
1
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Agile Methodologies
XP and Scrum

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

Introduction into Software Engineering
Lecture 22

2
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Problem: How to we Control Software
Development?

How can software development best be described?
•  Two opinions: Maturity vs agility
1. Through organizational maturity (Humphrey)

•  Repeatable process, Capability Maturity Model (CMM)

2. Through agility (Schwaber):
•  Large parts of software development is empirical in nature;

cannot be modeled with a defined process

How do we control software development?
•  Software development is a deterministic process

•  with a defined process control model
•  Software development is a nondeterministic process

•  with an empirical process control model.

3
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Defined Process Control Model
•  The defined Process control models assumes that

software development is a deterministic process
•  Given a well-defined set of inputs, the same outputs are

generated every time
•  Deviations are seen as errors that need to be corrected
•  All activity-oriented software lifecycle models

introduced in the previous lecture are defined process
control models

•  Precondition to apply the defined process control
model:

•  Every piece of work can be completely understood
•  All the activities and tasks are well defined to provide

repeatability and predictability

•  If the preconditions are not satisfied:
•  Lot of surprises (often too late), loss of control,

incomplete or wrong work products.

4
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Empirical Process Control Model

The empirical process control model assumes that
many aspects of software development are
better described as a nondeterministic process

•  Not all pieces of work need to be completely
understood or can be understood

•  Deviations are seen as opportunities that need to be
investigated

•  The empirical process “expects the unexpected”

•  Control is exercised through frequent inspection
•  Daily inspection in Scrum

•  Conditions when to apply this model:
•  Frequent change is expected during the project, inputs

are unpredictable and outputs are unrepeatable.

5
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Outline of the Lecture

•  Two examples of empirical process control
models

•  Extreme Programming (XP)
•  Scrum

•  Both are also examples of agile methodologies
•  Agile methodologies use an empirical process model to

describe the software lifecycle.

6
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Issues to be addressed by a Methodology
(See Lecture 2)

•  Methodologies provide guidance, general
principles and strategies for selecting methods
and tools in a given project environment

•  Key questions for which methodologies provide
guidance:

•  How much involvement of the customer?
•  How much planning?
•  How much reuse?
•  How much modeling before coding?
•  How much process?
•  How much control and monitoring?

7
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

XP (Extreme Programming)

•  XP assumes that change is normal
•  XP assumes that software developer must be able react

to changing requirements at any point during a project

•  XP is an agile software methodology because
•  It places higher priority on adaptability (“empirical

process control model”) than on predictability (“defined
process control model”)

•  XP prescribes a set of day-to-day practices for
managers and developers to address change.

8
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

History of XP

•  Original cast of contributors
•  Kent Beck, Ron Jeffries, Ward Cunningham (also

created Wiki)

•  Application of XP in the Chrysler Comprehensive
Compensation project (C3 Project) in 1995

•  Lots of initial excitement but later a lot of
problems:

•  Daimler actually shut down the C3 Project in 2000 and
even banned XP for some time

•  See Additional References.

9
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

XP Day-to-Day Practices

1.  Rapid feedback
•  Confronting issues early results in more time for

resolving issues. This applies both to client feedback
and feedback from testing

2.  Simplicity
•  The design should focus on the current requirements
•  Simple designs are easier to understand and change

than complex ones

3.  Incremental change
•  One change at the time instead of many concurrent

changes
•  One change at the time should be integrated with the

current baseline.

10
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

XP Mantras (continued)

4. Embracing change
•  Change is inevitable and frequent in XP projects
•  Change is normal and not an exception that needs to

be avoided

5. Quality work
•  Focus on rapid projects where progress is

demonstrated frequently
•  Each change should be implemented carefully and

completely.

11
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

How much planning in XP?

• Planning is driven by requirements and their
relative priorities

•  Requirements are elicited by writing stories with the
client (called user stories)

• User stories are high-level scenarios or use cases
that encompass a set of coherent features

•  Developers decompose each user story in terms of
development tasks that are needed to realize the story

•  Developers estimate the duration of each task in terms
of days

•  If a task is planned for more than a couple of weeks, it
is further decomposed into smaller tasks.

12
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

How much planning in XP?

•  Ideal weeks
•  Number of weeks estimated by a developer to
implement the story if all work time was dedicated for
this single purpose

•  Fudge Factor

•  Factor to reflect overhead activities (meetings, holidays,
sick days...)

•  Also takes into account uncertainties associated with
planning

•  Project velocity

•  Inverse of ideal weeks

•  i.e., how many ideal weeks can be accomplished in
fixed time.

13
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

How much planning in XP? (2)

•  Stacks
•  The user stories are organized into stacks of related

functionality

•  Prioritization of stacks
•  The client prioritizes the stacks so that essential

requirements can be addressed early and optional
requirements last

•  Release Plan
•  Specifies which story will be implemented for which

release and when it will be deployed to the end user

•  Schedule
•  Releases are scheduled frequently (e.g., every 1–2

months) to ensure rapid feedback from the end users.

14
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Team Organization in XP

•  Production code is written in pairs (pair
programming)

•  The person typing is called the driver.
•  The person reviewing the code is called the observer or

navigator.

•  Individual developers may write prototypes for
experiments or proof of concepts, but not
production code

•  Pairs are rotated often to enable a better
distribution of knowledge throughout the project

•  The two programmers switch roles frequently, possibly
every 30 minutes.

15
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

How much reuse in XP?

•  Simple design
•  Developers are encouraged to select the most simple

solution that addresses the user story being currently
implemented

•  No design reusability
•  The software architecture can be refined and

discovered one story at the time, as the prototype
evolves towards the complete system

•  Focus on Refactoring
•  Design patterns might be introduced as a result of

refactoring, when changes are actually implemented
•  Reuse discovery only during implementation.

16
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

How much modeling in XP?

•  No explicit analysis/design models
•  Minimize the amount of documentation
•  Fewer deliverables reduce the duplication of issues

•  Models are only communicated among
participants

•  The client is the “walking specification”

•  Source Code is the only external model
•  The system design is made visible in the source code

by using descriptive naming schemes

•  Refactoring is used to improve the source code
•  Coding standards are used to help developers

communicate using only the source code.

17
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

How much process in XP?

•  Iterative life cycle model with 5 activities:
planning, design, coding, testing and integration

•  Planning occurs at the beginning of each iteration
•  Design, coding, and testing are done incrementally
•  Source code is continuously integrated into the main

branch, one contribution at the time
•  Unit tests for all integrated units; regression testing

•  Constraints on these activities
•  Write the tests first. Unit tests are written before units.

They are written by the developer
•  Generalized to test-driven programming

•  Catch the errors: When defects are discovered, another
unit test is created to reproduce the defect

•  Refactor before extending the source code.

18
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

How much control in XP?
•  Reduced number of formal meetings

•  Daily stand up meeting with the co-located client for
status communication

•  No discussions to keep the meeting short

•  No inspections and no peer reviews
•  Pair programming is used instead
•  Production code is written in pairs, review during

coding.

•  Self-organizing system with a leader:
•  The leader communicates the vision of the system
•  The leader does not plan, schedule or budget
•  The leader establishes an environment based on

collaboration, shared information, and mutual trust
•  The leader ensures that a product is shipped.

19
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Summary of the XP Methodology
Planning
 Co-locate the project with the client, write user stories

with the client, frequent small releases (1-2 months),

create schedule with release planning, kick off an
iteration with iteration planning, create programmer
pairs, allow rotation of pairs

Modeling
 Select the simplest design that addresses the current
story; Use a system metaphor to model difficult
concepts; Use CRC cards for the initial object
identification; Write code that adheres to standards;
Refactor whenever possible

Process
 Code unit test first, do not release before all unit tests
pass, write a unit test for each uncovered bug, integrate
one pair at the time

Control
 Code is owned collectively. Adjust schedule, Rotate
pairs, Daily status stand-up meeting, Run acceptance
tests often and publish the results.

20
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Introduction

•  Classical software development methodologies
have some disadvantages:

•  Huge effort during the planning phase
•  Poor requirements conversion in a rapid changing

environment
•  Treatment of staff as a factor of production

•  Agile Software Development Methodologies
•  Minimize risk  short iterations
•  Real-time communication (preferable face-to-face) 

very little written documentation
•  www.agilealliance.org

21
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Today’s Lecture

•  Miscellaneous
•  What is Scrum?
•  Agile Alliance and Manifesto
•  History of Scrum
•  Definition
•  Components of Scrum

•  Scrum Roles
•  The Process
•  Scrum Artifacts

•  Conclusion

22
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Miscellaneous

•  Next Thursday: 8:15-10:00 HS2 , Sprechstunde
(“doctor’s hour”)

•  Final Exam
•  5 February 2009, Maschinenwesen 0001, 18:00-19:30

•  Repeat exam
•  23 April, Location: TBA, Time: TBA
•  Note: Repeat exam means Repeat exam

•  Next Tuesday: Invited Lecture
•  iPhone Praktikum Summer 2009

23
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Warum IT-Projekte scheitern

Klaus Eberhardt, iteratec GmbH

3. Februar 2009

Tuesday 16:15-18:00

Invited Lecture

24
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

iPhone Praktikum Announcement SS 2009

25
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Manifesto for Agile Software Development

•  http://www.agilemanifesto.org/
•  Individuals and interactions are preferred over

processes and tools
•  Working software is preferred over

comprehensive documentation
•  Customer collaboration over contract negotiation
•  Responding to change over following a plan.

26
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

History of Scrum

•  1995:
•  Jeff Sutherland and Ken Schwaber analyse common

software development processes
•  Conclusion: not suitable for empirical, unpredictable

and non-repeatable processes
•  Proposal of Scrum
•  Enhancement of Scrum by Mike Beedle

•  Combination of Scrum with Extreme Programming

•  1996: Introduction of Scrum at OOPSLA
•  2001: Publication “Agile Software Development

with Scrum” by Ken Schwaber & Mike Beedle
•  Founders are also members in the Agile Alliance.

27
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Scrum
•  Definition (Rugby): A Scrum is a way to restart

the game after an interruption,
•  The forwards of each side come together in a tight

formation and struggle to gain possession of the
ball when it is tossed in among them

•  Definition (Software Development): Scrum is an
agile, lightweight process

•  To manage and control software and product
development with rapidly changing requirements

•  Based on improved communication and maximizing
cooperation.

28
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Why Scrum ?

Traditional methods
are like relay races Agile methods are

like rugby

29
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Practicing a Scrum Scrums in Real Games

30
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Testudo:
Battle Formation used by the Romans

31
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Methodology Issues

•  Methodologies provide guidance, general
principles and strategies for selecting methods
and tools in a given project environment

•  Key questions for which methodologies provide
guidance:

•  How much involvement of the customer?
•  How much planning?
•  How much reuse?
•  How much modeling before coding?
•  How much process?
•  How much control and monitoring?

32
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Scrum as Methodology

•  Involvement of the customer
•  Onsite customer

•  Planning
•  Checklists and incremental daily plans
•  Product backlog, sprint backlogs

•  Reuse
•  Checklists from previous projects

•  Modeling
•  Models may or may not be used

•  Process
•  Iterative, incremental process

•  Control and Monitoring
•  Daily meetings.

33
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Components of Scrum

•  Scrum Roles
•  Scrum Master, Scrum Team, Product Owner

•  Process
•  Sprint Planning Meeting
•  Kickoff Meeting
•  Sprint (corresponds to an iteration in a Unified

Process, but limited to 30 days)
•  Daily Scrum Meeting
•  Sprint Review Meeting

•  Scrum Artifacts
•  Product Backlog, Sprint Backlog
•  Burndown Charts

34
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Overview of Scrum (Napkin View)

35
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Overview of Scrum (Activity Diagram)

36
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Scrum Master

•  Represents management to the project
•  Typically filled by a project manager or team

leader
•  Responsible for enacting scrum values and

practices
•  Main job is to remove impediments.

37
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

The Scrum Team

•  Typically 5-6 people
•  Cross-functional (quality assurance,

programmers, UI designers, architects)
•  Members should work full-time in the team
•  Team is self-organizing
•  Membership can change only between sprints.

38
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Product Owner

•  Knows what needs to be build and in
what sequence this should be done

•  Traditionally the “Client”
•  Typically a product manager

39
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Scrum Process Activities

•  Project-Kickoff Meeting
•  Sprint Planning Meeting
•  Sprint
•  Daily Scrum Meeting
•  Sprint Review Meeting

40
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Project-Kickoff Meeting

•  A collaborative meeting in the beginning of the
project

•  Participants: Product Owner, Scrum Master
•  Takes 8 hours and consists of 2 parts (“before lunch

and after lunch”)

•  Goal: Create the Product Backlog

41
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Sprint Planning Meeting

•  A collaborative meeting in the beginning of each
Sprint

•  Participants: Product Owner, Scrum Master and Scrum
Team

•  Takes 8 hours and consists of 2 parts (“before
lunch and after lunch”)

•  Goal: Create the Sprint Backlog

42
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Sprint

•  A month-long iteration, during which is
incremented a product functionality

•  No outside influence can interference with the
Scrum team during the Sprint

•  Each day in a Sprint begins with the Daily Scrum
Meeting

43
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Daily Scrum Meeting

•  Is a short (15 minutes long) meeting, which is
held every day before the Team starts working

•  Participants:
•  Scrum Master (which is the chairman), Scrum Team

•  Every Team member should answer on 3
questions

44
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Questions for each Scrum Team Member

1.  Status:
What did I do since the last Scrum meeting?

2.  Issues:
What is stopping me getting on with the work?

3.  Action items:
What am I doing until the next Scrum meeting?

45
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Daily Scrum Meeting

•  NOT a problem solving session
•  NOT a way to collect information about WHO is

behind the schedule

•  It is a meeting in which team members make
commitments to each other and to the Scrum
Master

•  Is a good way for a Scrum Master to track the
progress of the team.

46
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Sprint Review Meeting

•  Is held at the end of each Sprint
•  Business process functionality which was created

during the Sprint is demonstrated to the Product
Owner

•  Informal, should not distract Team members of
doing their work.

47
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Scrum Artifacts

•  Product Backlog
•  Sprint Backlog
•  Burn down Charts

48
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Product Backlog

•  Requirements for a system, expressed as a
prioritized list of Backlog Items (“Todos”,
requirements, open issues)

•  Managed and owned by a Product Owner
•  Contained in a Spreadsheet (typically)

•  Usually created during the Project Kickoff
Meeting

•  Can be changed and re-prioritized before each
Sprint.

49
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Estimation of Product Backlog Items

•  Establishes team’s velocity (how much effort a
Team can handle in one Sprint)

•  Units of complexity
•  Size-category: L, M, S (“T-Shirt size”)
•  Story points
•  Work days/work hours

•  Methods of estimation:
•  Expert Review
•  Creating a Work Breakdown Structure (WBS)

50
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Sprint Backlog

•  A subset of Product Backlog Items, which
defines the work to be done in a Sprint

•  Is created ONLY by Team members
•  Each item has it’s own status
•  Should be updated every day.

51
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Prioritize

Backlog Items

Add & Remove

Backlog Items

Sprint

Backlog

Sprint

Planning

 Meeting

Daily

 Scrum

Meeting

Sprint

 Review

Meeting

Project

Backlog

Kickoff

Meeting

Lists, Activities and Meetings in Scrum

52
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Sprint Backlog

•  No more then 300 tasks in the list
•  If a task requires more than 16 hours, it should

be broken down
•  Team can add or subtract items from the list

•  Product owner is not allowed to do it.

53
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Sprint Backlog

•  Is a FORECAST!
•  Is a good warning monitor

54
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Measuring Progress in Scrum

•  Project Manager is mostly concerned about
•  Sprint progress: How is the team doing toward

meeting their Sprint goal
•  Release progress: Will the release be on time with the

quality and functionality desired?
•  Product progress: how is the product filling out

compared to what's needed?

•  3 Types of Charts (good information radiators)
•  Sprint Burn down Chart (progress of the sprint)
•  Release Burn down Chart (progress of release)
•  Product Burn down chart (progress of the product)

55
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Burn down Charts

•  Schwaber calls them “Information radiators”
•  Two characteristics are key

•  The information changes over time
•  This makes it worth a person's while to look at the

display...
•  It takes very little energy to view the display.

56
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Sprint Burn down Chart

•  Depicts the total Sprint Backlog hours remaining
per day

•  Shows the estimated amount of time to release
•  Ideally should burn down to zero to the end of

the Sprint
•  Actually is not a straight line
•  Can bump UP

57
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Burn down Chart Example
•  X-Axis: time (usually in days)
•  Y-Axis: remaining effort

58
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Release Burn down Chart

•  Radiator for the Question:
•  “Will the release be done on right time? “

•  X-axis: sprints
•  Y-axis: amount of hours remaining
•  The estimated work remaining can also burn up

59
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Summary

•  XP and Scrum are agile software development
methodologies with focus on

•  Empirical process control model
•  Changing requirements are the norm
•  Controlling conflicting interests and needs

•  Very simple processes with clearly defined rules
•  Self-organizing teams, where each team

member carries a lot of responsibility
•  No extensive documentation

•  Possibility for “undisciplined hacking”.

60
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Additional Readings

•  Schwaber, Beedle
•  Agile Software Development with Scrum, Addison-

Wesley Verlag, 2002.

•  Kevin Aguanno (editor)
•  Managing Agile Projects, Multi-Media Publications Inc.,

2005.

•  Tapscott, Williams
•  Wikinomics, Portfolio Verlag, 2006.

61
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Ways to React to Complexity and Change

Light Heavy

Hierarchical organization
Iterative process

(Royce)

Nonhierarchical
 organization

(Scrum)

Nonlinear
process (XP)

Chaos
Order

Linear process
(Waterfall)

Individuals and
Interactions
 Processes and Tools

Working

Software

Comprehensive
Documentation

Customer

Collaboration
 Contract Negotiation

Responding to
Change
 Following a Plan

62
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Alternative Release Burn down Chart

•  Consists of bars (one for each sprint)
•  Values on the Y-axis: positive AND negative
•  Is more informative then a simple chart

63
© 2009 Bernd Bruegge Software Engineering Winter 2008-9

Product Burn down Chart

•  The “big picture” view of project’s progress
•  Burn down Chart containing all the releases.

