
1
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Software Engineering I:
Software Technology

WS 2008/09

Requirements Elicitation
Bernd Bruegge

Applied Software Engineering
Technische Universitaet Muenchen

2
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Outline

•  Starting Point: Software Lifecycle
•  Requirements elicitation challenges
•  Requirements specification

•  Types of requirements

•  Validating requirements
•  Summary

3
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Software Lifecycle Definition

•  Software lifecycle
•  Models for the development of software

•  Set of activities and their dependency
relationships to each other to support the
development of a software system

•  Examples:
• Analysis, Design, Implementation,
Testing

•  Typical Lifecycle questions:
•  Which activities should I select when I develop

software?
•  What are the dependencies between

activities?
•  How should I schedule the activities?

4
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

A Typical Example
of Software Lifecycle Activities

System

Design

Detailed

Design

Implemen-

tation
 Testing
Requirements

Elicitation
 Analysis

5
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Software Lifecycle Activities

System

Design

Detailed

Design

Implemen-

tation
 Testing
Requirements

Elicitation

Use Case
Model

Analysis

...and their models

6
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Software Lifecycle Activities

Application
Domain
Objects

Expressed in
terms of

Use Case
Model

System

Design

Detailed

Design

Implemen-

tation
 Testing
Requirements

Elicitation
 Analysis

...and their models

7
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Software Lifecycle Activities

Sub-
systems

Structured
by

Application
Domain
Objects

Expressed in
terms of

Use Case
Model

System

Design

Detailed

Design

Implemen-

tation
 Testing
Requirements

Elicitation
 Analysis

...and their models

8
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Software Lifecycle Activities

Sub-
systems

Structured
by

Solution
Domain
Objects

Realized by

Application
Domain
Objects

Expressed in
terms of

Use Case
Model

System

Design

Detailed

Design

Implemen-

tation
 Testing
Requirements

Elicitation
 Analysis

...and their models

9
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Software Lifecycle Activities

Sub-
systems

Structured
by

class...

class...

class...

Source
Code

Implemented by

Solution
Domain
Objects

Realized by

Application
Domain
Objects

Expressed in
terms of

Use Case
Model

System

Design

Detailed

Design

Implemen-

tation
 Testing
Requirements

Elicitation
 Analysis

...and their models

10
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Software Lifecycle Activities

Sub-
systems

Structured
by

class...

class...

class...

Source
Code

Implemented by

Solution
Domain
Objects

Realized by

Application
Domain
Objects

Expressed in
terms of

Test
Cases

?

Verified
By

class....
?
Use Case

Model

System

Design

Detailed

Design

Implemen-

tation
 Testing
Requirements

Elicitation
 Analysis

...and their models

11
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

What is the best Software Lifecycle?

•  Answering this question is the topics of the
lecture on software lifecycle modeling

•  For now we assume we have a set of predefined
activities:
•  Today we focus on the activity requirements elicitation

12
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Software Lifecycle Activities

Application
Domain
Objects

Subsystems

class...

class...

class...

Solution
Domain
Objects

Source
Code

Test
Cases

?

Expressed in
Terms Of

Structured By

Implemented
 By

Realized By Verified
By

System

Design

Detailed

Design

Implemen-

tation
 Testing

class....
?

Requirements

Elicitation

Use Case
Model

Analysis

13
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

What does the Customer say?

14
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

First step in identifying the Requirements:
System identification

•  Two questions need to be answered:
1.  How can we identify the purpose of a system?
2.  What is inside, what is outside the system?

•  These two questions are answered during
requirements elicitation and analysis

•  Requirements elicitation:
•  Definition of the system in terms understood by the

customer (“Requirements specification”)

•  Analysis:
•  Definition of the system in terms understood by the

developer (Technical specification, “Analysis
model”)

•  Requirements Process: Contains the activities
Requirements Elicitation and Analysis.

15
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Techniques to elicit Requirements

•  Bridging the gap between end user and
developer:
•  Questionnaires: Asking the end user a list of pre-

selected questions
•  Task Analysis: Observing end users in their

operational environment
•  Scenarios: Describe the use of the system as a series

of interactions between a concrete end user and the
system

•  Use cases: Abstractions that describe a class of
scenarios.

16
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Scenarios

•  Scenario (Italian: that which is pinned to the
scenery)
•  A synthetic description of an event or series of actions

and events.
•  A textual description of the usage of a system. The

description is written from an end user’s point of view.
•  A scenario can include text, video, pictures and story

boards. It usually also contains details about the work
place, social situations and resource constraints.

17
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

More Definitions

•  Scenario: “A narrative description of what
people do and experience as they try to make
use of computer systems and applications” [M.
Carroll, Scenario-Based Design, Wiley, 1995]

•  A concrete, focused, informal description of a
single feature of the system used by a single
actor.

18
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Scenario-Based Design

Scenarios can have many different uses during the
software lifecycle
•  Requirements Elicitation: As-is scenario, visionary

scenario
•  Client Acceptance Test: Evaluation scenario
•  System Deployment: Training scenario

Scenario-Based Design: The use of scenarios in a
software lifecycle activity
•  Scenario-based design is iterative
•  Each scenario should be consisered as a work

document to be augmented and rearranged (“iterated
upon”) when the requirements, the client acceptance
criteria or the deployment situation changes.

19
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Scenario-based Design
•  Focuses on concrete descriptions and particular

instances, not abstract generic ideas
•  It is work driven not technology driven
•  It is open-ended, it does not try to be complete
•  It is informal, not formal and rigorous
•  Is about envisioned outcomes, not about

specified outcomes.

20
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Types of Scenarios

•  As-is scenario:
•  Describes a current situation. Usually used in re-

engineering projects. The user describes the system
•  Example: Description of Letter-Chess

•  Visionary scenario:
•  Describes a future system. Usually used in greenfield

engineering and reengineering projects
•  Can often not be done by the user or developer alone

•  Example: Description of an interactive internet-
based Tic Tac Toe game tournament

•  Example: Description - in the year 1954 - of the
Home Computer of the Future.

21
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

A Visionary Scenario (1954): The Home
Computer in 2004

22
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Additional Types of Scenarios (2)

•  Evaluation scenario:
•  Description of a user task against which the system is

to be evaluated.
•  Example: Four users (two novice, two experts) play

in a TicTac Toe tournament in ARENA.

•  Training scenario:
•  A description of the step by step instructions that guide

a novice user through a system
•  Example: How to play Tic Tac Toe in the ARENA

Game Framework.

23
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

How do we find scenarios?

•  Don’t expect the client to be verbal if the system
does not exist
•  Client understands problem domain, not the solution

domain.

•  Don’t wait for information even if the system
exists
•  “What is obvious does not need to be said”

•  Engage in a dialectic approach
•  You help the client to formulate the requirements
•  The client helps you to understand the requirements
•  The requirements evolve while the scenarios are being

developed

24
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Heuristics for finding scenarios
•  Ask yourself or the client the following questions:

•  What are the primary tasks that the system needs to
perform?

•  What data will the actor create, store, change, remove or
add in the system?

•  What external changes does the system need to know
about?

•  What changes or events will the actor of the system need
to be informed about?

•  However, don’t rely on questions and
questionnaires alone

•  Insist on task observation if the system already
exists (interface engineering or reengineering)
•  Ask to speak to the end user, not just to the client
•  Expect resistance and try to overcome it.

25
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Scenario example: Warehouse on Fire

•  Bob, driving down main street in his patrol car notices
smoke coming out of a warehouse. His partner, Alice,
reports the emergency from her car.

•  Alice enters the address of the building into her wearable
computer , a brief description of its location (i.e., north
west corner), and an emergency level.

•  She confirms her input and waits for an acknowledgment.
•  John, the dispatcher, is alerted to the emergency by a

beep of his workstation. He reviews the information
submitted by Alice and acknowledges the report. He
allocates a fire unit and sends the estimated arrival time
(ETA) to Alice.

•  Alice received the acknowledgment and the ETA.

26
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Observations about Warehouse on Fire
Scenario

•  Concrete scenario
•  Describes a single instance of reporting a fire

incident.
•  Does not describe all possible situations in

which a fire can be reported.

•  Participating actors
•  Bob, Alice and John

27
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

After the scenarios are formulated

•  Find all the use cases in the scenario that
specify all instances of how to report a fire
•  Example: “Report Emergency“ in the first paragraph of

the scenario is a candidate for a use case

•  Describe each of these use cases in more detail
•  Participating actors
•  Describe the entry condition
•  Describe the flow of events
•  Describe the exit condition
•  Describe exceptions
•  Describe nonfunctional requirements

28
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Use Case Model for Incident Management

ReportEmergency

FieldOfficer Dispatcher
OpenIncident

AllocateResources

29
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

How to find Use Cases

•  Select a narrow vertical slice of the system (i.e.
one scenario)
•  Discuss it in detail with the user to understand the

user’s preferred style of interaction

•  Select a horizontal slice (i.e. many scenarios) to
define the scope of the system.
•  Discuss the scope with the user

•  Use illustrative prototypes (mock-ups) as visual
support

•  Find out what the user does
•  Task observation (Good)
•  Questionnaires (Bad)

30
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Use Case Example: ReportEmergency

•  Use case name: ReportEmergency
•  Participating Actors:

•  Field Officer (Bob and Alice in the Scenario)
•  Dispatcher (John in the Scenario)

•  Exceptions:
•  The FieldOfficer is notified immediately if the

connection between terminal and central is lost.
•  The Dispatcher is notified immediately if the connection

between a FieldOfficer and central is lost.

•  Flow of Events: on next slide.
•  Nonfunctional Requirements:

•  The FieldOfficer’s report is acknowledged within 30
seconds. The selected response arrives no later than
30 seconds after it is sent by the Dispatcher.

31
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Use Case Example: ReportEmergency
Flow of Events

1. The FieldOfficer activates the “Report Emergency”
function of her terminal. FRIEND responds by
presenting a form to the officer.

2. The FieldOfficer fills the form, by selecting the
emergency level, type, location, and brief
description of the situation. The FieldOfficer also
describes a response to the emergency situation.
Once the form is completed, the FieldOfficer
submits the form, and the Dispatcher is notified.

3. The Dispatcher creates an Incident in the database
by invoking the OpenIncident use case. He selects
a response and acknowledges the report.

4. The FieldOfficer receives the acknowledgment and
the selected response.

32
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Another Example: Allocate a Resource

•  Actors:
•  Field Supervisor: This is the official at the

emergency site.
•  Resource Allocator: The Resource Allocator is

responsible for the commitment and
decommitment of the Resources managed by
the FRIEND system.

•  Dispatcher: A Dispatcher enters, updates, and
removes Emergency Incidents, Actions, and
Requests in the system. The Dispatcher also
closes Emergency Incidents.

•  Field Officer: Reports accidents from the Field

33
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Allocate a Resource (cont’d)
•  Use case name: AllocateResources
•  Participating Actors:

Field Officer (Bob and Alice in the Scenario)
Dispatcher (John in the Scenario)
Resource Allocator and Field Supervisor

•  Entry Condition:
The Resource Allocator has selected an available resource

•  Flow of Events:
1.  The Resource Allocator selects an Emergency Incident
2. The Resource is committed to the Emergency Incident

•  Exit Condition:
The use case terminates when the resource is committed
The selected Resource is unavailable to other Requests.

•  Special Requirements:
The Field Supervisor is responsible for managing Resources

34
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Order of steps when formulating use cases

•  First step: Name the use case
•  Use case name: ReportEmergency

•  Second step: Find the actors
•  Generalize the concrete names (“Bob”) to participating

actors (“Field officer”)
•  Participating Actors:

•  Field Officer (Bob and Alice in the Scenario)
•  Dispatcher (John in the Scenario)

•  Third step: Concentrate on the flow of events
•  Start with informal natural language

35
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Requirements Elicitation: Difficulties and
Challenges

•  Communicate accurately about the domain and
the system
•  People with different backgrounds must collaborate to

bridge the gap between end users and developers
•  Client and end users have application domain

knowledge
•  Developers have solution domain knowledge

•  Identify an appropriate system (Defining the
system boundary)

•  Provide an unambiguous specification
•  Leave out unintended features
=> 3 Examples.

36
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Defining the System Boundary is difficult

What do you see here?

37
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Defining the System Boundary is difficult

What do you see now?

38
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Defining the System Boundary is difficult

What do you see now?

39
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Example of an Ambiguous Specification

During a laser experiment, a laser beam was
directed from earth to a mirror on the Space
Shuttle Discovery

The laser beam was supposed to be reflected
back towards a mountain top 10,023 feet high

The operator entered the elevation as “10023”

The light beam never hit the mountain top
What was the problem?

The computer interpreted the number in miles...

40
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

From the News: London underground train
leaves station without driver!

Example of an Unintended Feature

•  He left the driver door open
•  He relied on the specification that said the train

does not move if at least one door is open

•  The driver left his train to close the passenger
door

•  When he shut the passenger door,
 the train left the station without him

•  The driver door was not treated
as a door in the source code!

What happened?
•  A passenger door was stuck and did not close

41
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Requirements Process
:problem

statement

Requirements
elicitation

Analysis Model

Requirements
Specification

:dynamic model

:analysis object
model

Analysis

:nonfunctional
requirements

:functional
model

UML Activity Diagram

42
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Requirements Specification vs Analysis
Model

Both focus on the requirements from the user’s
view of the system

•  The requirements specification uses natural
language (derived from the problem statement)
•  We provide you with a template.

•  The analysis model uses a formal or semi-formal
notation
•  We use UML.

43
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Types of Requirements

•  Functional requirements
•  Describe the interactions between the system and its

environment independent from the implementation
“An operator must be able to define a new game. “

•  Nonfunctional requirements
•  Aspects not directly related to functional behavior.

“The response time must be less than 1 second”

•  Constraints
•  Imposed by the client or the environment

•  “The implementation language must be Java “
•  Called “Pseudo requirements” in the text book.

44
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Functional vs. Nonfunctional Requirements

Functional Requirements
•  Describe user tasks

that the system needs
to support

•  Phrased as actions
“Advertise a new league”
“Schedule tournament”
“Notify an interest group”

Nonfunctional Requirements
•  Describe properties of the

system or the domain
•  Phrased as constraints or

negative assertions
“All user inputs should be

acknowledged within 1
second”

“A system crash should not
result in data loss”.

45
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Types of Nonfunctional Requirements

Quality requirements
Constraints or

Pseudo requirements

46
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Types of Nonfunctional Requirements

•  Usability
•  Reliability

•  Robustness
•  Safety

•  Performance
•  Response time
•  Scalability
•  Throughput
•  Availability

•  Supportability
•  Adaptability
•  Maintainability

Quality requirements
Constraints or

Pseudo requirements

47
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Types of Nonfunctional Requirements

•  Usability
•  Reliability

•  Robustness
•  Safety

•  Performance
•  Response time
•  Scalability
•  Throughput
•  Availability

•  Supportability
•  Adaptability
•  Maintainability

•  Implementation
•  Interface
•  Operation
•  Packaging
•  Legal

•  Licensing (GPL, LGPL)
•  Certification
•  Regulation

Quality requirements
Constraints or

Pseudo requirements

48
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Task

•  Find definitions for all the nonfunctional
requirements on the previous slide and learn
them by heart

•  Understand their meaning and scope (their
applicability).

Some Quality Requirements Definitions
•  Usability

•  The ease with which actors can use a system to perform a function

•  Usability is one of the most frequently misused terms ((“The system is

easy to use”)

•  Usability must be measurable, otherwise it is marketing

•  Example: Specification of the number of steps – the measure! -
to perform a internet-based purchase with a web browser

•  Robustness: The ability of a system to maintain a function

•  even if the user enters a wrong input

•  even if there are changes in the environment

•  Example: The system can tolerate temperatures up to 90 C

•  Availability: The ratio of the expected uptime of a system to

the aggregate of the expected up and down time

•  Example: The system is down not more than 5 minutes per week.

50
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Nonfunctional Requirements: Examples

•  “Spectators must be able to watch a match
without prior registration and without prior
knowledge of the match.”
 Usability Requirement

•  “The system must support 10 parallel
tournaments”
 Performance Requirement

•  “The operator must be able to add new games
without modifications to the existing system.”
 Supportability Requirement

51
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

What should not be in the Requirements?

•  System structure, implementation technology
•  Development methodology

•  Parnas, How to fake the software development process

•  Development environment
•  Implementation language
•  Reusability

•  It is desirable that none of these above are
constrained by the client.

52
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Requirements Validation

Requirements validation is a quality assurance
step, usually performed after requirements
elicitation or after analysis

•  Correctness:
•  The requirements represent the client’s view

•  Completeness:
•  All possible scenarios, in which the system can be used,

are described

•  Consistency:
•  There are no requirements that contradict each other.

53
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Requirements Validation (2)

•  Clarity:
•  Requirements can only be interpreted in one way

•  Realism:
•  Requirements can be implemented and delivered

•  Traceability:
•  Each system behavior can be traced to a set of

functional requirements

•  Problems with requirements validation:
•  Requirements change quickly during requirements

elicitation
•  Inconsistencies are easily added with each change
•  Tool support is needed!

54
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

We can specify Requirements for
“Requirements Management”

•  Functional requirements:
•  Store the requirements in a shared repository

•  Provide multi-user access to the requirements
•  Automatically create a specification document

from the requirements
•  Allow change management of the requirements
•  Provide traceability of the requirements throughout

the artifacts of the system.

55
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Tools for Requirements Management (2)

DOORS (Telelogic)
•  Multi-platform requirements management tool, for

teams working in the same geographical location.
DOORS XT for distributed teams

RequisitePro (IBM/Rational)

•  Integration with MS Word
•  Project-to-project comparisons via XML baselines

RD-Link (http://www.ring-zero.com)

•  Provides traceability between RequisitePro & Telelogic
DOORS

Unicase (http://unicase.org)
•  Research tool at our chair for the collaborative

development of system models
•  Participants can be geographically distributed.

56
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Types of Requirements Elicitation

•  Greenfield Engineering
•  Development starts from scratch, no prior system

exists, requirements come from end users and clients
•  Triggered by user needs

•  Re-engineering
•  Re-design and/or re-implementation of an existing

system using newer technology
•  Triggered by technology enabler

•  Interface Engineering
•  Provision of existing services in a new environment
•  Triggered by technology enabler or new market needs

57
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Prioritizing requirements

•  High priority
•  Addressed during analysis, design, and implementation
•  A high-priority feature must be demonstrated

•  Medium priority
•  Addressed during analysis and design
•  Usually demonstrated in the second iteration

•  Low priority
•  Addressed only during analysis
•  Illustrates how the system is going to be used in the

future with not yet available technology

58
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Requirements Analysis Document Template
1. Introduction
2. Current system
3. Proposed system

 3.1 Overview
 3.2 Functional requirements
 3.3 Nonfunctional requirements
 3.4 Constraints (“Pseudo requirements”)
 3.5 System models
 3.5.1 Scenarios
 3.5.2 Use case model
 3.5.3 Object model
 3.5.3.1 Data dictionary
 3.5.3.2 Class diagrams
 3.5.4 Dynamic models
 3.5.5 User interface

4. Glossary

59
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Nonfunctional Requirements
(Questions to overcome “Writers block”)

User interface and human factors
•  What type of user will be using the system?
•  Will more than one type of user be using the

system?
•  What training will be required for each type of

user?
•  Is it important that the system is easy to learn?
•  Should users be protected from making errors?
•  What input/output devices are available

Documentation
•  What kind of documentation is required?
•  What audience is to be addressed by each

document?

60
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Nonfunctional Requirements (2)

Hardware considerations
•  What hardware is the proposed system to be used on?
•  What are the characteristics of the target hardware,

including memory size and auxiliary storage space?

Performance characteristics
•  Are there speed, throughput, response time constraints

on the system?
•  Are there size or capacity constraints on the data to be

processed by the system?

Error handling and extreme conditions
•  How should the system respond to input errors?
•  How should the system respond to extreme conditions?

61
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Nonfunctional Requirements (3)

System interfacing
•  Is input coming from systems outside the proposed

system?
•  Is output going to systems outside the proposed system?
•  Are there restrictions on the format or medium that must

be used for input or output?

 Quality issues
•  What are the requirements for reliability?
•  Must the system trap faults?
•  What is the time for restarting the system after a failure?
•  Is there an acceptable downtime per 24-hour period?
•  Is it important that the system be portable?

62
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Nonfunctional Requirements (4)

System Modifications
•  What parts of the system are likely to be modified?
•  What sorts of modifications are expected?

Physical Environment
•  Where will the target equipment operate?
•  Is the target equipment in one or several locations?
•  Will the environmental conditions be ordinary?

Security Issues
•  Must access to data or the system be controlled?
•  Is physical security an issue?

63
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Nonfunctional Requirements (5)

Resources and Management Issues
•  How often will the system be backed up?
•  Who will be responsible for the back up?
•  Who is responsible for system installation?
•  Who will be responsible for system maintenance?

64
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Example: Heathrow Luggage System

•  On April 5, 2008 a system update was performed
to upgrade the baggage handling:
•  50 flights were canceled on the day of the update
•  A “Bag Backlog” of 20,000 bags was produced (Naomi

Campbell had a fit and was arrested)
•  The bags were resorted in Italy and eventually sent to the

passengers via Federal Express

•  What happened? Initial explanation:
•  Computer failure in the high storage bay area in

combination with shortage of personal

65
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Exercise
•  Reverse engineer the requirements for the

Heathrow luggage system
•  Use the requirements analysis document template
•  Use available information on the internet.

•  Questions to ask:
•  How are the bags stored after passengers have checked,

but before they enter the plane?
•  How are the bags retrieved from the storage area?
•  What about existing luggage systems (“legacy systems”)?
•  Scalability: How many users should the new luggage

system support? How can this be tested before
deployment?

•  Throughput: How many suit cases/hour need to be
supported?

66
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Bonus Question

•  What changes to the requirements should have
been done to avoid the Heathrow desaster?

67
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Exercise Solution
•  Available information on the internet. Examples

•  http://blogs.zdnet.com/projectfailures/?p=610
•  http://www.bloomberg.com/apps/news?

pid=conewsstory&refer=conews&tkr=FDX:US&sid=aY4IqhBRcytA

•  Examples of requirements:
•  Automate the processing of No-Show passengers
•  Use a high bay storage area (“high rack warehouse”)
•  Provide a chaotic storage capability
•  Combine two existing luggage systems (“legacy

systems”): Early (hours before) and last minute checkins
•  The system must be tested with 2500 volunteers
•  The throughput must be at least 12000 suitcases/hour.

68
© 2008 Bernd Bruegge
 Introduction into Software Engineering Summer 2008

Additional Readings
•  John M. Carrol, Scenario-Based Design: Envisioning Work and

Technology in System Development, John Wiley, 1995
•  Usability Engineering: Scenario-Based Development of Human

Computer Interaction, Morgan Kaufman, 2001
•  A (almost complete) list of Requirements Management Tools:

•  http://www.jiludwig.com/Requirements_Management_Tools.html

•  Information about the Heathrow Luggage System:
•  http://blogs.zdnet.com/projectfailures/?p=610
•  http://www.bloomberg.com/apps/news?

pid=conewsstory&refer=conews&tkr=FDX:US&sid=aY4IqhBRcytA

•  Panne auf Flughöhe Null (Spiegel):
http://www.spiegel.de/reise/aktuell/0,1518,544768,00.html

•  Zurück in das rotierende Chaos (FAZ):
http://www.faz.net/s/Rub7F4BEE0E0C39429A8565089709B70C44/
Doc~EC1120B27386C4E34A67A5EE8E5523433~ATpl~Ecommon~Scon
tent.html

