
1© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Bernd Bruegge
Chair for Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering I:
Software Technology

WS 2008/09

Model Based Testing

2© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Outline of the Lectures on Testing

Terminology
Types of errors
Approaches for dealing with errors
Testing activities
Unit testing
 Integration testing
System testing
• Model-based Testing

3© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Generating Tests from a System Model

• There are many different ways to "derive" tests from a
system model
• Manual generation
• Automatic generation

• Because testing is usually experimental and based on
heuristics, there is no one best way to do this.
• It is common to consolidate all test related decisions into a

package that is often known as "test requirements” or "test
package”.

• This test package can contain e.g. information about
the part of the system model that should be the focus
for testing, or about the conditions where it is correct to
stop testing (test stopping criteria).

4© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Model Driven Architecture (MDA)

• Recall: MDA focuses on forward engineering, i.e.
producing code from a system model
• Note: The term “architecture” in MDA does not mean

the architecture of the system being modeled, but
refers the architecture of the various standards and
models that serve as the technology basis for MDA
• UML: Unified Modeling Language
• MOF: Meta-Object Facility
• XMI: Metadata Interchange
• EDOC: Enterprise Distributed Object Computing
• SPEM: Software Process Engineering Metamodel
• CWM: Common Warehouse Metamodel

An important objective of MDA is executable UML.

5© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Executable UML

• Executable UML means that given a UML system
model the following steps can be performed
automatically:
• Code generation
• Simulation Validation
• Test generation (“Model based Testing”)

6© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Model Based Testing

• Definition Model Based Testing: All testing is
based on a system model which is used to
(manually) generate test cases and oracles

• Advantage:
• Increased effectiveness of testing
• Decreased costs
• Reuse of artifacts such as analysis and design

models

• Requirement:
• The system model is formalized (specification

model) and described in UML 2.0

7© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Model Driven Testing

• Model Driven Testing is a special case of model
based testing:
• All the test cases are automatically

generated from the system model
• Advantage:

• Automatic generation of tests suites
• Better test thoroughness
• Reduces the cost of test execution.

8© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Observations on Model Based Testing
• A system model is an abstract representation of the

system’s desired behavior
• The test cases derived from this model are functional tests

on the same level of abstraction as the model
• These test cases are known as the abstract test suite

• Because test suites are derived from models - not from
source code - model-based testing is a form of black-box
testing

• The abstract test suite cannot be executed
• An executable test suite must be derived from the abstract

test suite which communicates with the system under test
(SUT)

• This is done by mapping the abstract test suite to concrete
test cases suitable for execution.
• Mapping is not part of this lecture.

9© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

U2TP: A UML Profile for Model Based
Testing:

• In 2001, the OMG released a Request for Proposals
(RFP) for a Testing Profile for UML to support model
based testing

• Several companies and institutions (Ericsson,
Fraunhofer/FOKUS, IBM, Motorola, Rational, Softeam,
Telelogic, University of Lübeck) responded to this RFP,
and after some discussion, decided to work together as
a consortium to produce U2TP

• U2TP: UML 2 based Test Profile
• Current version: 1.0

10© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

U2TP

• UML-2 Testing Profile (U2TP):
• A UML extension that makes UML applicable to

software testing.
• U2TP allows the collection of all information required

for the model-based testing process
• Deriving a test model from the system model.

• Test Model:
• A set of test cases derived from the system model.

11© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Overview of Concepts used in U2TP

• Test behavior
• Test objective, test case
• Default behavior, verdict

• Test architecture
• Test component, test configuration, test context
• SUT (System under Test)
• Test control, arbiter, scheduler

• Test Data
• Wildcards, data pools, data partition, data selector,

coding rules

• Time Concepts
• Timers, time zone.

12© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

General Definitions used in U2TP

• Test: An attempt to create a difference between
the observed behavior and the specified
behavior of a system a planned way

• Test data: The structures and meaning of values
to be processed in a test

• System under test (SUT)
• A system, subsystem or component
• The SUT is treated as black-box. This means:

• The SUT can be accessed only via a public interface
• No information on the internal structure of the SUT

is available for use in the specification of test cases.
• Test case: Describes a specified behavior, that is, a

behavior specified in the system model (normative
behavior) of the SUT.

13© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Test Objective

• Test objective
• Find any difference between the observed behavior and

the specified behavior, that is, the behavior specified in
the system model.

• UML Example
• The test objective in the diagram below specifies that the

objective of the ValidWithdrawal test case is to validate the
WithdrawMoney use case.

<<testcase>>
ValidWithdrawal

<<usecase>>
WithdrawMoney<<objective>>

14© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Test Architecture Definitions

• Test component: An object within a test system
• Test architecture: The test components and

their relationships in a test system
• Testing configuration: The combination of a test

system with a SUT
• Test control: A ordering of the execution of the

tests performed on the SUT
• Test context: A description of

• A set of test cases
• A test configuration
• A test control.

15© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Mandatory Elements in a test based on U2TP

• A test system following the U2TP testing
profile must consists at least of the following
parts:
• Test architecture: SUT, Test Context
• Test behavior: TestCase, Verdict.

Architecture Behavior Data Time

SUT Objective Timer

TestContext TestCase StartTimerAction

TestConfiguration Observation StopTimerAction

TestComponent Stimulus TimeOut

Arbiter Verdict

Mandatory Elements

Example: Test System for a Vending Machine
• Drink Vending Machine (DVM) with 3 use cases:

• The drinking machine accepts cash payment
• If the inserted money is sufficient, a drink is returned
• If not, the money is returned.

17© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Model-based Testing of Moneybox

The test system MoneyUnitTest is developed with
the purpose of unit testing the class Moneybox,
which is part of the system under test

Moneybox must be imported by MoneyUnitTest to be
accessible.

Test System SUT

18© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

UML System Model of the Moneybox

19© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Testing the addMoney Operation (Unit Test)

 Test that the machine correctly counts the money inserted by the
user into the Moneybox.

Sequence Diagram for addMoney
:customer

money1:Money

cashRegister
:Money(x)

:Money(y)

:addMoney(money1)

money2:Money

:addMoney(money2)

money3:Money:Money(z)

:getTemporaryAmout()

:money4

:equals(money4)

:true

21© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Model-based Testing of Moneybox

MoneyTest is the test context
MoneyUnitTest is the test case

Test System SUT
TestContext

Test
Case

22© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Definition Test Case

• Test case: A test case implements a test
objective. It describes a specified behavior, that
is, a behavior specified in the system model
(normative behavior) of the SUT

• A test case is defined in terms of sequences,
alternatives, loops, and defaults of stimuli to and
observations from the SUT.

• A test case consists of
• Flow of events (use case, sequence diagram)

• Stimulus to and Observation from the SUT
• Verdict: Assessment of the correctness of the SUT
• Arbiter: Evaluates the outcome of the test.

23© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Test Case
• A Test case specifies how a set of test components

interact with the system under test realize a test
objective

• A test case is owned by a test context
• Components of a test case

• Event flow: Sequence of steps to execute the SUT
• May include timing information

• Input: Stimulus
• Output: Observation
• Expected result: Oracle
• Verdict: Observation equals Oracle

• Comparison done by an arbiter

• A test case may invoke other test cases.

24© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Sequence Diagram for addMoneyTest

Instantiated
SUT

Stimulus

25© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Stimulus and Observation

• Stimulus: Data sent to the SUT

stimulus()

observation

• Observation: Data returned from the SUT as a
result of a stimulus.

• Both, stimuli and observations are described as
Test data.

26© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Stimulus and Observation in addMoneyTest

Instantiated
SUT

Observation

Stimulus

27© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Test Data

• Test Data: A generalization of stimulus and observation.
There are three types of test data:
• Data pool: Test data which are unspecific in their

properties
• Data partition: Test data which are unspecific in their

values
• Wild card: Test data which are unspecific in certain

elements
• Data selector: An operation that defines how data

values or equivalence classes are selected from a data
pool or data partition.

• Coding rules: Describe the encoding/decoding of test data
to be sent to the interfaces of the SUT.

28© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Data Pool

• Data pools are a collection of data partitions or
explicit values that are used by a test context,
or test components, during the evaluation of
test contexts and test cases. They can be used
for repeated tests.

• Example
• see figure on next slide

29© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Data Pool Example

30© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Verdict

• A test verdict describes the result of a test case
execution:
• Pass indicates that the specified behavior

equals the observed behavior of the SUT for
that specific test case

• Fail describes that the specified behavior is
not equal to the observed behavior of the SUT
for that test case

• Inconclusive is used if neither a Pass nor a
Fail verdict can be given

• Error is used to indicate a failure in the test
case itself.

31© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Verdict in addMoneyTest

Instantiated
SUT

Observation

Stimulus

Verdict

32© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Scheduler:
• Predefined interface in U2TP that controls the execution of

the test components that take part in a test case
• Keeps control over the creation and destruction of test components
• Collaborates with the arbiter to inform it when it is time to issue a

verdict.

• Operations
• Scheduler() : Constructor of Scheduler. Starts SUT and Arbiter.
• startTestCase() : Starts test case by notifying all involved test

components.
• finishTestCase(t:TestComponent) : Records that test component t

has finished its execution. Notifies the arbiter, when all test
components in the current test case are finished

• createTestComponent(t:TestComponent) : Records that the test
component t has been created by some other test component.

33© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Arbiter

• Arbiter: Called by the scheduler. Evaluates the
execution of the test case and assigns a verdict to it
• Arbiter is an interface provided by the UML Testing Profile.
• Operations

• getVerdict: Returns the current verdict
• setVerdict: Sets a new verdict value

• Semantic of Arbiter:
• If a verdict is pass, it can be changed to inconclusive,

fail, or error.
• If a verdict is inconclusive, it can be changed to fail or

error.
• If a verdict is fail, it can be changed to error only.
• If a verdict is error, it cannot be changed.

34© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Testing the DVM (Integration Test)
• Test Objective

• Check the operation of the DVM when a user buys a drink
• System is not yet complete:

• HWControl and CashRegister are not yet developed.
Provided
interface

Required
interface

35© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Develop the Test Components
• Test components implement the interfaces of

emulated components
• The test components also interact with SUT

TestComponents

36© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Test Configuration

• Test Configuration: The test configuration
defines instances of the test component (test
objects and the connections between them)

• Initial test configuration: State of the test
objects at the beginning of a test

• UML Example:
• Testing Configuration for the Vending machine
• Next slide.

37© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Test Configuration for the Vending Machine

• Collection of test components and ports between these
components and the SUT

• Defines the connections when the test case is launched.
• the maximum number of ports and test components

during the execution of the test case.

38© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Timer

• Timer is a mechanism to generate a timeout
event occurrence

• This may occur when a pre-specified time
interval has expired

• Timers are defined as properties of test
components
• A timeout indicates the timer expiration
• A timer can be stopped.
• The expiration time of a running timer and its current

status (e.g., active/inactive) can be checked.

39© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Timer (2)

• StartTimerAction
• Semantics: Start Timer t1 with the value 1.5 sec
• Parameter: duration
• Notation:

• StopTimerAction
• Semantics: Stop Timer
• Notation:

• TimeOut
• The time specified as duration in StartTimer has expired

• Example:
• Test that the hardware provides a drink (“giveDrink”)

within 1.5 seconds after a drink has been selected.

40© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Timer Example

Start the
Timer t1

Stop the
Timer t1

41© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Wildcards

• Wildcards are special symbols representing
values or ranges of values

• They specify whether the value is present or
not, and/or whether it is of any value

• Wildcard types:
• Wildcard for any value

• Example: “?” (question mark)
• Wildcard for any value or no value at all (i.e. an

omitted value)
• Example: “*” (star)

• Wildcard for an omitted value

42© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Additional Readings

• XMI
• http://en.wikipedia.org/wiki/XMI

• MDA
• http://en.wikipedia.org/wiki/Model-driven_architecture

• The UML Testing Profile
• Ina Schieferdecker, Øystein Haugen, 2004
• http://folk.uio.no/oysteinh/Schieferdecker-Haugen-

ECOOP2004-U2TP.pdf

43© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Summary

• Review of all the definitions introduced in this
part of the lecture.

• Writing test cases for a use case
• Write the use case
• Determine SUT
• Add Stimulus, Observation and Verdict to use case,

turning it into a test case.

44© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Sequence Diagram for addMoney

:customer

money1:Money

cashRegister
:Money(x)

:Money(y)

:addMoney(money1)

money2:Money

:addMoney(money2)

money3:Money:Money(z)

:getTemporaryAmout()

:money4

:equals(money4)

:true

45© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Stimulus and Observation in addMoneyTest

Instantiated
SUT

46© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Defaults

A default is a behavior triggered by a test observation that is
not handled by the behavior of the test case per se. A default
is triggered whenever a test observation is not handled by the
behavior of a test case. There is a hierarchy of defaults:
• within the behavior of a test component object associated to

a state (i.e. in a state machine) or to a combined fragment
(in an interaction diagram);

• for the complete behavior of a test component object
associated to a part (typed with a test component) in the
internal structure of a test context (i.e. in a test
configuration);

• for all test component objects of a test component
associated to a test component in a test architecture.

47© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Default Examples

48© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

49© 2006 Bernd Bruegge T-Systems Testfactory-Workshop on Model-Based Testing

Validation Action

A validation action is an action performed by a
test component to assess a test observations
and/or additional characteristics/parameters. A
notation to model validation actions is still to be
defined.

• Example

