (to avoid test case modification afterwards)

2.4 TESTING PRACTICES

Most customers have a process in place for testing, which fits their needs. But there is no guarantee that test
engineers are using the processes as intended, so the result of testing depends largely on the quality of
these test engineers. An improvement can be to integrate the test process in the test management tooling.

Testing is in general a project based activity, which means that the costs for improvements and changes are
also booked on the projects' budget. Therefore project managers are generally not interested in changing
tools and methods, because it does not have an added value to their project. This could become a problem
for introducing the TTCN-3 specification language to the market.

For those customers, who are investigating to change their test environment, a need is seen for ("out-of-the-
box") integrated solutions for testing, instead of using different and proprietary tools. Tool vendors more and
more try to deliver (integrated) solutions for the whole testing process. This trend must be kept in mind when
developing tools for TTCN-3.

3. OVERALL ARCHITECTURE

For the overall architecture, we propose to differentiate between the test infrastructure and the test platform
as shown in Figure 1.

Test platform

Test Development | | Test Generation | | Test Validation | | Test Analysis

Test infrastructure

Test Execution Adaptors
Manager

Deployment Logging/tracing
User Interfaces

Figure 1. Overall Architecture

The test infrastructure comprises of all the components that are essential for the execution of TTCN-3
tests. These components are taken from the components defined in the TTCN-3 test system architecture as
defined in the TTCN-3 runtime interfaces (TRI [4]) and the TTCN-3 control interfaces (TCI [5]). These
components are basically components for the interaction with the system under test (SUT), for timing and
external functions, for the control of the test execution, for the handling of (local and remote) test
components, and for the encoding and decoding of data. Components that are beyond the TTCN-3 test

© Copyright TT-MEDAL Consortium

Page : 10 of 64

T;n Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

system architecture are components for deployment and for logging and tracing. In addition, a user interface
should be part of the test infrastructure. Both, graphical user interfaces (GUI) and command-line interfaces
(CUI) should be supported.

The test platform consists of the test infrastructure and additional components needed to develop and

maintain test systems. These additional components address the test development, test generation, test
validation and test analysis.

3.1 OVERVIEW ON THE TEST INFRASTRUCTURE COMPONENTS

The test infrastructure provides means to execute TTCN-3 tests and to analyse the test results, i.e. it is used
for test setup, execution and result presentation.

Abstract test suites (taken from test development) are compiled into executable tests with a TTCN-3 compiler
(in our case TTthree).

B TTCN-3 Test manager Test result
Ahﬂ‘:ﬁm Compiler D?'g!l?r!r:?:)m (WTTman) 3 representation
U (TTthres) § {TTlog)

Adaptor
repository

T

Result
repository

Test set-up Test execution

Figure 2. Test Infrastructure Components

During test set-up all components needed for the test execution are (locally or remotely) deployed. These
components include the executable test code, the test engine (in our case TTrun), adaptors (often taken
from adaptor repositories) and the test equipment itself. Deployment is supported by TTmex. The result of
deployment is a fully functional test system.

The test system is the basis for test execution. It is configured and parameterized according to the answers
in the Implementation Conformance Statement (ICS) and the Implementation Extra Information for Testing
(IXIT). The test manager yTTman is used to control the test execution.

The results of test execution via the test manager are test logs, which are the basis for determining the final
test results. The test logs and test results can be visualized with a test result representation (in our case
TTlog). They can also be stored in a result repository to be used e.g. for future variations during test
development phases.

© Copyright TT-MEDAL Consortium

Page : 110f64

T: Version: 2.0
pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

3.2 OVERVIEW ON THE TEST PLATFORM COMPONENTS

The test platform offers additional components dedicated to the development, validation and analysis of
tests. The tests are developed along the kind of tests (such as functional, interoperability, performance,
scalability, load, stress, etc. tests) and the test purposes and test objectives for which they are aimed at.
Tests can be specified in TTCN-3, in domain specific profiles of TTCN-3 (such as for mobile communication
or for automotive), or in the UML 2.0 Testing Profile (which then needs to be mapped to TTCN-3). The
results of the test development are abstract test suites in TTCN-3, which are compiled into executable code.
That is given to the test infrastructure for execution.

kind of test (e.g. functional / stress / performance}

|| ||
test purposes [test objectives
|| ||
ﬁ test development @
—
M .‘ TTCN-3 profiles

automatic)

test test
I PRI ‘ I ESEs) test derivation generation
other sources . .
composition {semi (fully
test variation

automatic)
simulation/
abstract test suite validation

compile

test infrastructure ‘ debugging

Figure 3. Test Platform Components

Test development itself can make use of legacy tests or tests from other sources such as test suites from
standardization bodies or from manual test development. Tests can be composed from other tests; they can
be derived semi-automatically or fully automatically generated from system models, system scenarios and/or
test purpose models.

Legacy tests are typically part of test repositories. Test composition uses test patterns and test frameworks.
Tests can be varied by means of parameterization or refinement.

Abstract test suites can be simulated and validated for internal correctness and for the correctness with
respect to a system model or test purpose/test objective model. Executable test suites can be debugged.
Simulation, validation and debugging are dedicated to analyse test suites and to check/demonstrate their
correctness.

© Copyright TT-MEDAL Consortium

Page : 12o0of64

T: ' Version: 2.0
pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

4. INITIAL INFRASTRUCTURE

To have a better overview about a TTCN-3 test system and its componentes, first of all the general structure
of such a system and the needed interfaces will be presented. After that, the distributed test system
architecture TTmex with all its components is explained.

4.1 GENERAL STRUCTURE OF A TTCN-3 TEST SYSTEM

A TTCN-3 test system, also commonly referred to as “tester”, can be thought of conceptually as a set of
interacting entities where each entity corresponds to a particular aspect of functionality in a test system
implementation. These entities manage test execution, interpret or execute compiled TTCN-3 code, realize
proper communication with the SUT, implement external functions and handle timing.

The part of the test system which implements interpretation or execution of a TTCN-3 test specification is the
TTCN-3 Executable (TE) entity. In a TTCN-3 tester, this entity corresponds either to an interpreter or an
executable test suite (ETS). The ETS is produced by a compiler from a TTCN-3 abstract test suite (ATS). In
case of using the TTthree compiler, it is an executable test suite, i.e. the compiled abstract test suite.

Test System User

TC!H — —

TE:
Test Executable

TRY —_—— —
SA: PA:
System Adaptor Platform Adaptor

SuUT:
System Under Test

Figure 4. General Structure of a TTCN-3 Test System

The remaining part of the TTCN-3 test system, which deals with the aspects that cannot be concluded from
information being present in the original ATS alone, can be decomposed into Test Management (TM),
Component Handling (CH), Codec (CD), SUT Adapter (SA) and Platform Adapter (PA) entities. In general,
these entities cover a test system user interface, test execution control, test event logging, communication
between test components, encoding and decoding of TTCN-3 values, as well as communication with the
SUT and timer implementation.

© Copyright TT-MEDAL Consortium

Page : 13 of64

T’l Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

As depicted in figure 4, a TTCN-3 test system has two major interfaces, the TTCN-3 Control Interface (TCI)
and the TTCN-3 Runtime Interface (TRI). The TCI [5] provides a standardized adaptation for management,
test component handling and encoding/decoding of a test system to a particular test platform, i.e. it specifies
the interfaces between Test Management (TM), Component Handling (CH), Codec (CD) and TTCN-3
Executable (TE) entities. The TRI [4] specifies the interfaces between the TE and Platform/SUT Adapter
entities, respectively.

4.1.1 The TTCN-3 Executable (TE) Entity

As already mentioned, the TE entity is responsible for the interpretation or execution of the TTCN-3 ATS.
Conceptually, the TE entity can be thought of an implementation of three separate tasks:

« control of test case execution

« proper execution of TTCN-3 behavior

* queueing of events

The control aspect implements the control part specified in TTCN-3 ATS. It properly sequences the
execution of test cases or functions and collects the associated verdicts. Other tasks are the initialisation of
SUT and platform adapters prior to the execution of a test case, the invocation of TRI operations for SUT
operations, TTCN-3 external functions and timer implementations.

The behavioral aspect implements the execution or interpretation of test cases and functions as defined in
the appropriate TTCN-3 modules. Other tasks are:

« propagation and matching of test events

* logging of test events

« creation and removal of TTCN-3 test components

« invocation of TRI operations in order to map test component ports to the system interface ports, to instruct
the SA which message has to be sent to the SUT, to instruct the PA which external function has to be called
or which timer has to be started, stopped, queried or read

* receiving of incoming messages or procedure calls from the SUT as well as timeout events

+ handling of SUT action operations

Communication with the SUT has to be implemented within the SA, but communication between test
components is the task of the TE. This applies to message based as well as procedure based
communication.

The TE entity is also responsible for resolving the appropriate codecs in order to encode test data prior to the
invocation of TRI communication operations and decode receiving test data from the SUT Adapter according
to the encoding rules specified in the TTCN-3 ATS.

The queueing aspect is responsible for maintaining own port queues for receiving of operations and storing
of events from the SA or PA. These events are not yet processed and therefore, the TE is informed to store
them until snapshots are performed.

Additionally, also a list of timers, that have timed out, has to be kept, as these are also events that have to be
evaluated in a similar way with the previous mentioned operations.

4.1.2 SUT Adapter (SA) and Platform Adapter (PA) entities

The SUT Adapter handles message and procedure based communication of the TTCN-3 test system with
the SUT to the particular execution platform of the test system. It is responsible to propagate send requests
and SUT action operations from the TTCN-3 executable (TE) to the SUT and to notify the TE of any received
test events by enqueueing them in the port queues of the TE. It also realizes the procedure based
communication with the SUT.

The Platform Adapter (PA) implements TTCN-3 external functions and provides a TTCN-3 test system with a
single notion of time. All timers are to be implemented in this entity. Notice that although timers can be
instantiated in the TE, they are implemented in the PA (to be more precise, the duration of the timers is
implemented there).

© Copyright TT-MEDAL Consortium

Page : 14 of 64

T’k Version: 2.0
pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

4.1.3 The Component Handling (CH) Entity

Basically, the CH handles the communication between test components. It distributes TTCN-3 configuration
operations like create, start and stop of test components, the connection between test components (connect
and map), and intercomponent communication like send, call and reply between two TTCN-3 executables
participating in the test session.

The CH is not implementing any kind of TTCN-3 functionality. Instead it will be informed by the TE that for
example a test component shall be created (1 in fig. 5). Based on internal knowledge of the CH, the request
for the creation of a component will be either transmitted to the local TE (2a in fig. 5) or to a remote
participating one (2b in fig. 5) if the component has to be created on the remote TE. The remote TE will
create the TTCN-3 component and will provide a handle back to the requesting (local) TE (3 and 4 in fig. 5).
The requesting (local) TE can then operate on the remote created test component via the component handle
given by the remote TE.

Local Remote
tciCreateTestComponentReyg tciCneateTestComponent
7 i 20) il
TE tci(;‘r-eateng’t;:umpnnentCH TE CH
D 3)
componentHandle almpunentHanqle
Figure 5. Local and Remote Component Creation

4.1.4 The Test Management (TM) Entity

The TM entity is responsible for the overall management of a test system. Within the TM entity, one can
distinguish between test execution control and logging related functionality. The Test Control (TC) entity is
responsible for general tester management and includes the implementation of a user interface and general
test execution management, e.g. the preparation of the test system for a test execution, start of the test
execution (1 in fig. 6), the collection of final verdicts (3 in fig. 6) and propagation of module parameters to the
TTCN-3 Executable (2 in fig. 6). The Test Logging (TL) entity maintains the log of test execution.

™
F i
1 3)
tciStartTlestCase tciTestCaseTerminated{pass)
2)
tciGetMadulePar
¥

TE

© Copyright TT-MEDAL Consortium

e

Specification of test infrastructure and
architecture

Page : 150f64

Version: 2.0
Date : 30/10/2005

Status : Final
Deliverable ID: D.1.1.1 Confid : Public
Figure 6. Test Management Entity

4.1.5 The Codec (CD) Entity

The CD entity is responsible for encoding of TTCN-3 values into bit strings in order to be sent to the System
under Test. The TE determines which codecs have to be used and passes the TTCN-3 data to the
appropriated codec in order to obtain the encoded data (1 and 2 in fig. 7) The received data is decoded back

into the TTCN-3 values by the appropriate decoder (3 and 4 in fig. 7).

1) encode
[
2)encodedMessage
cD TE
3)decode
AdecodedMessage
Figure 7. Codec Entity

4.2 GENERAL STRUCTURE OF A DISTRIBUTED TTCN-3 TEST SYSTEM

As the TE can be distributed among several test devices there must be an instance that implements the
communication between the distributed entities. This instance is the CH. It provides the means to
synchronize the different entities of the test system being potentially distributed onto several nodes (node
has the same meaning as test device or host). The general structure of a test system distributed via several

nodes is shown in figure 8.

© Copyright TT-MEDAL Consortium

Page : 16 of 64

T ' Version: 2.0
pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

[}

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

Test System User

Special TE:

Test Executable
initialises
StariTestCase &
calculates the Final
Verdict

SA:
System Adaptor

I 1 SUT:

System Under Test

PA:
Platform Adaptor

Figure 8. General Structure of a Distributed TTCN-3 Test System

Conceptually on each node, a TE together with SA, PA and CD exist. The entities CH and TM" mediate the
test management and test component handling between the TEs on each node. There is a special TE that is
identified to be the TE that started a test case and that is responsible for calculating the final verdict of that
test case®. Besides this, all TEs are handled the same. The CH controls the creation of mtc, ptc and control
components in TEs. Furthermore in TTCN-3 there is a system component that has a special role, as it exists
only conceptually and not as a running test component in a TE (in fact it represents the SUT). System ports
(i.e. the ports of the conceptual system component) may be distributed over several nodes. Further, test
components on different nodes may have access to the same physical ports of the SUT. The access to the
remote real SUT ports can e.g. be realized by TEs via local proxies.

Communication is on the one hand the message or procedure based communication between TTCN-3
components. Therefore, the CH adapts message and procedure based communication of TTCN-3
components to the particular execution platform of the test system. It is aware of connections between
TTCN-3 test component communication ports. It is responsible to forward send request operations from a
single TTCN-3 component that resides within a certain TE to the targeted component residing potentially in a

! Note: An implementation may realize the CH and TM in a distributed way, i.e. CH and TM may be distributed over all
participating nodes.
* Note: The TM is aware of the special TE.

© Copyright TT-MEDAL Consortium

Page : 17 of 64

T’l Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

different instance of the same TE on a different test device. It then notifies the TE of any received test events
by enqueueing them in the port queues of the TE.

Procedure based communication operations between TTCN-3 components are also visible at the CH. The
CH has the task to distinguish between the different messages within procedure-based communication (i.e.,
call, reply, and exception) and to propagate them in the appropriate manner to the targeted component TE.
TTCN-3 procedure based communication semantics, i.e., the effect of such operation on TTCN-3 test
component execution, are to be handled in the TE.

On the other hand, there is additional test component management communication necessary in order to
implement the distribution of test components between several test devices. This communication includes
the indication of the creation of test components, the starting of execution of a test component, verdict
distribution as well as component termination indication.

The CH does not implement the behavior of TTCN-3 components but the communication between several
components that are implemented within the TE.

4.3 INTERFACES AND ADAPTORS

In order to execute a test, different adaptations have to be made, like the implementation of methods from
the TTCN-3 runtime interface where the communication with the SUT has to be established and handled, or
the implementation of methods from the TCI, e.g. methods needed to encode and decode TTCN-3 values to
bitstrings and vice versa. Therefore, the methods from each interface will be presented shortly.

4.3.1TClI

Each interface is divided into two subinterfaces (provided and required). The provided interface specifies
operations that a test system shall provide to the TTCN-3 Executable and the required interface inversely the
operations the TTCN-3 Executable to a test system. The terms ,required“ and ,provided* reflect the fact that
this specification defines the requirements on a TTCN-3 executable from a user point of view. The user, or
maybe better, the implementor, ,requires” from a TTCN-3 Executable certain functionality to build a complete
TTCN-3 based test system. To fulfil its task the TTCN-3 Executable has to inform the implementor on certain
events where the implementor has to provide this possibility to the TTCN-3 Executable.

a) The TCI-TM interface

The TCI Test Management Interface (TCI-TM) contains operations a TTCN-3 executable is required to
implement and the operations the test management implementation has to provide to the TE. It consists of
the TCI-TM Required interface that specifies the operations the TM requires from the TE and the TCI-TM
Provided interface that specifies the operations the TM has to provide to the TE.

The TCI-TM Required interface operations are used on the one hand to get information about the executing
module. As the TE cannot know which module has to be used it has to be set first. This has to be done by
using the method tciRootModule. After this, specific information can be resolved from this module on
imported modules, parameters, test cases (parameters), test system interface ports: tciGetimportedModules,
tciGetModuleParameters, tciGetTestCases, tciGetTestCaseParameters, and tciGetTestCaseTSI.

On the other hand, there are operations for handling start and stop of the control part or a specific test case:
tciStartTestCase (starts a test case in the currently selected module with the given parameters),
tciStopTestCase (stops the test case that is currently being executed), tciStartControl (starts the control part
of the selected module), tciStopControl (stops the execution of the control part).

The operations of the TCI-TM Provided interface are used to inform the test management about the current

status of the test executable. The TE can inform the management that a test case has been started
(tciTestCaseStarted) or has been terminated (tciTestCaseTerminated) and also that the control part has

© Copyright TT-MEDAL Consortium

Page : 18 of 64

T’l Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

been terminated (tciControlTerminated). It forwards the logs to the management where they can be
displayed (tciLog) and it informs the management about errors occurred during the runtime (tciError). There
is only one method that is used by the TE to get information from the TM and this is tciGetModulePar. As the
user can change module parameters in the management the TE needs the opportunity to get these changes.

b) The TCI-CD interface

The TCI Codec Interface (TCI-CD) describes the operations a TTCN-3 Executable is required to implement
and the operations a codec implementation for a certain encoding scheme shall provide to the TE. A codec
implementation encodes TTCN-3 values according to the encoding attribute into a bitstring and decodes a
bitstring according to the decoding hypothesis. The CD needs certain functionality from the TE in order to
decode a bitstring into a TTCN-3 value. Inversely, the CD provides encoding and decoding functionality to
the TTCN-3 Executable. The CD consists of the TCI-CD Required interface that specifies the operations the
CD requires from the TE and the TCI-CD Provided interface that specifies the operations the CD has to
provide to the TE.

The task of the TCI-CD Required interface is to return a specific type that can be used to create new
instances of values. It has methods for getting predefined base types but it is also possible to get a type that
has been defined in the TTCN-3 module. Methods for getting the predefined base types return type values
representing a TTCN-3 types (e.g. getFloat returns a type value representing a TTCN-3 float type). It is also
possible to get a type (also structured types) defined in the TTCN-3 module. Therefore, getTypeForName
has to be used. When an unrecoverable error occurs in the CD, as well as in any of the other TTCN-3
Control interfaces, tciErrorReq has to be called and has to forward the error indication to the test
management to inform it about this error situation.

The TCI-CD Provided needs only the following two methods: encode since values have to be encoded as
they are abstract types and they cannot be understood by the SUT (they have to be encoded to a
representation format that can be understood by the specific SUT; the method returns a TriMessage which is
a bitstring), and decode is used whenever the TE has to decode an encoded value (the given message shall
be decoded based on the given decoding hypothesis).

c) The TCI-CH interface

The TCI Component Handling Interface (TCI-CH) contains operations a TTCN-3 Executable is required to
implement and the operations a component handling implementation has to provide to the TE. It consists of
the TCI-CH Required that specifies the operations the CH requires from the TE and the TCI-CH Provided
interface that specifies the operations the CH has to provide to the TE. As already stated, the TCI-CH
interface handles the distribution of components and the appropriate configuration operations, e.g. if an
component has to be created the CH decides on which TE it has to be done. Then the create request will be
sent to the appropriate TE where the component will be created.

The interface which makes such decisions is the TCI-CH Provided Interface. The methods for handling
components are: tciCreateTestComponentReq (called by the TE whenever a component has to be created,
either explicitty when the TTCN-3 create operation is called or implicitly when the master or control
component has to be created), tciStartTestComponentReq (TE has to execute start operation),
tciStopTestComponentReq (TE has to execute the TTCN-3 stop operations).

Methods for the connection of test components and mapping of test components with the SUT are:
tciConnectReq (to execute the connect operations), tciDisconnectReq (to execute disconnect operations),
tciMapReq (to execute a map operation), tciUnmapReq (to execute the unmap operation).

The TCI-CH Provided interface is also responsible for forwarding message based and procedure based calls
between components, i.e. only intercomponent communication is handled by the CH. Communication with
the SUT is realized by the TRI. Appropriate methods are tciSendConnected (sending asynchronous
message between two connected ports of two components), tciCallConnected, tciReplyConnected,

© Copyright TT-MEDAL Consortium

Page : 19 of 64

T’l Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

tciRaiseConnected (to execute a call, reply or raise operation on a component port, which has been
connected to another component port).

Other methods are needed for receiving the status of a component, i.e. if the component is running
(tciTestComponentRunningReq) or if has finished its execution (tciTestComponentDoneReq). Also the
termination of a component is shown to the appropriate TE by tciTestComponentTerminatedReq. As the
MTC is maybe needed by a remote TE it can be requested by tciGetMTCReq. tciExecuteTestCaseReq is
used to notify the remote TEs that have system ports of the indicated test case about the execution of the
test case. This is done in order to set up static connections and the initialization of communication means for
TSI ports. The last method tciResetReq is used to notify all participating TEs that an unrecoverable error has
occurred and that they have to finish immediately their execution. It is also called when a test case is
stopped by the user.

As the TCI-CH Provided interface has only the task to pass all method calls to the appropriate TE, the
methods within TCI-CH Required interface are the same as in CH Provided. An example is the
tciStartTestComponent method. It is the analog to tciStartTestComponentReq from TCI-CH Provided, and
therefore, it has also the same parameters. The same happens for all methods from the CH Required
interface.

For the communication methods (message and procedure based) different methods have been specified:
tciEnqueueMsgConnected (enqueueing an asynchronous message into the local port queue of the indicated
receiver component, called by the CH at the local TE when at a remote TE a provided tciSendConnected
has been called), tciEnqueueCallConnected (enqueueing a call; called by the CH at the local TE when at a
remote TE a provided tciCallConnected has been called), tciEnqueueReplyConnected (enqueueing a reply;
called by the CH at the local TE when at a remote TE a provided tciReplyConnected has been called,
tciEnqueueRaiseConnected (enqueueing an exception; called by the CH at the local TE when at a remote
TE a provided tciRaiseConnected has been called).

43.2TRI

The TRI interface consists of the two subinterfaces TriCommunicationSA and TriPlatformPA. The
TriCommunicationSA interface consists of operations that are necessary to implement the communication of
the TTCN-3 executable with the SUT. It includes operations to initialize the Test System Interface (TSlI),
establish connections to the SUT, and handle message and procedure based communication with the SUT.
In addition, the TriCommunication interface offers an operation to reset the SUT Adapter (SA).

The TriCommunicationSA interface handles the communication from the TE to the SA, i.e. the SA has to
implement the operation defined here: friExecuteTestcase (called by the TE immediately before the
execution of any test case), triMap (SA can establish a dynamic connection to the SUT for the referenced
TSI port, called by the TE when it executes a TTCN-3 map operation), triUnmap (SA shall close a dynamic
connection to the SUT for the referenced TSI port, called by the TE when it executes any TTCN-3 unmap
operation), triSend (SA can send a message to the SUT, called by the TE when it executes a TTCN-3 send
operation on a component port, which has been mapped to a TSI port; called for all TTCN-3 send operations
if no system component has been specified; the encoding of message has to be done in the TE prior to this
TRI operation call), triCall (called by the TE when it executes a TTCN-3 call operation on a component port,
which has been mapped to a TSI port; for all TTCN-3 call operations if no system component has been),
triReply (called by the TE when it executes a reply operation on a component port which has been mapped
to a TSI port; for all TTCN-3 reply operations if no system component has been specified), triRaise (called by
the TE when it executes a raise operation on a component port; for all TTCN-3 raise operations if no system
component has been specified), triSutActioninformal (called by the TE when it executes a SUT action
operation, contains a string only), triSutActionTemplate (called by the TE when it executes a TTCN-3 SUT
action operation, which uses a template, the encoding of the action template value has to be done in the TE
prior to this TRI operation call), triSAReset (called by the TE at any time to reset the SA).

© Copyright TT-MEDAL Consortium

Page : 20 of 64

T: Version: 2.0
pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

triEnqueueMsg, triEnqueueCall, triEnqueueReply, triEnqueueException are called by the SA after it has
received a message/reply/procedure-call/exception from the SUT that has to be indicated to the TE.

The other interface, TriPlatformPA, mainly address the control of TTCN-3 external functions and timers and
provides the following methods: triExternalFunction (operation is called by the TE; all in and inout function
parameters contain encoded values; all out function parameters shall contain the distinct value of null since
they are only of relevance in the return from the external function but not in its invocation; no error shall be
indicated by the PA in case the value of any out parameter is non-null). triStartTimer, triStop Timer (called by
the TE when a timer needs to be started/stopped), triReadTimer, triTimerRunning (called by the TE when a
TTCN-3 read/running timer operation is to be executed). On the other hand triTimeout is called by the PA
after a timer has expired. Finally there is friPAReset an operation that can be called by the TE at any time to
reset the PA.

4.4 DISTRIBUTED EXECUTION ENVIRONMENT

The architecture of a possible realization of the distributed TTCN-3 Test System is displayed in the following
figure. It has been named TTCN-3 Management and Execution platform and its base components are:
containers (including test system entities TE, TM, CH, CD, SA and PA, daemons, session manager, and test
console. CORBA is proposed as middleware for the communication between all these components.

Test Control

and Execution TestiDeployant

Session Management

Figure 9. CORBA communication within the test system

4.4.1 Architectural elements

Containers are the heart of the whole architecture. They contain the different test system entities TE, TM,
CH?, CD, SA and PA and are used to handle the communication between them and the system entities on
other nodes. Test components are created within the containers and are thus isolated from outside (a
container is their target execution environment). The components cannot be accessed except via well
defined interfaces. The information about created components and their physical locations is stored in a

3 Note: As mentioned before conceptually CH and TM are single components, but for implementation reasons they may
be distributed over all participating nodes.

© Copyright TT-MEDAL Consortium

Page : 21o0f64

T’h Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

repository within the containers. Containers are part of the middleware and are used for the communication
between test components on different nodes.

The Test Console (illustrated by test control, excecution and deployment) is the control point of the
communication platform and provides support to specify TTCN-3 test cases, create test sessions, deploy test
suites and needed libraries into containers and control the test execution (start and stop of the test). It is also
used for collecting of the logs from the different nodes.

Daemons are standalone processes installed on every host and used for the registration of a node to the test
execution environment. They manage the containers which belong to different sessions.

To be able to execute multiple test sessions on a machine (either by one or by many users) the concept of
session ids has been introduced. Whenever a new test session starts, a new id is created therefore and all
containers participating to this test are associated with this id. Communication is allowed only between
components with the same session id. As stated, there must be a central administration point that creates
and manages these ids (and therefore, communication must be allowed also between this entity and the
containers). This entity is the Session Manager.

The Session Manager is the centralized entity that has the global view of the test execution. On the one side
it manages the different test sessions (creation and management of session Ids), and on the other side it
processes the deployment configuration file and computes, based on the appropriate distribution algorithm,
the destination node of a new component. Every CH has access to the session manager in order to get the
needed information. It is also a central storage space for information like the location of the MTC or the
Special TE of the session.

4.4.2 Supporting utilities

A middleware platform for the communication between distributed communicating test components has to be
selected. Three architectures available at the market appears as the most suitable ones: OMG‘s Common
Object Request Broker Architecture (CORBA), SUN’'s Remote Method Invocation (Java RMI), and
Microsoft’'s Distributed Component Object Model (DCOM). CORBA is proposed as middleware for the
communication between the containers on the different nodes for the following reasons:

e itis the standard architecture for distributed object systems,

e it allows to use clients and servers implemented in different programming languages (server in Java,
client in C++); this is the main reason why Java RMI is not proposed,

« CORBA is an open standard defined by many global key players (DCOM is Microsoft proprietary),

e it is available for target operating systems Linux and Windows (DCOM is available only for
Windows).

Furthermore a particular ORB, i.e. the distributed service that implements the requests to the remote objects,
has to be selected. The Java 2 ORB is proposed since it is available without any licensing for the usage
within industrial products, the whole TTthree runtime is specified in Java, it is a standard part of Sun's Java 2
SDK from version 1.4 and upward and can thus easily be integrated in the whole architecture, and it provides
the needed CORBA services (Naming Service, Persistent State Service, Concurrency Service).

The introduction of a container configuration file (ccf) gives the possibility to describe the participating nodes
and the sources that have to be deployed there. Every node might be identified by an IP address and a
logical name. The logical name is used to simplify later needed referencing for a user. The sources that have
to be specified include the ETS created by the TTthree compiler, the SA together with the appropriate
codecs, and all other libraries needed by the test suite.

A test component distribution language (tcdl) is proposed to specify how components have to be distributed

to the different containers. More concretely, it should allow specifying component descriptions (types),
assemblies, mapping rules, and distribution algorithms

© Copyright TT-MEDAL Consortium

Page : 22of64

T’h Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

It is possible to choose between manual deployment (just to configure which type of component goes where)
and automatic (constraints between components must be specified; the Session Manager processes the
constraints and provides an adequate configuration).

4.5 LOGGING

Logging of test executions is a central element of the test infrastructure. Logging can be textually or
graphically. In a first approach, a graphical logging by means of an open source TraceViewer developed by
Lucent is investigated.

The focus of this tool is the graphical visualization of observations and activities that happened during the
execution of TTCN-3 tests. The TTthree logging interface has been adapted to the Visualiser properties of
the TraceViewer tool for TTCN-3 purposes.

The main goal is to show the client in the form of a web graphic all those processes, which exist during
testing. We should also be able to distinguish between different types of components existing during test
process. Generally there exists always the SUT as a Component being tested and additional Components
like: mtc - Main Test Component, ptc -Parallel Test Component, control and so on. According to the specific
role of the SUT every port to the SUT is represented separately. Moreover different operations implicated by
TTCN3 code must be presented. These are to be shown in the Graphical User Interface.

The architecture is based on the Lucent Trace Viewer and Trace Server, however events to be visualized
are produced due to the execution of TTCN-3 tests using a test manager (e.g. GrMuTTman, a GUI version of
MTTman in the toolchain TTthree).

4.5.1 Technical Approach

The selection of the Lucent Trace tool for TTCN-3 test excecution purposes has been made due to its
existing API that allows an easy access via CORBA, its extensibility for new graphics required for TTCN-3
purposes and its open source availability. Furthermore the viewer part of the tool that is based on a web
browser offers excellent navigation and information filtering facilities.

The first part of the work address the connection of two independent software products, it is required to
connect:

- the TraceViewer (i.e. TraceServer) with

- the logging interface of TTthree / GrMuT Tman.

Excecuted TTCN-3 events in TTCN-3 test suite cause log events in an application of the logging interface,
i.e. the implementation of EventLogginglmpl.java. By means of a CORBA connection (using e.g. Orbacus —
as an easiest case) the Lucent trace server tool gets inputs.

The following figure presents an overview on this integration from the engineering viewpoint.

© Copyright TT-MEDAL Consortium

Page : 23 of64

T’h Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

- - /,,—-"—‘—\ B
| &
Test i X > CORBA =
Execution |4.. ogeing (Events el
Impl. k Server

Trace Viewer

Stubs Skelétons
e |
TTCN-3 Test TTCN Logging Event Trace
Execution Interface Producer é Server
IDL
Figure 10. Implementation architecture

Besides the representation of the test components and ports several symbols are needed to present the
operations done during the test case.

In the following the most important symbols used for the visualization of running test cases will be listed:
« the representation of component instances
e the creation, start and termination of test components
« the execution (start / stop) of test cases
¢ the timers within statements: start, stop, timeout.

Furthermore we provide a list of the symbols that will be also of major importance.
« verdict information
e start control
e stop control
« logStatements, which implicates the position of user in the program code (phase)
e particular ports of the System Under Testing
¢ name of the protocol
e protocol behaviour
¢ (un)map
e (dis)connect
¢ send message
e message enqueue
« template matching
« interruptions (e.g. ext. function calls)

According to the potential of the logging interface in particular cases (e.g. port mapping) a distinction was
possible and has been made for the request of an operation (e.g. reqmap) and the operation itself (mapped).
Due to the filtering facilities of the trace viewer the user is able to restrict the presented information to its
particular interest.

The next steps of the approach combines Scalable Vector Graphics (SVG) in javascripts code. In particular
the Viewer will be adapted to specific needs according to the particular TTCN-3 test behaviour events. SVG

© Copyright TT-MEDAL Consortium

Page : 24 of 64

T’l Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

and javascripts are used so as to visualise the information provided by the trace server. What we want to
develop, are new graphical templates so as to show the user the important parts of communication between
the TTCN-3 components and SUT ports (System Under Test) in an appropriate manner.

Requirements analysis concerning graphical representation of particular parts considers the concepts of
Graphical Test Specification (The Graphical Format of TTCN-3) symbols and Scalar Vector Graphics
possibilities.

In the table below selected symbols of GFT elements in the relation to proposed SVG elements are shown.

SVG
GFT Element Symbol Description I'epre_sentah
on in the
Viewer

I

Port instance Used to represent port instances

symbol
Component Used to represent test components and the
instance symbol control instance
Used for textual TTCN-3 boolean
Condition expressions, verdict setting, port operations
symbol > (start, stop and clear) and the done <>

statement, to be attached to a component
symbol

Used for TTCN-3 create statement, to be

Create symbol attached to a component symbol

Used for TTCN-3 start statement, to be
attached to a component symbol

Start symbol

Used for TTCN-3 send, call, reply, raise,
Message receive, getcall, getreply, catch, trigger and
symbol check statement, to be attached to a
component symbol and a port symbol
Used for representing TTCN-3 receive,
getcall, getreply, catch, trigger and check
o—— » | fromany port, to be attached to a component

v

Found symbol

symbol
Start timer Used for TTCN-3 start timer operation, to be
symbol % attached to a component symbol %

© Copyright TT-MEDAL Consortium

A
Tﬁ E pl— Specification of test infrastructure and

architecture

Page : 250f64

Version: 2.0
Date : 30/10/2005

Status : Final
Deliverable ID: D.1.1.1 Confid : Public
Timeout timer Used for TTCN-3 timeout operation, to be
symbol %V attached to a component symbol %’
Stop timer Used for TTCN-3 stop timer operation, to be > <
symbol >$ attached to a component symbol
Used for TTCN-3 comments associated to Not
Event comment .
symbol | e eventsz to be attached Fo events on implemented
component instance or port instance symbols yet
Figure 11. GFT format versus SVG possibilities

We used rectangles for additional observations (like message enqueue) that are not covered in GFT. SVG
offers a lot of dynamic possibilities, which have not been used because we considered that the animations

did not improve the presentation of the events.

In the following figure the whole design concept of proper operations visualization is shown. A detailed view

has been used which allows distinction of different ports even at the main and parallel test components.

© Copyright TT-MEDAL Consortium

Page : 26 of 64

T: ' Version: 2.0
pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public
Control
Componentl createTestComponent2
I >|
mtc_Type
Component2
port1 'T_I_t port2 createTestComponent3
| >
TestCase
Test_1
port1
I P DR map_ . .. e »
send(http://www.testingtech.de/
TTCN-3_Example/dinolist.xml) >
30s > receive
L%M\aviour
I FE P map -t
TerminateTestComponent(pass; pass
_________________ d(http:// h.de/ >
send(http://www.testingtech.de,
30s X* TTCN-3_Example/dinolist.xml)
<
TerminateTestComponent(inconc) inconc
TestCase[legginate(inconc)
—
Figure 12. Design concept for TTCN3 tracing visualization

4.5.2 Implementation

The next figure address an example test suite (TTsuite-SIP) that has been used to illustrate the trace viewer
features considering TTCN-3 with TTthree. It shows the execution traces of the test procedure. Requests in
the form of TTCN3 operations are sent to the server.

© Copyright TT-MEDAL Consortium

Page : 27 of 64

T: ' Version: 2.0
pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

Appropriate lifelines of the components are obtained. Later on, the components and their ports are created
and the test case started, which causes presentation of arrows that are due to the map operation, indication
about the start of the test components and their behaviour.

The timers are started (appropriate symbols) and stopped (relatively timeout) after enqueueing of a received
message. Operations like matching of an incoming message and verdicts creation are due to the test
specification. Test components and test case terminate with verdict settings.

/8 Coach Trace Viewer - Microsoft Internet Explorer _[8]]|

Datel Bearbsiten Ansicht Favorien Extras 7 ‘

Gazuick ~ = - (Y @) A | Qouchen [iFavoriten @teden 4| By S - 5]
Adresse [€] hrtps/flacalhastjcoachftracng/ | @ wechsehnzu \Lm‘
—* e weem e o
Tyhotogts
B :T =y
<testing_tech> E==3
A =
< P rowe|
L]

]

step size (%) |25 =

Entity Control

cor
- httpPortarray{a]
{7 httpPartarray(L]
21 peType

Figure 13. Snapshot from the TraceViewer implementation

4.6 IDL INTEGRATION

To support the testing of CORBA [11] based applications two main tasks need to be solved: Firstly, the IDL
definitions of the interface of the SUT need to be made available when writing the test cases. This can be
done by either importing the IDL definitions directly to the test suite or by first converting the IDL definitions
explicitly to TTCN-3 and then to import the resulting TTCN-3 definitions. Secondly, procedure calls in the test
suite that are executed need to relayed via some ORB to the SUT. Vice versa, the SUT must be able to call
operations on the test system and these operation calls can then be accepted in the executing test cases by
a getcall operation. This document focuses on test system execution, therefore we consider here only the
second of the tasks: Supporting the exchange of procedure calls with the SUT.

© Copyright TT-MEDAL Consortium

Page : 28 of 64

T’h Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

Note that both tasks are supported by the TestingTechnologies/FOKUS tool TTthree .
4.6.1 Architectural Overview

To call a procedure on the SUT in the test system, the SA needs to contain an ORB. This is needed to
establish communication at all between the SUT and the test system. In Figure 14. the ORB can be seen at
the bottom of several layers. The ORB is directly connected to the SUT.

TTCN-3 Mapping rules TTCN-3 XML ‘

TTCN-3 XML Codec Implementation ‘

i

XSLT Style sheet transformation ‘

XORBA ORB \

A4
SUT

:

Figure 14. Architectural Overview of SA for testing CORBA
applications

The ORB chosen in the SA is named XORBA [12], where the 'X' indicates that the ORB has an XML based
API. This means that procedure calls, replies, and exceptions are exchanged with the application using the
ORB in an XML defined format.

When looking at the upper part of these layers, then when executing a procedure call in the test suite the
parameters of the test suite have to be encoded when they are passed from the TE to the SA. The TTCN-3
tool TTthree provides a default encoding of parameters that again is based on XML.

Unfortunately, these two XML schema definitions are not the same. An intermediate style sheet
transformation is to used to convert the XML encoded data from one format to the other.

To support the decoding of incoming procedure calls, i.e. calls of the SUT on the test system, the decoder
uses a description of the TTCN-3 signatures. These descriptions contain the name of the signatures and the
types of their parameters, return values, and their exception types. This description is read from a file, which
again can be generated by TTthree as a byproduct of importing the IDL definitions to TTCN-3 or of
converting the IDL definitions to TTCN-3.

Note, that even some information about the signatures is read from file, the SA is a generic solution. Given

some IDL definitions, there is no need to develop specific code to support the testing of applications hat
either implement or use this interface.

© Copyright TT-MEDAL Consortium

Page : 29 of 64

T’l Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

4.6.2 Addressing Objects

To either call a procedure on the SUT, or to allow the SUT call a procedure on the test system, the SA must
be able to route the call to the relevant objects. For this purpose, the SA implements the concept of
connectors. A connector can be configured via an external function from within TTCN-3. The connector is
then associated with a port at the test system interface. All subsequent calls from the test system on the SUT
are forwarded to the corresponding connector. Vice versa, calls from the SUT on the test system will show
up on one of this connectors and are then forwarded to the corresponding port at the test system interface.

At the moment of writing, connectors are implemented that utilize the CORBA naming service. These
connectors are configured with the hostname and portnumber where a name server can be addressed, the
name of a service, and the role of the object in the SUT. If the role of the SUT object is a client, then the
service name used to configure the connector is the name under which the connector is registered at the
name server. The SUT can then perform a lookup on the name server which object provides the needed
service. If such an object — the connector in the SA — is found, the SUT can call a procedure on this object.
This will then forward the call to the test system via the corresponding port. The call can be accepted in the
test suite by a getcall statement, answer to the call can be provided by either reply or raise
statements on the same port. The reply or exception will the be forwarded by the connector to the calling
object. On the other hand, if the object in the SUT acts as a server, then the connector uses the service
name to look up a reference of the object in the naming service and to forward procedure calls to this object.
A second implementation of a connector is currently under implementation, which does not use the naming
service, but works directly with interoperable object references (IORs). More detail will be provided in the
next revision of the report.

Note that in addition to using service names or IORs to address objects, both of them can be used as
parameters of signatures. The name of a service can be exchanged between the test system and the SUT
as well as IORs can be exchanged. While the actually exchange is easy, both service names and IORs can
be defined in TTCN-3 as charstrings, there is also the need to get access to the IORs of the connectors.
Especially in case that the test system contains a parallel test component that acts as a server, it might be
needed that an IOR for this server is passed to the SUT and the SUT later on calls procedures on this
server. Most naturally the IOR of the connector is used for this purpose. This means that the IOR of a
connector must be made available in a test case. The details how this is achieved are not known at the
moment because the connectors using IORs are currently implemented.

4.6.3 Exception Handling

Each IDL operation and its corresponding TTCN-3 signature can have a list of exceptions that can be raised
by the server when processing a call. In addition to these explicitly defined exceptions in IDL definitions,
each call in a CORBA application can result in one of a set of CORBA Exceptions. There are exceptions that
are defined already in the CORBA standard, but further vendor specific Exceptions are also possible.

The SA must be able to handle these CORBA exceptions in various ways. Note that the SA at the moment of
writing does not support such exceptions at all, therefore the remainder of this subsection presents the
various ways how CORBA exceptions can occur in a test case.

In the first situation, assume that the test system calls a procedure on the SUT. Both the ORB of the test
system as well as the ORB of the test system can identify some problem with the procedure call and raise
one of the CORBA exceptions. In both cases the SA has to enqueue the TTCN-3 representation of a
CORBA exception at the test system. The test case can then react correspondingly in whatever manner is
considered correspondingly. One can imagine that in this case it would be sufficient that the SA does not
raise an exception, but actually sets the verdict of the test case to error . Something has gone wrong, and
most probably the test case cannot be continued in a meaningful way.

© Copyright TT-MEDAL Consortium

Page : 30 of 64

T’l Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

In the second situation, assume that the SUT calls a procedure on the SUT. Again, both the ORB of the test
system or already the one of the SUT can raise a CORBA Exception. The exception would be provided to
the calling object in the SUT, but the procedure call would not show up at all in the test system. This means
that actually in this situation the exception does not become visible in the test case.

In the third scenario, both ORBs work fine, but in the test case a CORBA exception is raised explicitly to test
e.g. error handling routines in the SUT. This kind of raising exceptions is similar to raising any of the explicitly
defined exceptions of a signature. In this case, the SA has to forward the exception to the SUT. In this
scenario, the CORBA exception must be explicitly named as an exception of the TTCN-3 signature.
Otherwise the TTCN-3 code would simply be type incorrect.

4.7 XML INTEGRATION

There are various Systems under Test that describe the information to be exchanged using XML-based data
type definitions (e.g. SOAP [15], MOST [13]). Therefore we need to elaborate an approach to support the
integration of such information in the test system. In particular the mapping rules of XML data types, i.e. XML
Schema definitions, to the Testing and Test Control Notation (TTCN-3) and a tool implementation for this task
is introduced in the following.

4.7.1 XML to TTCN-3 Mapping

In [16] a generic approach for XML to TTCN-3 has been investigated. The main issues of this approach are
the mapping of the XML built-in types to TTCN-3 types (e.g. decimal to TTCN-3 float), the consideration of
XML facets (e.g. maxinclusive leads to TTCN-3 value restrictions), and the generation of structured TTCN-3
types from XML ComplexType specifications (e.g. choice is translated to TTCN-3 union). An auxiliary TTCN-
3 module has been introduced for the mapping of all built-in types without facets to support short references
within TTCN-3.

The structure of the mapping follows somehow the structure of XML Schema. First we look into the built-in
datatypes, and afterwards into the components that the language offers.

Built-in datatypes are structured into primitive ones, and derived ones. The latter are derived from the
primitive ones, by means of restrictions, like: length, size, list, range etc. These restrictions are called facets.
For every simpleType, primitive or derived, facets can be applied, and a new type will be available. So for
every built-in type there is a list of possible facets that can be applied to it, and depending on the facet, the
correspondence in TTCN-3 is defined. Every built-in type, without any facets, is mapped with its built-in
name, in a module called XSDAUX. And whenever a new simpleType is defined, with the base type a built-in
one; it will be mapped using dot notation.

Example:
<xs:simpleType name="|">
<restriction base="xs:integer"/>
</xs:simpleType>

Becomes:
type XSDAUX.integerXSD |;

Every built-in type is first mapped into the TTCN-3 definition of a simple type, and afterwards for the
definition of the type, with every available facet. After mapping the basic layer of XML Schema, i.e. the built-
in types, the mapping of the wrapping structures follow. For that, every structure that can appear, globally or
not, will have a corresponding mapping into TTCN-3.

© Copyright TT-MEDAL Consortium

Page : 31o0f64

T’h Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

SimpleType components are used to define new simple types by three means: restricting a built-in type by
applying a facet to it (as discussed in the previous section), building lists or unions of other simple types.
SimpleTypes can be defined globally, which means the parent is <schema>, and the <name> attribute is
mandatory, and they will be mapped to the new TTCN-3 type using that name. And so they can be reused in
other definitions. Or they can be defined locally, i.e. the <name> attribute does not appear, so they will be
mapped with an automatic generated name, but they will not be reused in other definitions. Here we will give
just another small example™

<simpleType>
<restriction base="positivelnteger’>
<minlinclusive value="8"/>
<maxInclusive value="72"/>
</restriction>
</simpleType>
<simpleType name="eRestriction”>
<restriction base="string”>
<pattern value="\d{3}-[A-Z}{2}"/>
</restriction>
</simpleType>

Becomes:
type XSDAUX.positivelnteger simpleType 1 (8..72);
type XSDAUX:.string eRestriction (pattern "[0-9]#(3)-[A-Z]#(2)");

The complexType is used for creating new types that contain other elements and attributes. This is in
contrast with the simpleTypes that cannot contain attributes. Just like simpleTypes, complexTypes can be
defined globally, which means the possible parents are: <schema> and <redefine>. When they are defined
globally, the "name" attribute is mandatory, so the new types will be mapped under the given value of that
attribute. And they can be defined locally, in which case the name attribute cannot appear, they will be
mapped using an automatic generated name, but they will not be used in other complexType definitions. In
other words, they cannot be referenced from other definitions, as there purpose was locally.

For the mapping, the idea is to take separately every child that it can have, and assign the corresponding
TTCN-3 code. For example the complexType can hold optional an annotation and after that follows the
content. This content could be simpleContent element, complexContent element or a definition. The
simpleContent/ complexContent describe a restriction or an extention of an existing simpleType/
complexType. The definition for example can be specified with a group, choice or an sequence and some
attributes.

4.7.2 Implementation approach

There is also a prototype implementation available that has been integrated into the TTCN-3 compiler
TTthree. The implementation allows both an implicit mapping of XML structures into an internal tree
representation of the XML definitions and also the explicit translation into TTCN-3 core notation syntax due
to the application of some TTthree printing features in a second step.

The translation from XMLSchema to TTCN-3 could have been a stand-alone tool, but it is needed for the
import handle into TTCN-3, so it has been included in the TTthree compiler. For the integration in the
TTthree compiler, the mapping is divided in two parts: "implicit" mapping, that translates XMLSchema to the
TDOM (Typed Document Object Module) structure, and "explicit" mapping that translates from the TDOM
structures to TTCN-3 syntax. The first mapping is obtained from the XMLSchema parser that will be defined
below, and for the second one is used another tool, also integrated in the TTthree compiler,

* It is recommended to use the name attribute since a reorderinig of definitions may lead to renamed type definitions.

© Copyright TT-MEDAL Consortium

Page : 32o0f64

T’l Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

Syntax2Template.java. The TTthree tool is a Java application that comes with its own Java Runtime
Environment (JRE 1.3.1) and Java compiler (IBM's Java compiler Jikes v. 1.16).

Creating the TDOM is one step in the import of XSD types into TTCN-3. The new types are assigned to the
tree, and any mistake in the compilation will be noticed if events are not sent in the right order. But to verify
that the translation from XMLSchema to TTCN-3 was correct, it would be too clumsy just to watch the tree.
So a tool (Syntax2Template.java) has been used, for translating from TDOM to TTCN-3 syntax. And the
verification of the translation now can be done really easy. So the short version is: from XMLSchema to
TTCN-3 TDOM, in the TTthree compiler, and from TDOM to TTCN-3 syntax, using Syntax2Template.

XSD file

/

JDOM parser

Partl: PARSING THE XSD

type integer I (3..20);

SubTypeDef

StructDef

¥
NewTypeDefinition

type recordR {...}

StructOfDef type set of integer S;

o~

declaration(NewTypeDefinition)

Part2: FIRING EVENTS FOR
CREATING THE TTCN-3 DOM

Figure 15. Architectural Overview on XSD integration in TTthree

4.7.3 XML processing prior to TTCN-3 Mapping

In the following section a case study is presented to explain that the pure XML to TTCN-3 mapping — as
described before - may be not sufficient in some industrial domains for the test suite development process
even if there is an XML-based data type description available. The MOST functional catalog (Fcat) from the
automotive case study has been selected as an application of the XML mapping implementation since it
comprises the definitions of MOST devices and functions in standardized XML documents. Each MOST
function may have different operation types with a related parameter list. Beside the English text version and
different printed tables of the catalog the MOST cooperation provides two machine readable documents of
Fcat: a DTD file on the structure of function blocks and function interfaces (fcat.dtd) and a corresponding
data file most.xml which gives information on the concrete function signatures and parameter types.

It is important to be aware about the distribution of the Fcat information among the two files. The type
definition file provides a tree structure describing the set of MOST functional blocks and functions on a high
abstraction level, i.e. it introduces the scope of information related to all MOST functions without addressing
any particular function (identifier, parameters etc.). Beside some general elements in this tree about the

© Copyright TT-MEDAL Consortium

Page : 33 0f64

T’l Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

identification and version of a function the main structure addresses the possibility of function properties and
methods. Especially the latter introduces e.g. different operation types for method commands and reports.
Furthermore it provides the list of allowed parameter types in MOST but not the relation of parameters to
functions.

Function and parameter names and its textual descriptions as well as the details on the parameter types
(e.g. value scope restrictions) are part of the XML file only. The XML file contains the information on any
parameter position within a MOST function. Furthermore it provides some information for the protocol data
coding (e.g. FBlocklID, FunctionID).

It is obvious that testing MOST-based communication has to consider the data structures given in the DTD
and XML files. It should be possible to address the Fcat contents within the TTCN-3 test suite behaviour and
data templates. Therefore an automatic translation of the MOST Fcat into TTCN-3 is required.

To get the most flexibility a general approach for the MOST Fcat transformation has been selected: First, the
DTD definition will be translated into the popular XML schema definition (XSD) format and secondly a
generic XSD to TTCN-3 translation needs to be performed. To translate the DTD definition one can use any
DTD to XML Schema Converter (e.g. the freely available DTD to XML Schema Converter “dtd2xs” from
Syntext). For the transformation to TTCN-3 we’ve applied our XSD to TTCN-3 translator. Due to the nature of

the MOST Fcat contents the resulting TTCN-3 data types have been quite complex for human reading and a
modified approach for the integration and usage of the MOST definitions will be proposed as follows:

XML instances -9 DTD/XSD structures

Domain adaption @ 1 (1] 1

simplified XML instances @ simplified XSD structures

Integration of instance data (2]

integrated XSD data

Mapping to TTCN-3
(4] ©

TTCN-3 templates < --9 TTCN-3 types

Figure 16. MOST mapping approach

© Copyright TT-MEDAL Consortium

A
Tﬁ & pl— Specification of test infrastructure and

architecture

Deliverable ID: D.1.1.1

Page : 34 of 64

Version: 2.0
Date : 30/10/2005

Status : Final
Confid : Public

Following the approach illustrated in Figure 16. four steps have to be considered: @ some restriction of the
DTD/XSD structure to those data elements that are observable during testing, ® an integration of XML data
into the DTD/XSD structure definition, ® the mapping to TTCN-3 data types that will be used for the

declaration of data templates, and @ the generation of parametrisied TTCN-3 data templates.

Step @ and @ describe the process prior to the TTCN-3 Mapping. Domain adaption comprises four internal
actions: Strip XML data from futile ballast (e.g. remove documentation elements), unify elements with
aquivalent structure, decide for every element if it should defined globally or locally and simplify structures by
mapping them to basic XML Schema types. The Integration of instance data has two main tasks: use the
protocol structure from MOST and flatten the structure by using attributes and combining multiple elements.
In principle these transformations of XML data structures are done automatically, i.e. only step @ for XSD

structures is done manually.

In the following we present MOST mapping approach by a fragment from the AmFmTuner function block:

<!I-- Function: Notification -->
<Function>
<FunctionID FunctionSection="Coordination">0x001</FunctionID>
<FunctionName>Notification</FunctionName>
<FunctionDescription>[...]</FunctionDescription>
<FunctionVersion Access="public">[...]</FunctionVersion>
<FunctionClass ClassRef="class_unclassified_property">
<FunctionClassDesc>Unclassified Property </FunctionClassDesc>
<Property>
<PUnclassified Length="1">
<l-- Control -->
<PUParam>
<ParamName Paramldx="1">Control</ParamName>
<ParamDescription>[...]</ParamDescription>
<PUParamOPType>
<PUCommand>
<PCmdSet OPTypeRef="PCmdSet">
<ParamPos>1</ParamPos>
</PCmdSet>
</PUCommand>
<PUReport/>
</PUParamOPType>
<PUParamType>
<TEnum TypeRef="type_enum" TEnumMax="3">
<TEnumValue Code="0x00">SetAll</TEnumValue>
<TEnumValue Code="0x01">SetFunction</TEnumValue>
<TEnumValue Code="0x02">ClearAll </TEnumValue>
<TEnumValue Code="0x03">ClearFunction</TEnumValue>
</TEnum>
</PUParamType>
</PUParam>

... more PUParam definitions ...
</PUnclassified>
</Property>

</FunctionClass>
</Function>

© Copyright TT-MEDAL Consortium

Page : 350f64

T’h Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

After preprosessing, the Function Notification in the integrated XSD data has some operation elements like
AmFmTuner_Notification_PCmdSet and all used type definitions (e.g. AmFmTuner_Control_Type). An
important factor is, that protocol and definition structure have been reduced to a nesting depth less then 5:

<xs:element name="AmFmTuner_Notification PCmdSet">
<xs:complexType>
<xs:sequence>
<xs:element name="FBlockld" type="MOST_FBLOCK_ID" fixed="0x40" />
<xs:element name="Instanceld" type="MOST_INSTANCE_ID" />
<xs:element name="Functionld" type="MOST_FUNCTION_ID" fixed="0x001" />
<xs:element name="OpType" type="MOST_OPTYPE" fixed="0x0" />
<xs:element name="Control" type="AmFmTuner_Control_Type" />
<xs:element name="DevicelD" type="MOST_UWORD" />
<xs:element name="FktIDList" type="AmFmTuner_FktIDList_Type" />
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:simpleType name="AmFmTuner_Control_Type">
<xs:restriction base="MOST_UBYTE">
<xs:enumeration value="0">
<xs:annotation>
<xs:documentation>SetAll</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="1">
<xs:annotation>
<xs:documentation>SetFunction</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="2">
<xs:annotation>
<xs:documentation>ClearAll</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="3">
<xs:annotation>
<xs:documentation>ClearFunction</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="AmFmTuner_Fkt|IDList_Type">
<xs:list itemType="MOST_UWORD">
<xs:maxLength value="8" fixed="true" />
</xs:list>
</xs:simpleType>

The resulting TTCN-3 data types and templates have been produced with the XSD to TTCN-3 translator and
can now be referenced in test cases. Every Operation has one element definition with the protocol structure
and a corresponding parametrized template:
type record AmFmTuner_Notification_PCmdSet__Element {

MOST_Types.MOST_FBLOCK_ID FBlockld,

© Copyright TT-MEDAL Consortium

Page : 36 of 64

T’l Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

MOST_Types.MOST_INSTANCE_ID Instanceld,
MOST_Types.MOST_FUNCTION_ID Functionld,
MOST_Types.MOST_OPTYPE OpType,
AmFmTuner_Control_Type Control,
MOST_Types.MOST_UWORD DevicelD,
AmFmTuner_FktIDList_Type FktIDList

}

type MOST_Types.MOST_UBYTE AmFmTuner_Control_Type (0, 1, 2, 3);
type set of MOST_UWORD AmFmTuner_FktIDList_Type;

template
AmFmTuner_Notification_PCmdSet__Element AmFmTuner_Notification_PCmdSet__Template

template MOST_Types.MOST_INSTANCE_ID param_Instanceld,
template AmFmTuner_Control_Type param_Control,

template MOST_Types.MOST_UWORD param_DevicelD,
template AmFmTuner_FktIDList_Type param_FktIDList

)=
{

FBlockld :='40'H,

Instanceld := param_lInstanceld,
Functionld :='001'H,

OpType :="'0'H,

Control := param_Control,
DevicelD := param_DevicelD,
FktIDList := param_FktIDList

}
4.8 C++ TO TTCN-3 INTEGRATION

In the following subsection, we provide an introduction to the C++ to TTCN-3 language mapping by
describing the C++ elements to be mapped in the course of the TT-Medal project. To illustrate the mapping,
an example is provided, as well. The second subsection outlines an architecture for TTCN-3 test systems to
test C++ components and interfaces in a platform independent way. In the third subsection, a realization of a
predefined adaptation is discussed.

4.8.1 C++ to TTCN-3 Mapping

A typical test execution harness for C++ based component testing includes entities to call the functions of
component under test (i.e., test drivers) and to simulate the non-existent software components (i.e., stubs),
which the component under test depends on. To directly access the provided and required interfaces of the
component under test, a TTCN-3 based test system requires representation of these interfaces. An
approach to represent the interface at the TTCN-3 language level is to define an explicit mapping, e.g., C++
header file elements are translated into TTCN-3 language elements by means of dedicated mapping rules.
The represented interfaces can then be used by TTCN-3 test cases to call the functions of C++ component
under test (CUT) and to simulate non-existent C++ software components. The mapping to be defined in the
course of the TT-Medal project shall follow the explicit mapping, which should include the items defined in
Table 4.1.

Table 4.1. C++ Header file elements

© Copyright TT-MEDAL Consortium

e

Page : 37 of 64

Version: 2.0
Specification of test infrastructure and Date : 30/10/2005
architecture
Status : Final
Deliverable ID: D.1.1.1 Confid : Public

Named namespaces

namespace N {/* ... */}

Type definitions

struct Point {int x, y;}

Template declarations

template<class T> class Z;

Template definitions

template<class T> class V {/*...*/};

Function declarations

extern int strlen(const char®);

Inline function definitions

inline char get(char* p) {return *p++;}

Data declarations

extern int a;

Constant definitions

const float pi = 3.141593;

Enumerations

enum Light {red, yellow, green};

Name declarations

class Matrix;

Include directives

#include <algorithm>

Macro definitions

#define VERSION 12

Conditional compilation directives #ifdef _ cplusplus

Comments

I* check for end of file */

An example of C++ to TTCN-3
TTCN-3 following mapping rule

mapping is provided in Table 4.2. In the example, a CFile class is mapped to

s defined in [25].

Table 4.2. An example of C++ to TTCN-3 mapping

C++

TTCN-3

cl ass CFile : publ i c CObject {
public:

nodul e CFile {

/l include definitions from “super class”
i mport fromCObject all;

/I include C++ basic types e.g., Cppint
import fromCpp all;

/I include definitions for types that are
/I implied by CFile.h e.g., CString and
/I UINT

i mport fromOtherTypes all;

© Copyright TT-MEDAL Consortium

T

architecture

Deliverable ID: D.1.1.1

Page : 38 of64

Version: 2.0
Specification of test infrastructure and Date : 30/10/2005

Status : Final

Confid : Public

/I member functions

CFile();

CFile(LPCTSTR IpszFileName,
UINT nOpenFlags);

virtual UINT Read(voi d* IpBuf,
UINT nCount);

static BOOL GetStatus(
LPCTSTR IpszFileName,
CFileStatus& rStatus);

virtual ~CFile();

/I enums
enumOpenFlags {
modeRead = 0x0000,
modeWrite = 0x0001
}

/I member variables
UINT m_hFile;

pr ot ect ed:

/I member variables

BOOL m_bCloseOnDelete;
CString m_strFileName;

b

/I member functions are mapped to TTCN-3
/I signatures
/I - constructor returns a unique value
/[for a new object
/I - DefaultException is used if no
/] exception is declared by the C++
/I function in question
/I - inherited functions are defined
1 explicitly
si gnat ur e CFile_no_params()
ret urn CFilePtr
except i on(DefaultException);

si gnat ur e CFile_two_params(
i n LPCTSTR IpszFileName,
i n UINT nOpenFlags)
ret ur n CFilePtr
except i on(DefaultException);

si gnat ur e Read(
i n CFilePtr this /* the object */,
i n CppPtr IpBuf,
i n UINT nCount)
return UINT
except i on(DefaultException);

si gnat ur e GetStatus(/* no this */
i n LPCTSTR IpszFileName,
i n CFileStatusRef rStatus)
return BOOL
except i on(DefaultException);

si gnat ur e DelCFile(i n CFilePtr this)
except i on(DefaultException);

I “inherited”

si gnat ur e CObject_IsSerializable(
i n CFilePtr this)
return BOOL
except i on(DefaultException);

/I we need to declare the port for the
/I signatures
type port CFilePort procedure {
/I test system makes the calls -> out
out CFile_no_params,
out CFile_two_params,

out Read,
out GetStatus,
out DelCFile,
out CObject_IsSerializable
}
/I enums are mapped to constant integers
const Cpplnt modeRead:= hex2i nt (‘0000’H);
const Cpplnt modeWrite:= hex2i nt (‘0001'H);

/I member variables are represented by
/I a record type. also the super class
/I needs to be included
type record CFileType{
UINT m_hFile,
BOOL m_bCloseOnDelete,
CStringType m_strFileName,
CObjectType super

© Copyright TT-MEDAL Consortium

Page : 39 of 64

T’h AL Version: 2.0
: Specification of test infrastructure and Date : 30/10/2005
architecture
Status : Final
Deliverable ID: D.1.1.1 Confid : Public

}

/I we need to map the C++ pointer
I/ operators. signatures or external functions
/I can be used. utilizing external functions
Il reflects the fact the these functions are not
/I “tested” but rather they used to set and
/I retrieve the test data
type octetstring CFilePtr;
external function NewCFile()
r et ur n CFilePtr;
external function SetCFile(
i n CFilePtr this,
i n CFileType newValue);
external function GetCFile(
i n CFilePtr this)
return CFileType;
external function DeleteCFile(
i n CFilePtr this);
}

The aim of the standardized mapping rules is to provide rules where the interface of CUT can be
represented one to one with TTCN-3. This result in a similar usage of TTCN-3 compared with a situation
where test suites are implemented with a programming language and therefore supports wide variety of test
cases. Sometimes it is reasonable to represent types on a more abstract level than depicted by the mapping
rules although this might lead to situation where the automatic generation of static part of TTCN-3 test suites,
which relies on unambiguous information, is no longer possible. Also, increasing the abstraction level leads
in a situation where all the details cannot be tested since the information is hidden into the adaptation layer

The abstract rules cannot be standardized as they derive their requirements from test purposes which are
always case specific. Nevertheless, the abstract presentation of types enhances flexibility, reusability and
readability of the test suites and makes the test suite development more efficient as the most excruciating
details are not included in the test suites. This should be more beneficial compared to automatic generation
of the information. For instance, mapping a vector<MyClass*> to TTCN-3 could lead to unnecessary
complicates TTCN-3 code although the test suite writer only needed an array of classes which can be
mapped as type record of MyClass . Table 4.1 illustrates this.

Table 4.1. A simplified C++ to TTCN-3 language mapping

Standardized mapping Abstract mapping

t est case MyTestCase() runs on MyTester { t est case MyTestCase() runs on MyTester {

/I the functions used in this test case are

/I external or TTCN-3 functions. the TTCN-3
/I functions shall further utilize signatures

/I or external functions to address its

/I purpose. code excludes also error handling
/I code

/I create the pointers
var VectorMyClassPtr list :=
ef_NewVectorMyClass();
var MyClassPtr myClass := ef_NewMyClass();
var MyClassPtr myClass2 := ef_NewMyClass();
/I set the fields of myClass and myClass2
ef_SetMyClass(myClass, {1, 3.14});
ef_SetMyClass(myClass2, {0, 3.14});
/I add the myClass and myClass2 to the list
f_AddVectorMyClass(list, myClass);
f_AddVectorMyClass(list, myClass2);
/I call the function under test
myPort. cal | (s_MyFunction:{list}, nowai t);

var MyClassArray list :=
{1, 3.14}, {0, 3.14}};
/I call the function under test
myPort. cal | (s_MyFunction:{list}, nowai t);

© Copyright TT-MEDAL Consortium

Page : 40 of 64

T’l Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

This same concept can be also applied to functions by representing the signatures on more abstract level.
Instead of mapping the signatures one to one, one should consider whether the types of parameters, return
values, and exceptions could be depicted in one way that satisfies many usages to enhance the reusability.
An example of this is where same function is implemented both with Java or C++ and one common
representation is described in TTCN-3 code for these functions.

4.8.2 TTCN-3 Test System for C++ Components

In order to integrate C++ based software with the Java based TTthree infrastructure, the integration defines
a distributed TTCN-3 runtime interface where the test system does not share memory with the CUT, but the
communication between the test system and the CUT is realized by the means of an interprocess
communication mechanism. As a matter of fact, this architecture can be utilized to test C++ components
whose functionality is implemented over many operating system processes (i.e., the CUT is also distributed).
The architecture is depicted in Figure 17.

Interactive Control

!

Predefined Adaptation
(T3RTS, TM, CH, CD
Local SA & PA)

Inter Process Communication

A
Y

Remote SA
uT t

C++ Component Under Test

LT ¢ A

~ g Remote SA
v
. _| Remote Operating
OEC PA Environment
Figure 17. Test system architecture for C++ component testing

The test system includes an Upper Tester (UT) to control and observe the upper interface and the Lower
Tester (LT) is for the lower interface of the Component Under Test (CUT). The UT and the LT roughly
correspond to driver functionality and stub functionality of general purpose software testing, respectively.
However, UT can receive calls from the CUT (e.g., call backs) and LT can stimulate the lower interface of
CUT. Therefore UT and LT can contain also stub and driver functionality. Also, a distinction between LT and
operating environment control (OEC) is made. Whereas OEC provides control and observation of the real
operating environment of the CUT, LT is used to simulate non-existent components. In other words, the OEC
only interacts with operating environment which further interfaces with the CUT while the LT directly
interfaces with the CUT. UT, LT, and OEC are implemented using TTCN-3 test language where C++ to
TTCN-3 mapping rules are utilized to represent of the required and provided interfaces of CUT.

© Copyright TT-MEDAL Consortium

Page : 41o0f64

T’l Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

The left hand side of the figure includes features to execute test cases (T3RTS), control and monitor test
execution (TM), and report results (TM). CH is used to administer test components locally. Local SA, and PA
support the distribution of the TTCN-3 runtime interface over test system process (i.e., left hand-side of
Figure 17) and CUT process(es) (i.e., right hand-side of Figure 17). CD is used to define encoding and
decoding mechanisms for TTCN-3 values to be sent between test system and system under test processes.

Remote SAs are responsible for calling the functions of CUT and also provide functions that are called by the
CUT. For instance, when a UT makes a call, the remote SA is activated to convert encoded values into C++
values and call the function of the CUT. This in turn might generate a call back to the UT and a call to the LT.
In this case, remote SAs are called by the CUT, and the C++ values are converted to the values CD is able
to decode. Finally, the call is forwarded back to LT or UT by the remote SAs. Of course, this kind of
sequence can be activated in reverse order by LT.

OEC utilizes remote PA to control and monitor the real operating environment of CUT. For instance, the state
of the operating environment can be set-up to interesting values prior to making the function calls.
Alternatively, remote PA might provide an external function to set-up the function parameters of the CUT
which in turn are utilized by UT or LT in down or up calls. For example, C++ to TTCN-3 language mapping
uses external functions to represent pointers. These external functions are called when function parameters
which have type of pointer are initialized and passed to function under test.

4.8.3 Approach to Realize the Adaptation

The TTCN-3 test system for C++ component testing should consist of generic adaptation components. Only
the remote SAs and PAs are the interface specific elements and therefore need to be implemented for each
C++ interface and for each operating environments of CUT which are accessed from TTCN-3 tests. In order
to test distributed CUTSs, remote SAs and PAs need to be implemented in each operating system processes
where parts of CUTs are executed. The parts of the remote adapter can be generated from header files of
C++ programs instead of manually writing them. However, implementing the specific parts manually provides
necessary flexibility, reusability, and readability for test system and test cases development which cannot be
necessarily achieved with generation techniques as discussed previously. Table 4.4 describes the reusable
elements in TTCN-3 test system in order to enable C++ component testing.

Table 4.4. Realization of predefined adaptation for C++ component testing

Test system entity Functionality
T3RTS Executes UT, LT, and OEC by implementing parts of TCl and TRI (TE)
interfaces. T3RTS is always realized by TTCN-3 tooling.

™ Controls and monitors (i.e., logging) test execution. This should be
included in TTCN-3 tooling.

CH Administrates test components within a test system process. This
should be included in TTCN-3 tooling.

CD Encodes TTCN-3 values to format which can be passed over inter
process communication channel to remote SAs and PAs.

Decodes values from remote SAs and PAs to TTCN-3 values.

This encoding is described below the table.

Local SA Supports distribution of TRI procedural based operations to multiple
remote SAs. This can be realized by utilizing TT-Datagram protocol.

© Copyright TT-MEDAL Consortium

Page : 42of64

T ' Version: 2.0
pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

[}

Status : Final
Deliverable ID: D.1.1.1 Confid : Public
Local PA Supports distribution of external functions to multiple remote PAs. This

can be realized by utilizing TT-Datagram protocol.

The remote SAs and PAs shall include generic elements such as parsing the incoming encoded values and
constructing values to be decoded by a CD. The generic elements shall also provide convenient means to
send and receive information over inter process communication channel. Furthermore, these generic parts
should provide an API for test system developer to implement the specific part of the remote adapter. To
utilize advanced reuse techniques, the generic parts of the remote adaptations can be utilized in multiple test
systems and interface specific parts, which are left for test system developer, are introduced as extension to
those generic parts. The API offered for the extensions by the generic part provides means to register the
specific part in question into the generic part, calls appropriate signature adapter which does the actual
function call, and implements functions to extract C++ values from encoded TTCN-3 values, create return
values or exceptions from C++ values and enqueue calls and parameters back to TTCN-3 tests in cases of
stubs. This facilitates efficient TTCN-3 test system adapter development for C++ component testing. The
enhanced architecture is depicted in Figure 18.

TTdatagram=----=}-f--=--=-=-=-=-==-=-=--44-----

Framework API==-F{===----<FF---====

SA SA PA
Extension Extension Extension

C++ Implementation Under Test

Figure 18. Refined test system architecture for C++ components

Encoding

Signature parameters, return values, and exceptions are exchanged between local- and remote part of the
test system as byte (8 bit) strings. These values are sent and received between local- and remote parts of
the test system and therefore mutual consistent encoding rules are needed. TT-Datagram protocol defines
the rules for exchanging TRI related information, but exchanging the actual test data is yet to be defined. In
this section we define encoding rules to send and receive test data between local- and remote parts of the
test system. This encoding shall be implemented by the generic CD and also the generic part in the remote
adapter.

© Copyright TT-MEDAL Consortium

Page : 43 0of64

T’h Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

The encoded byte string includes a type identifier element (TypelD), a field identifier element (FieldID), a
field count element (FieldCount) and a value element (Value) as depicted in Table 4.5 below.

Table 4.5 Encoded TTCN-3 value

TypelD FieldlID FieldCount Value
Length Value Length Value 32 bits Length Value

¢ The length field found in TypelD, FieldID, and Value elements has size of four bytes in big-endian
byte order.

» Type identifier element includes a value field which is a US-ASCII encoded string of the type name
defined in a TTCN-3 module and a length field which defines the variable length of the value.

e Field identifier element includes a value field which is a US-ASCII encoded string of the field name in
a TTCN-3 type and a length field which defines the variable length of the value.

e Field count element defines the number of fields in a structured type. This element includes four
bytes in big-endian byte order. 2432 is used to indicate that the value is a simple type and therefore
contains no fields.

* In case of simple types, a value element includes a value field which is an US-ASCII encoded string
of the TTCN-3 value and a length field which defines the variable length of the value.

* In case of structured types (i.e., record, union, and array), a value element includes a byte string
according to these encoding rules. l.e., the length field has size of four bytes in big-endian byte order
which defines the variable length of the value field and the value field is itself encoded as defined the
above encoding rules. Enumeration and set types do not need to be encoded as the C++ to TTCN-3
language mapping do not utilize them.

4.9 TT-DATAGRAM PROTOCOL

Following the presented TTCN-3 infrastructure there is a need in providing a bridge between a system
adapter (SA) and the actual SUT interface in case of some technical incompatibility with the operating
system, the programming language API etc. To overcome such issues a TTCN-3 datagram protocol is
proposed and introduced in the following.

The TTCN-3 system architecture is a well defined architecture describing the different parts needed by a
TTCN-3 based test system, e.g. the TRI. Normally all these parts are developed on a single platform using a
certain programming language. But there are no well defined ways described to distribute the different parts
in a network. For the adaptation to a specific SUT often an implementation exist that might be written in other
programming language than the one used for the test environment (TE) or it is necessary to distribute the
parts in the network.

The TTdatagram was designed to be able to implement the TRI interface on different target platforms. The
result was the definition of a protocol where its protocol data units are capable of transporting all the
information that is available at the TRI interface. In fact the TTdatagram implements a light-weighted RPC
(Remote Procedure Call) type of functionality. Instead of using a standardized RPC mechanism, like
CORBA, a self-defined protocol has been defined to be able to achieve one of the main tasks,
interoperability among different system architectures, and to minimize the overhead, which can occur.

© Copyright TT-MEDAL Consortium

Page : 44 of 64

‘T’ m”pl_ - _ Version: 2.0
Specification of test infrastructure and Date : 30/10/2005
architecture
Status : Final
Deliverable ID: D.1.1.1 Confid : Public

The TTdatagram as a protocol is independent from the transporting mechanism and the programming
language used to interact with the TTdatagram protocol data. So it can be adapted for the use of TCP or
UDP and can be designed in every programming language.

TTCN‘—BI Executabie
(TE)

)]
LY F

M %

Figure 19. TT-datagram architecture

The TTdatagram protocol is a four byte aligned protocol which is used via a dedicated transport mechanism,
further transport layers can be implemented in the future. The operations and parameters defined in [4] have
their representation in the TTdatagram protocol. Each operation is handled as command, indicated in a
common header which consist of a two bit Protocol tag, a six bit Version tag, the eight bit Command tag, a
Transfer Identifier and the message length.

Currently there are implementations of the TTdatagram protocol in Java and C using UDP as transport
mechanism.

4.9.1 The TTdatagram protocol message encoding

A TTdatagram represents a binary encoding of an operation call and its response (if given).

The TTdatagram has the following structure:

© Copyright TT-MEDAL Consortium

Page : 450f64
Tk& AL Version: 2.0
: Specification of test infrastructure and Date : 30/10/2005
architecture
Status : Final
Deliverable ID: D.1.1.1 Confid : Public
S S O S O O S S L S L

| P| Version|S| Command | Transfe rid |

S S S S S O O S L S S S S

[PayloadLength [

T e it I s i O +ot-t-tt-t-t-t-+

Payload

P - 2 Bit Protocol descriminator
Version - 6 Bit Version number
S - 1 Bit Status flag (0 = command, 1 = response)
Command - 8 Bit Command identifier
Transfer Id - 16 Bit random Transfer identifier
PayloadLength - 32 Bit unsigned integer Payload Length
Payload - arbitary length payload
Padding - 0...3 “null” bytes (to get 4 bytes alignment of the message)

Supported Protocols (P):

TRI_PROT: '00'B
TCI_PROT: '01'B
Reserved: "10'B

Command handling and status:
List of commands:

SA_RESET, MAP, UNMMAP, SEND, ENQUEUE_MSG, CALL, REPLY, RAISE
ENQUEUE_CALL, ENQUEUE_REPLY, ENQUEUE_EXCEPTION
SUT_ACTION_INFORMAL, SUT_ACTION_TEMPLATE

PA_RESET

START_TIIMER, STOP_TIMER, READ TIMER, TIMER RUNNING, TIMEOUT
EXTERNAL_FUNCTION

A command will be acknowledged by copying the P, Version, Command and the Transfer Id. The status tag
S will be set to 1. The Payload Length is set to 0, if no error occured, or indicates the length of the followed

Payload Data representing an error string.

Payload:

The payload of the TTdatagram consists of the parameter of the specified command. Each parameter has its
representation in an integer and/or string encoding whereby the integer can be used for the indication of the
following elements or length of the string. An integer is represented as a four byte value (most significant bit
first). According to the conventions in C each string is closed by a null character (that is part of the payload

field) and will always be padded to fulfill four byte alignment if necessary.

The following example will describe the parameter representation of the TriPortldList used e.g. for the

parameter tsilList of the command triExecuteTestCase.

TriPortldList:

e S T St T S e S e T L S e e

| length(integer)

© Copyright TT-MEDAL Consortium

TN

Deliverable ID: D.1.1.1

Specification of test infrastructure and
architecture

Page : 46 of 64

Version: 2.0
Date : 30/10/2005

Status : Final
Confid : Public

B T T T 1 ot T T S B
| port 1(TriPortld)

B T T T 1 ot T T S B
/

\

B T T T 1 ot T T S B
| port n(TriPortld)

B T T T 1 ot T T S B

Encoding of the TriPortld:

B s ity S U S e S S S
| complnst(TriComponen
B I e St I O S e o o
| portName(Char)

B I e St I O S e o o
| portindex(integer)

B s s T T s 1o o St N
| portType(QualifiedNa

B s s T T s 1o o St N

Encoding of TriComponentld:

B T T T 1 ot T T S B
| complnst(BinaryStrin

B T T T 1 ot T T S B
| compType(QualifiedNa
B T T T 1 ot T T S B

Encoding of BinaryString:

B I e St I O S e o o
| bits(integer)

B I e St I O S e o o
| data(unsigned char)

L L S S e S S

Encoding of QualifiedName:

B o L s o S e s Rt S RS TR
| moduleName(Char)

B o L s o S e s Rt S RS TR
| objectName(Char)

S S S O S O S S O e

Encoding of Char:

Lt e S S S L e
| length(integer)

B e St I O o S U S O e S S S
| String

e e e S S

-+

-+

-+

-+

-+

-+

—+-+

tld)
—+-+

-+-+
me)
-+-+

—+-+
—+-+

me)
-+-+

© Copyright TT-MEDAL Consortium

Page : 47 of 64

T’l Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

4.9.2 The Java DatagramTestAdapter

The intention of the Datagram TestAdapter is the adaptation of the TTCN-3 runtime environment to an SUT
specific adaptation layer (e.g. C-based) via socket communication using the TTdatagram protocol.

The implementation of the TTdatagram protocol in the DatagramTestAdapter supports all defined TRI
functions.

The DatagramTestAdapter creates a UDP socket. UDP is adequate for transport due to the fact that the
DatagramTestAdapter was implemented for use on one single machine. The transport mechanism can be
overwritten by a TestAdapter extending the DatagramTestAdapter to choose the adequate transport
mechanism for a specific implementation.

There is a differentiation between modal and non-modal commands. Modal commands are commands
where a response for the call is expected, non-modal have no response. For all modal commands a so
called TRIDatagramProcessor has to be created to await the expected response. For the detailed signature
of the operations represented by the commands please see [4].

5. TEST SYSTEM ARCHITECTURES USED IN THE CASE STUDIES

The general test system architecture as shown in Figure 4 has been instantiated differently in the various
case studies. The main difference has been in the implementations of the SA and the PA. In some of the
case studies the SA has been implemented as an executable of its own. In some other case studies, it has
been implemented as part of the executable containing the TE, too. The main difference regarding the PA
has been the use of simulated time in one of the case studies as opposed to real time by the other case
studies. None of the case studies made use of the distribution possibilities offered by the CH.

5.1 SA AS A SEPARATE EXECUTABLE

In the automotive case study, the SMLC case study, and the bearer in a box case study, the SA has been
implemented as a separate executable. In the bearer in a box case study, a major part of the SA has been
dedicated hardware to access the SUT either via a 2.5G or a 3G air interface. For this case study a different
TTCN-3 tool as in the other case studies has been used, therefore the architecture of this case study will not
be presented here.

In the other two case studies using a separate executable for the SA the same approach has been taken to
connect the SA with the TE. In both cases the SA has been written in C, thereby using the TRI with the C-
language mapping. The TE offers the TRI, but with a Java language mapping. TestingTechnologies provided
a small adaptation layer which forwards calls at the Java-TRI via UDP to the C-TRI in the SA executable and
vice versa. The protocol to forward the calls has been named TTDatagram. This architecture is shown for the
SMLC case study in Figure 20. The TCP/Ipv4 connection in this diagram is for message exchange with the
SUT and is not related to this architectural split between TE and SA.

© Copyright TT-MEDAL Consortium

Page : 48 of64

T’h Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public
TE SUT
Java
TRI
TTDatagram
UDP
TTdatagram
TRI
C SA
- I TCP/IPv4

Figure 20. Separate SA executable in the SMLC case study

In this case study, the split between the TE and SA has been done because there existed an SA that
provided configuration possibilities for the connection to the SUT. Without this SA being available, the SA
would have been implemented in Java in the same executable as the TE.

In the automotive case study, a similar split between TE and SA has been used. The SA contained
dedicated hardware to access the MOST bus. This hardware could be accessed via a C interface, provided
as a DLL. Therefore again two separate executables have been used. A single executable using the JNI
(Java Native Interface) would have been possible also, but would not have provided any benefit. The
separation into two executables has the additional advantage that the TE can be executed on a different
machine than the SA, which is tied to the PC with the physical connections to the test hardware.

5.2 SA AND TE WITHIN ONE EXECUTABLE

In the CORBA case study and the case study of the financial domain, the SA has been implemented in the
same executable as the TE. Overall the test system will be simpler to execute, because there is just one
executable to control.

Taking the CORBA case study as an example, the test system and the SA form a layered system, these
layers are shown in Figure 21. A call -statement in the TTCN-3 code is processed in the various layers as
follows: The signature and the actual parameters are encoded as an XML data structure and passed to the
highest layer in the SA. Then, using a style sheet transformation, this XML data structure is transformed into
the specific format needed by the 'XORBA' ORB. This ORB then actually issues the call to the SUT.

© Copyright TT-MEDAL Consortium

Page : 49 of 64

T’l Version: 2.0
: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

TTCN-3 Mapping rules TTCN-3 XML

!
TTCN-3 XML Codec Implementation

!
XSLT Style sheet transformation

!
XORBA ORB

!
SUT

Figure 21. Architecture of the CORBA SA

Replies and exceptions to the call and calls issued by the SUT are processed in the reversed direction.
Note, that all these layers including the XORBA ORB are contained in one executable.

5.3 SIMULATED TIME

All the case studies, except the railway case study use an implementation of the timers as real-time timers in
the PA. This is the usual case and a default implementation is provided by TTthree.

To implement simulated time for the railway case study it has not been sufficient to implement timers in the
PA that can proceed instantaneously to the time of the timer expiring next. The problem here is that the TRI
and TCI as they are defined at the moment do not provide enough information to detect idleness of the test
system. But timers may advance only, when the test system is idle. It still has been possible to use the
general architecture of a test system, but on the level of the TTCN-3 code, for each test component in a test
case, there has been an additional test component responsible for idleness detection. These additional
components have been connected such that global idleness could be detected.

In the diagram in Figure 22 the additional components to detect idleness are named 'idleness handlers'. Note
that these are actually executed inside the TE.

© Copyright TT-MEDAL Consortium

Page : 50 of 64

T’l Version: 2.0
pl_ Specification of test infrastructure and Date : 30/10/2005
architecture

Status : Final
Deliverable ID: D.1.1.1 Confid : Public

Test Management (TM)
Idleness TTCN-3 executable (TE) Idleness
V\ /V
Handler ~ MTC TC = Handler

! '
Idleness | | TC TC <« || Idleness
Handler Handler

[

‘ ::::::::::::::::::::::::TRI v
Idleness | | Platform Adapter || System Adapter | | Idleness
Handler (PA) (SA) Handler

Time Manager
Figure 22. Architecture for Simulated Time [24]

As this architecture becomes visible on the level of the test cases written and requires a specific style of
writing communication statements in the actual test behaviour, a change request to the TCI will be proposed
which allows to implement simulated time such that it does not become visible to the test cases which notion
of time is used when executing the test cases.

6. SUMMARY

The first phase of the TT-Medal project will develop the test infrastructure as described above. In the second
phase, additional components for the test infrastructure as well as components for the test platform will be
developed.

The test infrastructure will specifically been enhanced with plugins for CORBA based systems and for XML
based systems. The development of the CORBA plugin address a realization of the IDL to TTCN-3 mapping
(by means of implicit import combined with a visualizer for the generated TTCN-3 structures) and the
realization of a TRI/TCIl-based CORBA adaptor. The development of the XML plugin addess the definition of
an XML to TTCN-3 mapping, a realization of this mapping (by means of implicit import combined with a
visualizer for the generated TTCN-3 structures).

© Copyright TT-MEDAL Consortium

Page : 510f64

Tk& AL Version: 2.0
: Specification of test infrastructure and Date : 30/10/2005
architecture
Status : Final
Deliverable ID: D.1.1.1 Confid : Public

In addition, the test infrastructure will be extended with a logging interface. This logging interface will be
defined in terms of XML structures for the logging data and in terms of interface operations for the logging

events. This interface is subject to standardization activities at ETSI.

Furthermore the infrastructure address means to support SUT interfaces beside of Java. Thus work on C++

mapping and the TTdatagram approach have been investigated and reported.

. MARKET QUESTIONAIRE

The companies under which the market survey addressed in chapter 2 was held are not only in the financial
sector, but also in energy and telecom. Most of these companies are multinationals with offices around the
globe.

An overview of companies who participated in the survey is listed in the table. This overview is not intended

to be a complete list, but is used to indicate the diversity of the participants.

Company Country Business System under test
Achmea Netherlands personal pension plan and | pension system
insurance company
Rabobank Netherlands banking and insurance | web applications
company
Electrabel Belgium supplier of energy solutions SAP based application
Eneco Netherlands supplier of energy solutions integration of Oracle
databases
LogicaCMG Netherlands telecom vendor WAP gateway
Vodafone Sweden telecom operator billing application

The market survey made use of the following questionnaire:

Test environment

What is your System Under Test (SUT)?

Which interfaces and protocols are used?

Are tests executed in a laboratory environment or in a live environment?

Is the SUT simulated in a laboratory environment, and if so with which purpose?

On which operating systems is the SUT being tested?

On which operating system is a possible execution tool (e.g. test automation tool) executed?
On which operating systems are remaining test tools executed?

Test development

Are test specifications developed manually or generated by an application?

Are test specifications validated?

What is the structure of a test; for example is there a separation in test cases and scenarios?
Which specification language is being used to describe the tests?

Which features do you appreciate most in the specification language?

Which features do you miss most in the specification language?

What kind of tests are being executed: Module test, Integration test, System test, Acceptance test...
What type of testing is being done: Black box, White box, Once only test, Regression test,

Functional test, Scenario test, Load test, Performance test

Test execution

How is test input data treated? For example, is the input data stored in external files or integrated in

the test specification:?

© Copyright TT-MEDAL Consortium

Tl& AL Version: 2.0
: Specification of test infrastructure and Date : 30/10/2005
architecture
Status : Final
Deliverable ID: D.1.1.1 Confid : Public

Page : 52 of 64

How is test data offered to the SUT: Web based interface, GUI (Graphical User Interface),
Commandline interface, Serial interface (e.g. RS-232), IP based communication, API (Application
Programming Interface), RPC (Remote Procedure Call)

How much time is spent on protocol implementation, encoders and decoders?

Are tests being automated at the moment? If so, completely?

Which tools and languages are being used for test automation?

Does the test automation tool have to work with other tools, for example requirement management
tool?

What are the requirements for performance of the test tool?

Is the test built in one part of does it exist from several sub-tests? Can possible sub-tests be
executed solely?

How is test logging stored and analyzed?

What do you miss in the used test tool?

Testing and company processes

What is the status of testing within the company?

Is there a need to improve the test process?

Is there a need to improve the test specification?

Is there a need to improve the test tooling?

Is it possible to replace existing tools?

Is the company willing to invest in test improvements?

Il. TERMINOLOGY

The testing terms in this section have been taken from the basic TTCN-3 and testing methodology standards
provided by ETSI and ITU-T. Software testing and quality terms defined by international standardization
bodies and institutions such as ISO/BSI TMap, IEEE, and the ISTQB have been collected and added.

For better comparison the terms have been assigned to six groups according to general terms,
characteristics, documents & artefacts, processes, test tools, and test types.

A. BASIC TERMS

Term

Explanation Source

C++ component A component can be a single class; It is more likely a | VTT

collection of classes, sometimes also referred to as a
module. The required and provided interfaces of C++
components are described in C++ header files.

Kind of test One of the test categories. Differentiating functional,

conformance, interoperability, robustness, etc. tests
from non-functional, performance, scalability, load,
stress, etc. tests

Pass/Fail criteria Decision rules used to determine wether a software |[18]

© Copyright TT-MEDAL Consortium

Page : 53 of 64

T’l Version: 2.0

: pl_ Specification of test infrastructure and Date : 30/10/2005
architecture
Status : Final
Deliverable ID: D.1.1.1 Confid : Public
item or a software feature passes or fails a test.
Quality characteristic | Property5 of an IT system. Examples are security, | ISO 9126

time-behaviour, usability

Software Feature

A distinguishing characteristic of a software item (e.g.
Portability)

(18]

System under test

A real system, sub system, or system component
which is to be studied by testing.

The system under test (SUT) is a part and is the
system, subsystem, or component being tested. A
SUT can consist of several objects. The SUT is
exercised via its public interface operations and
signals by the test components. No further
information can be obtained from the SUT as it is a
black-box.

Modification of ISO/IEC 9646
(CTMF), see Test object

(23]

Test

A) A set of one or more test cases
B) A set of one or more test procedures
C) A set of one or more test cases and procedures

(18] [19]

Test categories

Tests can be classified along different categories: the
granularity of the SUT (unit, module, integration,
system), the approach for the test (white-box, grey-
box, black-box) and the kind of tests (see kind of test)

Test level

A test level is a group of test activities6 directed and
executed collectively. Examples of test levels are
component test, integration test, system test and
acceptance test.

[10] [19]

Test organisation

A test organisation comprises all of the test functions,
facilities, procedures, and activities, including their
relationships.

(9]

B. CHARACTERISTICS

Term

Explanation

Source

Compliance

Attributes of software that make the software adhere
to application standards or conventions or regulations
in law and similar prescriptions.

(10]

Correctness

The extent to which the system processes the
presented input and changes correctly, according to

(9]

> Note: The terms characteristic and property are used with a similar meaning (like a feature).
® Note: Test activity has not been defined explicitly, but is used in the sence of a test case.

© Copyright TT-MEDAL Consortium

e

Specification of test infrastructure and
architecture

Deliverable ID: D.1.1.1

Page

Version: 2.0
Date

Status : Final
Confid : Public

: 54 of 64

: 30/10/2005

the specification, into consistent data collections.

Interoperability

Attributes of the software that bear on its ability to
interact with specified systems.

[10]

Maintainability

A set of attributes that bear on the effort needed to
make specified modifications.

(10]

Portability

A set of attributes that bear on the ability of software
to be transferred from one environment to another.

(10]

Quality

The totality of characteristics of a product or service
that bear on its ability to satisfy stated or implied
needs.

ISO 8402

Recoverability

Attributes of the software that bear on the capability
to re-establish its level of performance and recover
the data directly affected in case of a failure and the
time and effort needed for it.

[10]

Reliability

A set of attributes that bear on the ability of software
to maintain its level of performance under stated
conditions for a stated period of time.

[10]

Reusability

The extent to which parts of the information system,
or of its design, may be reused for the development
of other applications.

(10]

Security

Attributes of software that bears on its ability to
prevent unauthorised access, whether accidental or
deliberate, to programs and data.

ISO 9126

Suitability

Attributes of software that bear on the presence and
appropriateness of a set of functions for a specified
task.

[10]

Testability

Attributes of software that bear on the effort needed
for validating the modified software.

Attributes of the software that bear on the effort
needed for validating the modified software.

ISO 9126

[10]

Usability

A set of attributes that bear on the effort needed for
use, and on the individual assessment of such use,
by a stated or implied set of users.

(10]

C. DOCUMENTS & ARTEFACTS

Term

Explanation

Source

© Copyright TT-MEDAL Consortium

e

Specification of test infrastructure and
architecture

Deliverable ID: D.1.1.1

Page : 55o0f64

Version: 2.0
Date : 30/10/2005

Status : Final
Confid : Public

Abstract test case

A complete and independent specification of the
actions required to achieve a specific test purpose.

Modification of ISO/IEC 9646
(CTMF)

Abstract test suite

A test suite composed of abstract test cases.

ISO/IEC 9646 (CTMF), see
Test set

Executable test case

A realization of an abstract test case

ISO/IEC 9646 (CTMF)

Executable test suite

A test suite composed of executable test cases.

ISO/IEC 9646 (CTMF), see
Test script

Implementation
conformance
statement (ICS)

A statement made by the supplier of an
implementation or system claimed to conform to a
given specification, stating which capabilities have
been implemented. The conformance statement is
the result of answering the ICS questionnaire.

ISO/IEC 9646 (CTMF)

Implementation extra
information for
testing (IXIT)

A statement made by a supplier or implementer of an
SUT which contains or references all of the
information (in addition to that given in the ICS)
related to the SUT and its testing environment, which
will enable the test laboratory to run an appropriate
test suite against the SUT. This information is the
result of answering the IXIT questionnaire.

Modification of ISO/IEC 9646
(CTMF)

Test basis

All documents from which the requirements of an
information system can be inferred. The
documentation on which the test is based. If a
document can only be amended by way of the formal
amendment procedure, the test basis is called a fixed
test basis.

[10]

Test case

A logical or physical description a test that is to be
executed, which has a specific test objective and
which is related to a specific test unit.

A test case is a specification of one case to test the
system, including what to test with which input, result,
and under which conditions. It is a complete technical
specification of how the SUT should be tested for a
given test objective.

A set of input values, execution preconditions,
expected results and execution postconditions,
developed for a particular objective or test condition,
such as to exercise a particular program path or to
verify compliance with a specific requirement.

(10]

part of [23]

[19]

Test context

A collection of test cases together with a test
configuration on the basis of which the test cases are
executed.

(23]

Test control

A test control is a specification for the invocation of
test cases within a test context. It is a technical

(23]

© Copyright TT-MEDAL Consortium

e

Specification of test infrastructure and
architecture

Deliverable ID: D.1.1.1

Page

: 56 of 64

Version: 2.0
Date

: 30/10/2005

Status : Final
Confid : Public

specification of how the SUT should be tested with
the given test context.

Test item A software item (Source code, object code, job |[18]
control code, control data, or a collection of these
items) which is an object of testing.

Test case A document specifying inputs, predicted results, and | [18]

specification set of execution conditions for a test item.

Test design A document specifying the details of the test|[18]

specification approach for a software feature or combination of

software features and identifying the associated
tests.

Test framework

A collection of test pattern/test libraries for abstract
test cases and of adaptors for executable test cases.
Test frameworks can exist for a specific system, a
specific technology or a specific application domain.

Test library A collection of ready to wuse (potentially
parameterized) abstract test definitions (such as
TTCN-3 types, templates, functions, altsteps, and
testcases).
Test log Sequence of interactions between a test system and | Modification [23]

an SUT resulting from the execution of a test case. It
represents the different messages/calls exchanged
between the test components and the SUT and/or
the internals of involved test components. A log is
associated with a verdict representing the adherence
of the SUT to the test objective of the associated test
case.

A chronological record of relevant details about the
execution of tests.

[18] [19]

Test objective

A prose description of a well defined objective of
testing of an abstract test suite.

A test objective is a named element describing what
should be tested. It is associated to a test case.

Modification of ISO/IEC 9646

(CTMF)

(23]

Test pattern

Prose description of recurring aspects of test
systems. These aspects can be architectural
(architectural test pattern), behavioural (behavioural
test pattern) or data oriented (data test patterns)

ETSIPTD

Test plan

A test plan contains the overall framework and
strategic choices relating to a test that is to be
executed. The test plan forms the reference
framework during the test execution and also serves
as an instrument for communicating with the
customer who ordered the test. The test plan is a

[10]

© Copyright TT-MEDAL Consortium

Specification of test infrastructure and
architecture

Deliverable ID: D.1.1.1

Page : 57 of 64

Version: 2.0
Date : 30/10/2005

Status : Final
Confid : Public

description of the test project, including a description
of the activities and planning; it is not, therefore, a
description of the test cases.

A document describing the scope, approach,
resources, and schedule of intended testing
activities. It identifies test items, the features to be
tested, the testing tasks, who will do each task, and
any risks requiring contingency planning.

(18]

Test procedure
specification

A document specifying a sequence of actions for the
execution of a test.

(18]

Test purpose

A prose description of a well defined objective of
testing of an abstract test case.

Modification of ISO/IEC 9646
(CTMF)

Test repository

Collection of test suites, test libraries or test patterns.

Test result

A statement about the correctness/incorrectness of
an SUT with respect to the test objectives/test
purposes of a test suite. Containing typically the test
verdicts (pass, fail, inconc or error) of executed test
cases.

Modification of ISO/IEC 9646
(CTMF)

Test script

The succession of co-ordinated actions and checks
relating to physical test cases, including the order in
which they are to be executed. A description of how
testing is to proceed.

[10], see executable test suite

Test set

A collection of test cases specifically focusing on one
or more quality characteristics and one or more test
units.

[10], see abstract test suite

Test specification

A description of the way in which logical test cases
have been selected, as well as a description of the
logical test cases. A description of what is to be
tested.

A document that consists of a test design
specification, test case specification and/or test
procedure specification.

[10]

[19]

Test suite

TTCN-3 module that either explicitly or implicitly
through import statements completely specifies all
definitions and behaviour descriptions necessary to
completely define a set of test cases.

(1]

Test summary report

A document summarizing testing activities and
results. It also contains an evaluation of the
corresponding test items.

(18]

Test verdict

A statement of pass, fail, or inconclusive, as specified
in a test case, concerning conformance of an SUT
w.r.t. that test case when it is excecuted.

Verdict is the assessment of the correctness of the

Modification of ISO/IEC 9646
(CTMF)

© Copyright TT-MEDAL Consortium

e

Specification of test infrastructure and
architecture

Deliverable ID: D.1.1.1

Page : 58 of 64

Version: 2.0
Date : 30/10/2005

Status : Final
Confid : Public

SUT. Predefined verdict values are pass, fail,
inconclusive and error. ... An Error verdict shall be
used to indicate errors (exceptions) within the test
system itself.

Modified [23]

Testware

Artifacts produced during the test process required to
plan, design, and execute tests, such as
documentation, scripts, inputs, expected results, set-
up and clear-up procedures, files, databases,
environment, and any additional software or utilities
used in testing.

[19]

D. PROCESSES

Term

Explanation

Source

Compilation

Translation of abstract TTCN-3 test suites into
executable tests; typically the target of compilation
are traditional programming languages such as C,
C++ or Java

Coverage analysis

Measurement of achieved coverage to a specified
coverage item during test execution referring to
predetermined criteria to determine whether
additional testing is required and if so, which test
cases are needed.

[19]

Debugging

Analysis of executable TTCN-3 tests by controlling
the test execution with break points, watch points,
etc. and by checking the correctness of variables,
parameters, snapshots, etc.

The process of finding, analyzing and removing the
causes of failures in software.

[19]

Deployment

The process of making physical representations of
tests available on nodes and installing them so that
they are ready for execution.

Modification of ITU Z.130

(eODL)

Evaluation

The evaluation and inspection of the various
intermediate products and/or processes in the system
development cycle.

(9]

Quality control

Operational techniques and activities that are used to
fulfil requirements for quality.

ISO 8402

Simulation

Analysis of abstract TTCN-3 tests by generating a
test simulation (a special kind of executable test) and
by checking the correctness of the tests during that
simulation.

Test composition

Composition of test functionality to gain
new/modified/adapted test functionality in new test
context, for other kinds of tests or for new test

© Copyright TT-MEDAL Consortium

Specification of test infrastructure and
architecture

Deliverable ID: D.1.1.1

Page : 59 of 64

Version: 2.0
Date : 30/10/2005

Status : Final
Confid : Public

objectives

Different means for test composition in TTCN-3 exist
and enable the reuse of test data and for test
behaviour. Examples are the parameterized
invocation of test cases/functions/altsteps, the
parameterized use of templates, or template
modification.

Test creation

Manual test development based on a functional
specification and system requirements.

TestFrame

Test derivation

The automated synthesis of test skeletons from
system models, system scenarios or test purpose
models. The skeletons are completed manually.

Test design

All steps needed to design/architect an abstract test
suite, typically including development of test suite
structure, test purposes, ICS and IXIT
questionnaires, test architecture, test data and test
behaviour.

Test development

All steps needed to develop a test system, typically
including test design and test realization (see also
test design and test realization)

Test generation

The automated synthesis of complete abstract tests
from system models.

Test process

The fundamental test process comprises planning,
specification, execution, recording and checking for
completion.

[19]

Test realization

All steps needed to develop an executable test suite,
typically including implementation of abstract test
cases (often supported by TTCN-3 compilers), of
adaptors and portation to test equipment.

Test variation

Modification of legacy tests, test patterns or test
libraries by means of parameterization, composition,
or refinement.

Testing

Testing is a process of planning, preparing and
measuring, aimed at establishing the characteristics
of an information system, and indicating the
difference between the actual status and the required
status.

The process of analyzing a software item to detect
the differences existing and required conditions (that
is, bugs) and to evaluate the features of the software
item.

The process consisting of all life cycle activities, both
static and dynamic, concerned with planning,

(10]

(18]

© Copyright TT-MEDAL Consortium

e

Specification of test infrastructure and
architecture

Deliverable ID: D.1.1.1

Page : 60 of 64

Version: 2.0
Date : 30/10/2005

Status : Final
Confid : Public

preparation and evaluation of software products and
related work products to determine that they satisfy
specified requirements, to demonstrate that they are
fit for purpose and to detect defects.

[19]

Validation

Confirmation by examination and provision of
objective evidence that the particular requirements
for a specific intended use have been fulfilled.

BS 7925-1

E. TEST TOOLS

Term

Explanation

Source

Adaptor

An implementation for the various TRl and TCI
subinterfaces TRI-SA, TRI-PA, TCI-TM, TCI-CH and
TCI-CD. An adaptor can be the implementation for
one of these interfaces or for several of these. In
many cases, the TRI-SA and the TCI-CD need to be
implemented by a user only, as the implementation
for TRI-PA, TCI-TM and TCI-CH are reused from the
TTCN-3 tooling.

ETSI TTCN-3, part 5 and 6

Adaptor repository

Collection of TRI and TCI adaptors

Test architecture

Component and port types used to define a test
configuration in TTCN-3, which can be changed
dynamically during test execution.

The set of concepts to specify the structural aspects
of a test context covering test components, the SUT,
their configuration, etc.

ETSI TTCN-3, part 1

Modified [23]

Test Configuration

The collection of test component objects and of
connections between the test component objects and
to the SUT. The test configuration defines both (1)
test component objects and connections when a test
case is started (the initial test configuration) and (2)
the maximal number of test component objects and
connections during the test execution.

(23]

Test Component

A test component is a class of a test system. Test
component objects realize the behavior of a test
case. A test component has a set of interfaces via
which it may communicate via connections with other
test components or with the SUT.

(23]

Test engine
(also known as
TTCN-3 Executable)

The part of a test system that deals with
interpretation or execution of a TTCN-3 executable
test suite.

ETSI TTCN-3, part 5 and 6

Test environment

An environment containing hardware,
instrumentation, simulators, software tools, and other
support elements needed to conduct a test.

[19]

© Copyright TT-MEDAL Consortium

Page : 61o0f64
T’l AL Version: 2.0
: Specification of test infrastructure and Date : 30/10/2005
architecture
Status : Final
Deliverable ID: D.1.1.1 Confid : Public
Test equipment General purpose or test specific device able to run
executable tests; being the technical basis of a test
system
. A type of test tool that is able to execute other
Test execution tool software using an automated test script, e.g. [19]
capture/playback.
Test harness A test environment comprised of stubs and drivers 19
S es needed to conduct a test. [19]
Test infrastructure The kernel of a test platform providing means to | TT-Medal FPP

execute tests. Containing test engine, test equipment
and executable tests and additional components
such as for logging and tracing.

The environment in which the test is performed,
consisting of hardware, system software, test tools,
procedures, and so on.

The organizational artifacts needed to perform
testing, consisting of test environments, test tools,
office environment and procedures.

(9]

[19]

Test manager

An entity which provides a user interface to as well as
the administration of the TTCN-3 test system

ETSI TTCN-3, part 6

Test object

The IT system (or part of it) which is to be tested.

[9], see System under test

Test platform

A set of components supporting the design,
development, analysis and execution of tests. The
kernel of a test platform is the test infrastructure used
to execute tests.

Test system

The real system which includes the test engine,
executable tests, adaptors, and the test equipment.

Modification of ISO/IEC 9646
(CTMF)

Test unit

A collection of processes, transactions and functions
which are tested collectively. The totality of test units
defines the test object.

[10]

F. TEST TYPES

Term

Explanation

Source

Acceptance test

A test conducted by future users and managers to
determine whether a system satisfies its acceptance
criteria and to enable the user to determine whether
the system is ready to be accepted. The test is
intended to show that the developed system meets
the functional and quality requirements.

Formal testing with respect to user needs,
requirements, and business processes conducted to

[10]

© Copyright TT-MEDAL Consortium

e

Specification of test infrastructure and
architecture

Deliverable ID: D.1.1.1

Page : 62 of 64

Version: 2.0
Date : 30/10/2005

Status : Final
Confid : Public

determine whether or not a system satisfies the
acceptance criteria and to enable the user,
customers or other authorized entity to determine
whether or not to accept the system.

[19]

Black-box test

A test on the externally visible characteristics of an
information system, without any knowledge of the
system’s internal design.

[10]

Dynamic testing

Testing, on the basis of specific test cases, by
executing the test object, or by running programs.

[10]

Integration test

A test, executed by the developer in a laboratory
environment, that should demonstrate that a logical
series of programs meets the requirements as set in
the design specifications.

(9]

Legacy tests

Existing tests being available inhouse or from

external sources

Load tests

A test type concerned with measuring the behavior of
a component or system with

increasing load, e.g. number of parallel users and/or
numbers of transactions to determine

what load can be handled by the component or
system.

[19]

Performance testing

The process of testing to determine the performance
(degree to which a system or component
accomplishes its designated functions within given
constraints regarding processing time and throughput
rate) of a software product.

[19]

Regression test

Regression is the phenomenon that the quality of a
system decreases as a result of individual
adjustments. The aim of a regression test is to check
that all parts of a system still function correctly after a
change has been made.

(9]

Scalability testing

Testing to determine the scalability (capability of the
software product to be upgraded to accommodate
increased loads) of the software product.

[19]

Static testing

Testing by checking and examining products without
any programs being executed.

[10]

System test

The system test is a test executed by the developer
in a (controllable) laboratory environment, which
should demonstrate that the developers system or
parts of it meet the requirements set in the functional
and technical specifications.

(10]

White-box test

A test on the internal properties of a test object with
an understanding of the object’s internal design.

(10]

© Copyright TT-MEDAL Consortium

e

Page : 63 of 64

Version: 2.0
Specification of test infrastructure and Date : 30/10/2005
architecture
Status : Final
Deliverable ID: D.1.1.1 Confid : Public

Unit test

The test which is executed by the developer in a|[10]
laboratory environment and must show that a
program meets the requirements set in the technical
specifications.

lll. GLOSSARY

CAN
CASE
CAST
CD

CM
CORBA
CUI

CUT
ETSI
GFT

GPRS

GSM

GUI

ICS
IDL

IOR
ITEA

IXIT
LT
MOST
OEC

ORB

Controller Area Network (a bus technology in automotive)
Computer Aided Software Engineering

Computer Aided Software Testing

see TCI-CD

see TCI-CM
Common Object Request Broker Architecture

Command-line user interface

Component under test

European Telecommunication Standards Institute (www.etsi.org)
Graphical format of TTCN-3

General Packet Radio Services (a mobile communication technology,
generation 2.5)

Global System for Mobile Communication (a mobile communication
technology, generation 2)

Graphical user interface

Implementation conformance statement

Interface Definition Language

interoperable object reference

Information Technology for European Advancement (www.itea-office.org)
Implementation extra information for testing

Lower tester

Media Oriented System Transport (a bus technology in automotive)
Operating Environment Capabilities

Object Request Broker

© Copyright TT-MEDAL Consortium

Page : 64 of 64

PA

SA

SVG

SUT

TCI

TCI-CD

TCI-CH

TCI-TM

TE

™

TRI

TRI-PA

TRI-SA

TTCN-3

TT-Medal

UMTS

uT

XORBA

Version: 2.0
Specification of test infrastructure and Date : 30/10/2005
architecture
Status : Final
Deliverable ID: D.1.1.1 Confid : Public
see TRI-PA
see TRI-SA

Scalable vector graphics

System under test

TTCN-3 Control Interfaces

Coding/Decoding Adaptor (realizing the TCI-CD Interface)

Component Handling Adaptor (realizing the TCI-CH Interface)

Test Management Adaptor (realizing the TCI-TM Interface)

Test Engine (also called TTCN-3 Execution Engine or TTCN-3 Executable)
see TCI-TM

TTCN-3 Runtime Interfaces

Platform Adaptor (realizing the TRI-PA Interface)

System Adaptor (realizing the TRI-SA Interface)

Testing and Test Control Notation

ITEA project on Tests and Testing Methodologies with Advanced Languages

Universal Mobile Telecommunications System (a mobile communication
technology, generation 3)

Upper tester

XML to CORBA Link/Interface

© Copyright TT-MEDAL Consortium

