
1© 2008 Bernd Bruegge Software Engineering SS 2008

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering I:
Software Technology

WS 2008/09

Analysis

2© 2008 Bernd Bruegge Software Engineering SS 2008

Outline

Recall: System modeling = Functional modeling +
Object modeling + Dynamic modeling

 Requirements Elicitation leads to Functional Model
 Next topic: Object modeling

•  Activities during object modeling
•  Object identification
•  Object types

•  Entity, boundary and control objects
•  Stereotypes
•  Abott’s technique

•  Helps in object identification.

3© 2008 Bernd Bruegge Software Engineering SS 2008

Lecture at Munich Airport

•  Michael Zaddach
•  Senior Vice President, Munich Airport

•  Possible lecture dates:
•  Nov 11, 16:15-17:45
•  Nov 18, 16:15-17:45

•  Live Demonstration of the MUC baggage system
at the airport

•  Nov 11, after the lecture
•  Nov 18, after the lecture

•  Issue: Location of the lecture?
•  Proposal: Lecture at the airport!

4© 2008 Bernd Bruegge Software Engineering SS 2008

From Use Cases to Objects
Level 1 Use Case

Level 2 Use Cases

Level 3 Use Cases

Operations

Participating
Objects

 Level 2

 Level 1

 Level 2

 Level 3 Level 3

 Level 4 Level 4

 Level 3

A B

5© 2008 Bernd Bruegge Software Engineering SS 2008

From Use Cases to Objects: Why Functional
Decomposition is not Enough

Scenarios

Level 1 Use Cases

Level 2 Use Cases

Operations

Participating
Objects

 Level 2

 Level 1

 Level 2

 Level 3 Level 3

 Level 4 Level 4

 Level 3

A B

6© 2008 Bernd Bruegge Software Engineering SS 2008

Activities during Object Modeling
Main goal: Find the important abstractions
•  Steps during object modeling

1. Class identification
•  Based on the fundamental assumption that we can

find abstractions
2. Find the attributes
3. Find the operations
4. Find the associations between classes

•  Order of steps
•  Goal: get the desired abstractions
•  Order of steps secondary, only a heuristic

•  What happens if we find the wrong abstractions?
•  We iterate and revise the model

7© 2008 Bernd Bruegge Software Engineering SS 2008

Class Identification

•  Approaches
•  Application domain approach

•  Ask application domain experts to identify relevant
abstractions

•  Syntactic approach
•  Start with use cases
•  Analyze the text to identify the objects
•  Extract participating objects from flow of events

•  Design patterns approach
•  Use reusable design patterns

•  Component-based approach
•  Identify existing solution classes.

8© 2008 Bernd Bruegge Software Engineering SS 2008

Class identification is a Hard Problem

•  One problem: Definition of the system
boundary:

•  Which abstractions are outside, which abstractions are
inside the system boundary?

•  Actors are outside the system
•  Classes/Objects are inside the system.

9© 2008 Bernd Bruegge Software Engineering SS 2008

There are 3 different types of Objects

•  Entity Objects
•  Represent the persistent information tracked by the

system (Application domain objects, also called
“Business objects”)

•  Boundary Objects
•  Represent the interaction between the user and the

system

•  Control Objects
•  Represent the control tasks performed by the system.

10© 2008 Bernd Bruegge Software Engineering SS 2008

Example: Modeling A Watch

Year

Month

Day

ChangeDate
Button

LCDDisplay

Entity Objects Control Object Boundary Objects

Object Types in UML
•  We can use the stereotype mechanism to

distinguish the 3 types of objects

<<Entity>>
Year <<Control>>

ChangeDate

<<Boundary>>
Button

<<Entitity>>
Month

<<Entity>>
Day

<<Boundary>>
LCDDisplay

Entity Object Control Object Boundary Object

12© 2008 Bernd Bruegge Software Engineering SS 2008

UML is an Extensible Language
•  Stereotypes allow you to extend the vocabulary of the

UML so that you can create new model elements,
derived from existing ones

•  Examples:
•  Stereotypes can also be used to classify method behavior such

as <<constructor>>, <<getter>> or <<setter>>
•  To indicate the interface of a subsystem or system, we use the

stereotype <<interface>> (Lecture System Design)
•  Stereotypes can also be represented with icons and

graphics:
•  This can increase the readability of UML diagrams.

13© 2008 Bernd Bruegge Software Engineering SS 2008

Icons for Stereotypes

•  One can use icons for stereotypes
•  When the stereotype is applied to a UML model element, the

icon is displayed beside or above the name

Year ChangeDate Button

Entity Object Control Object Boundary Object Actor

WatchUser

These icons were first used in Objectory,
Ivar Jacobsen’s CASE tool for OOSE

14© 2008 Bernd Bruegge Software Engineering SS 2008

Ivar Jacobson, James Rumbaugh, Grady
Booch (The 3 UML “Amigos”)

Invented use cases,
sequence diagrams
and collaboration
diagrams to model
software controlled
telephone switches
at Ericsson (1967)

One of the first OO
modelers
 Developed the
Booch Method
(“Objects as clouds”,
1991)

Developed the OMT
Notation (Object
Modeling Technique)
Added inheritance to
E/R Modeling, 1991

Picture Source http://en.wikipedia.org

15© 2008 Bernd Bruegge Software Engineering SS 2008

OMT Notation (Object Modeling Technique)

OMT is no longer an active language. However, it is still
important to know about it , because it is the notation
used in the book “Design Patterns”.

16© 2008 Bernd Bruegge Software Engineering SS 2008

Booch Notation

Mapping Booch to OMT:�
 http://www1.inf.tu-dresden.de/~rm1/booch_omt/booch_omt.html

17© 2008 Bernd Bruegge Software Engineering SS 2008

Why do we distinguish 3 Object Types?

•  Having three types of object leads to models
that are more resistent (“resilient”) to change

•  The interface of a system changes more likely than the
control

•  The way the system is controlled changes more likely
than entities in the application domain

•  Object types originated in Smalltalk:
•  Model, View, Controller (MVC)

 Model <-> Entity Object
 View <-> Boundary Object
Controller <-> Control Object

18© 2008 Bernd Bruegge Software Engineering SS 2008

Smalltalk

•  Smalltalk was developed
at Xerox Parc (now
parco.com) in the 1970s.

•  Smalltak was used to
prototype the WIMP
(windows, icons, menus,
pointers) interface, the
cornerstone for today's
graphical user interfaces.

•  Smalltalk was developed by
Adele Goldberg and Alan
Kay.

Picture Source http://en.wikipedia.org

19© 2008 Bernd Bruegge Software Engineering SS 2008

How do we find Objects?
•  Pick a use case and look at the flow of events
•  Do a textual analysis (noun-verb analysis)

•  Nouns are candidates for objects/classes
•  Verbs are candidates for operations
•  This is also called Abbott’s Technique

•  After objects/classes are found, identify their
types

•  Identify real world entities that the system needs to
keep track of (FieldOfficer Entity Object)

•  Identify real world procedures that the system needs
to keep track of (EmergencyPlan Control Object)

•  Identify interface artifacts (PoliceStation Boundary
Object).

20© 2008 Bernd Bruegge Software Engineering SS 2008

Example for using the Technique

•  The customer enters the store to buy a
toy.

•  It has to be a toy that his daughter likes
and it must cost less than 50 Euro.

•  He tries a videogame, which uses a data
glove and a head-mounted display. He likes
it.

•  An assistant helps him.
•  The suitability of the game depends on the
age of the child.

•  His daughter is only 3 years old.
•  The assistant recommends another type of
toy, namely the boardgame “Monopoly".

Flow of Events:

21© 2008 Bernd Bruegge Software Engineering SS 2008

Textual Analysis (Abbot’s Technique)

Part of speech

Proper noun

Improper noun

Doing verb

being verb

having verb

modal verb

adjective

transitive verb

intransitive verb

UML model component

object

class

operation

inheritance

aggregation

constraint

attribute

operation

Constraint, class,
 association

Example

“Monopoly”

Toy

Buy, recommend

is-a

has an

must be

dangerous

enter

depends on

videogame

•  The customer enters the store
to buy a toy. It has to be a
toy that his daughter likes and
it must cost less than 50 Euro.
He tries a videogame, which
uses a data glove and a head-
mounted display. He likes it.

Generating a Class Diagram from Flow of Events

An assistant helps him. The
suitability of the game depends
on the age of the child. His
daughter is only 3 years old.
The assistant recommends another
type of toy, namely a boardgame.
The customer buy the game and
leaves the store

customer enters

depends

store
Customer

?

enter()

toy

daughter

suitable

*

less than 50

store

enter()

toy

buy()

toy

age

videogame

daughter

boardgame

Flow of events:

Toy

price
buy()
like()

buy

type of toy
boardgame

daughter
age

23© 2008 Bernd Bruegge Software Engineering SS 2008

Ways to find Objects 10 31 2008

•  Syntactical investigation with Abbot‘s technique:
•  Flow of events in use cases
•  Problem statement

•  Use other knowledge sources:
•  Application knowledge: End users and experts know

the abstractions of the application domain
•  Solution knowledge: Abstractions in the solution

domain
•  General world knowledge: Your generic knowledge and

intuition

24© 2008 Bernd Bruegge Software Engineering SS 2008

Order of Activities for Object Identification

1.  Formulate a few scenarios with help from an
end user or application domain expert

2.  Extract the use cases from the scenarios, with
the help of an application domain expert

3. Then proceed in parallel with the following:
•  Analyse the flow of events in each use case

using Abbot's textual analysis technique
•  Generate the UML class diagram.

25© 2008 Bernd Bruegge Software Engineering SS 2008

Steps in Generating Class Diagrams

1.  Class identification (textual analysis, domain
expert)

2.  Identification of attributes and operations
(sometimes before the classes are found!)

3.  Identification of associations between classes
4.  Identification of multiplicities
5.  Identification of roles
6.  Identification of inheritance

26© 2008 Bernd Bruegge Software Engineering SS 2008

Who uses Class Diagrams?

•  Purpose of class diagrams
•  The description of the static properties of a system

•  The main users of class diagrams:
•  The application domain expert

•  uses class diagrams to model the application
domain (including taxonomies)

• during requirements elicitation and analysis
•  The developer

•  uses class diagrams during the development of a
system

• during analysis, system design, object design
and implementation.

27© 2008 Bernd Bruegge Software Engineering SS 2008

Who does not use Class Diagrams?

•  The client and the end user are often not
interested in class diagrams

•  Clients usually focus more on project management
issues

•  End users usually focus on the functionality of the
system.

28© 2008 Bernd Bruegge Software Engineering SS 2008

(Intermediate) Summary

•  System modeling
•  Functional modeling+object modeling+dynamic modeling

•  Functional modeling
•  From scenarios to use cases to objects

•  Object modeling is the central activity
•  Class identification is a major activity of object modeling
•  Easy syntactic rules to find classes and objects
•  Abbot’s Technique

•  Class diagrams are the “center of the universe”
for the object-oriented developer

•  The end user focuses more on the functional model and
and usability.

29© 2008 Bernd Bruegge Software Engineering SS 2008

“Historical” Readings

OMT:
•  James Rumbaugh, Michael Blaha, William Premerlani, and

Frederick Eddy. Object-Oriented Modeling and Design with
UML (2nd Edition by Rumbaugh and Blaha), Prentice Hall
1991 and 2004.

OOSE and Use Cases:
•  Ivar Jacobson, Magnus Christerson, Patrik Jonsson, Gunnar

Overgaard Object-Oriented Software Engineering: A Use
Case Driven Approach (ACM Press) Addison-Wesley, 1992,
ISBN 0201544350

Booch Method:
•  Booch, Grady (1993). Object-oriented Analysis and Design

with Applications, 2nd ed., Redwood City: Benjamin
Cummings.

30© 2008 Bernd Bruegge Software Engineering SS 2008

Developers have different Views on Class
Diagrams

•  According to the development activity, a
developer plays different roles:

•  Analyst
•  System Designer
•  Object Designer
•  Implementor

•  Each of these roles has a different view about
the class diagram (the object model).

31© 2008 Bernd Bruegge Software Engineering SS 2008

The View of the Analyst

•  The analyst is interested
•  in application classes: The associations between

classes are relationships between abstractions in the
application domain

•  operations and attributes of the application classes
(difference to E/R models!)

•  The analyst uses inheritance in the model to
reflect the taxonomies in the application domain

•  Taxonomy: An is-a-hierarchy of abstractions in an
application domain

•  The analyst is not interested
•  in the exact signature of operations
•  in solution domain classes.

32© 2008 Bernd Bruegge Software Engineering SS 2008

The View of the Designer
•  The designer focuses on the solution of the

problem, that is, the solution domain
•  The associations between classes now mean

references (pointers) between classes in the
application or solution domain

•  An important design task is the specification of
interfaces:

•  The designer describes the interface of classes and the
interface of subsystems

•  Subsystems originate from modules (term often used
during analysis):

•  Module: a collection of classes
•  Subsystem: a collection of classes with an interface

•  Subsystems are modeled in UML with a package.

33© 2008 Bernd Bruegge Software Engineering SS 2008

Goals of the Designer

•  The most important design goals for the
designer are design usability and design
reusability

•  Design usability: the subsystem interfaces are
usable from as many classes as possible within
in the system

•  Design reusability: The subsystem interfaces
are designed in a way, that they can also be
reused by other (future) software systems

=> Class libraries
=> Frameworks
=> Design patterns.

34© 2008 Bernd Bruegge Software Engineering SS 2008

The View of the Implementor

•  Class implementor
•  Must realize the interface of a class in a programming

language
•  Interested in appropriate data structures (for the

attributes) and algorithms (for the operations)

•  Class extender
•  Interested in how to extend a class to solve a new

problem or to adapt to a change in the application
domain

•  Class user
•  The class user is interested in the signatures of the

class operations and conditions, under which they can
be invoked

•  The class user is not interested in the implementation
of the class.

35© 2008 Bernd Bruegge Software Engineering SS 2008

Class Implementor, Class Extender and
Class User

Developer

Call Class

Class Extender

Class Implementor

Class User

Realize Class

Refine Class

36© 2008 Bernd Bruegge Software Engineering SS 2008

Why do we distinguish different Users of
Class Diagrams?

•  Models often don‘t distinguish between application
domain classes and solution domain classes

•  Reason: Modeling languages like UML allow the use of
both types of classes in the same model

•  “address book“, “array"
•  Preferred: No solution classes in the analysis model

•  Many systems don‘t distinguish between the
specification and the implementation of a class

•  Reason: Object-oriented programming languages allow
the simultaneous use of specification and implementation
of a class

•  Preferred: We distinguish between analysis model and
object design model. The analysis design model does not
contain any implementation specification.

37© 2008 Bernd Bruegge Software Engineering SS 2008

Analysis model vs. object design model

•  The analysis model is constructed during the
analysis phase

•  Main stake holders: End user, customer, analyst
•  The class diagrams contains only application domain

classes

•  The object design model (sometimes also called
specification model) is created during the object
design phase

•  Main stake holders: class specifiers, class
implementors, class extenders and class users

•  The class diagrams contain application domain as well
as solution domain classes.

38© 2008 Bernd Bruegge Software Engineering SS 2008

Stop! I am lost

39© 2008 Bernd Bruegge Software Engineering SS 2008

I cannot follow the lectures. Where are we?

•  We have covered Ch 1 - 3
•  We are in the middle of Chapter 4

•  Functional modeling: Read again Ch 2, pp. 46 - 51
•  Structural modeling: Read again Ch 2, pp.52 - 59

•  From use cases to class diagrams
•  Identify participatory objects in flow of events descriptions

•  Exercise: Apply Abbot’s technique to Fig. 5-7, p. 181
•  Identify entity, control and boundary objects

•  Heuristics to find these types: Ch 5, Section 5.4

•  We are now focusing on identyfing classes during
dynamic modeling

40© 2008 Bernd Bruegge Software Engineering SS 2008

How do you find classes and objects?

•  We have already established several sources for
class and object identification:
•  Application domain analysis: We find classes by talking

to the client and identify abstractions by observing the
end user

•  General world knowledge and intuition
•  Textual analysis of event flow in use cases (Abbot)

•  Today we identify classes and objects from
dynamic models

•  Two good heuristics:
1.  Actions and activities are candidates for public

operations on classes
2.  Activity lines in sequence diagrams are candidates for

objects.

41© 2008 Bernd Bruegge Software Engineering SS 2008

Dynamic Modeling

•  Definition of a dynamic model:
•  Describes the components of the system that have

interesting dynamic behavior

•  The dynamic model is described with
•  State diagrams: One state diagram for each class with

interesting dynamic behavior
•  Classes without interesting dynamic behavior are

not modeled with state diagrams
•  Sequence diagrams: For modeling the interaction

between classes

•  Purpose:
•  Detect and supply operations for the object model.

42© 2008 Bernd Bruegge Software Engineering SS 2008

How do we detect Operations?

•  We look for objects, who are interacting and
extract their “protocol”

•  “How are you?””I am fine”.

•  We look for objects, who have interesting
behavior

•  Star, Banking account

•  Good starting point: Flow of events in a use case
description

•  From the flow of events we construct the sequence
diagram

•  In the sequence diagram we look for the “participating
objects”.

43© 2008 Bernd Bruegge Software Engineering SS 2008

Flow of Events

•  What is an Event?
•  Something that happens at a point in time
•  An event sends information from one object to another

•  Events can have associations with each other:
•  Temporally related events:

•  Event A always “happens before” event B
•  Event B always “happens after” event C

•  Unrelated events:
•  Events that happen concurrently (A and B can

happen at the same time)

•  What is a Flow of Events?
•  A sequence of temporally related and unrelated events.

44© 2008 Bernd Bruegge Software Engineering SS 2008

Event
•  An event is an important abstraction in a

dynamic model. Therefore we model the events
in a system usually as classes

•  Event classes can be grouped in event classes
with a hierarchical structure
•  This means, we can define a Event taxonomy

•  The term ‘Event’ is also used in two other ways:
•  Instance of an event class:

•  “Slide 44 shown on Tuesday November 4 at 16:50”.
 Event class “Lecture Given”, Subclass “Slide Shown”

•  Attribute of an event class
•  Mouse click (buttonNr, direction, location)
•  Slide Update(3:45 PM, 11/4/2008)
•  Train_Leaves(4:45pm, Manhattan)

45© 2008 Bernd Bruegge Software Engineering SS 2008

Sequence Diagram

•  A sequence diagram is a graphical description of
the flow of events

•  The objects participating in the flow of events
are called participating objects

•  A good rule of thumb for finding participating
objects:

•  A event always has a sender and a receiver
•  Find the sender and receiver for each event
 =>These are the objects participating in the use case.

46© 2008 Bernd Bruegge Software Engineering SS 2008

•  Assume a “Get SeatPosition” use case with the
following flow of events:

1. Establish connection between smart card and
onboard computer

2. Establish connection between onboard computer and
seat

3. Get current seat position and store on smart card

•  Where are the objects?

An Example

47© 2008 Bernd Bruegge Software Engineering SS 2008

Sequence Diagram for “Get SeatPosition”

Establish Connection

Accept Connection

Accept Connection

Get SeatPosition

“500,575,300”

Smart Card Onboard Computer Seat

Establish Connection
1. Establish
connection
between smart
card and onboard
computer�

2. Establish
connection
between onboard
computer and seat
(actually seat
sensor)�

3. Get current seat
position and store
on smart card.

time

48© 2008 Bernd Bruegge Software Engineering SS 2008

Heuristics for Sequence Diagrams

•  Creation of Objects Heuristic:
1.  Create control objects at beginning of the flow of events

2.  The control objects then create the boundary objects

•  Access of Objects Heuristic:
•  Entity objects are accessed by control and boundary objects

•  Entity objects should not access boundary or control
objects.

•  Layout Heuristic:
1st column: Should be the actor of the use case
2nd column: Should be a boundary object
3rd column: Should be the control object that
manages the rest of the use case

49© 2008 Bernd Bruegge Software Engineering SS 2008

:Tournament«new»

ARENA Sequence Diagram: Create Tournament

League
Owner

:Tournament
Boundary

newTournament
(league)

:Announce
Tournament

Control
«new»

setName(name)
setMaxPlayers
(maxp)

commit()
createTournament
(name, maxp)

checkMax
Tournament()

create
Tournament
(name, maxp)

:Arena :League

50© 2008 Bernd Bruegge Software Engineering SS 2008

Impact on ARENA’s Object Model

•  Let’s assume ARENA’s object model contains - at
this modeling stage - the objects

•  League Owner, Arena, League, Tournament, Match and
Player

• The Flow of Events identifies 2 new Classes
•  Tournament Boundary, Announce_Tournament_Control

51© 2008 Bernd Bruegge Software Engineering SS 2008

Attributes
Operations

League

Attributes
Operations

Tournament

Attributes
Operations

Player
Attributes
Operations

Match

Attributes
Operations

League Owner 1 *

* *

52© 2008 Bernd Bruegge Software Engineering SS 2008

Attributes
Operations

League

Attributes
Operations

Tournament

Attributes
Operations

Player
Attributes
Operations

Match

Attributes
Operations

League Owner 1 *

* *

Attributes
Operations

Tournament_
Boundary

Attributes
Operations

Announce_
Tournament_

Control

53© 2008 Bernd Bruegge Software Engineering SS 2008

Impact on ARENA’s Object Model (2)
•  The sequence diagram (slide 49) also supplies us

with many new events
•  newTournament(league)
•  setName(name)
•  setMaxPlayers(max)
•  commit
•  checkMaxTournament()
•  createTournament

•  Question: Who owns these events?
•  Answer (Heuristic): For each object that receives an
event there should be a public operation in the associated
class

 A good choice for the name of the operation is
usually the name of the event.

54© 2008 Bernd Bruegge Software Engineering SS 2008

Example from the Sequence Diagram

createTournament
(name, maxp)

create
Tournament
(name, maxp)

League
Owner

:Tournament
Boundary

newTournament
(league)

:Announce
Tournament

Control
«new»

setName(name)
setMaxPlayers
(maxp)

commit()

checkMax
Tournament()

:Arena :League

:Tournament«new»

55© 2008 Bernd Bruegge Software Engineering SS 2008

Attributes
Operations

League

Attributes
Operations

Tournament

Attributes
Operations

Player
Attributes
Operations

Match

Attributes
Operations

LeagueOwner 1 *

* *

Attributes
Operations

Tournament_
Boundary

Attributes
createTournament

(name, maxp)

Announce_
Tournament_

Control

56© 2008 Bernd Bruegge Software Engineering SS 2008

What else can we get out of Sequence
Diagrams?

•  Sequence diagrams are derived from use cases

•  The structure of the sequence diagram helps us
to determine how decentralized the system is

•  We distinguish two structures for sequence
diagrams (Ivar Jacobson)

•  Fork Diagrams and Stair Diagrams

57© 2008 Bernd Bruegge Software Engineering SS 2008

Ivar Jacobson in Nuernberg 11.11.08

58© 2008 Bernd Bruegge Software Engineering SS 2008

Control
Object

Fork Diagram

•  The dynamic behavior is placed in a single
object, usually a control object

•  It knows all the other objects and often uses them for
direct questions and commands

59© 2008 Bernd Bruegge Software Engineering SS 2008

Stair Diagram

•  The dynamic behavior is distributed. Each object
delegates responsibility to other objects

•  Each object knows only a few of the other objects and
knows which objects can help with a specific behavior

60© 2008 Bernd Bruegge Software Engineering SS 2008

Fork or Stair?

•  Object-oriented supporters claim that the stair
structure is better

•  Modeling Advice:
•  Choose the stair - a decentralized control structure - if

•  The operations have a strong connection
•  The operations will always be performed in the

same order
•  Choose the fork - a centralized control structure - if

•  The operations can change order
•  New operations are expected to be added as a

result of new requirements.

61© 2008 Bernd Bruegge Software Engineering SS 2008

State

•  An abstraction of the attributes of a class
•  State is the aggregation of several attributes a class

•  A state is an equivalence class of all those
attribute values and links that do no need to be
distinguished

•  Example: State of a bank

•  State has duration

62© 2008 Bernd Bruegge Software Engineering SS 2008

State Chart Diagram vs Sequence Diagram

•  State chart diagrams help to identify:
•  Changes to an individual object over time

•  Sequence diagrams help to identify:
•  The temporal relationship of between objects over time
•  Sequence of operations as a response to one ore more

events.

63© 2008 Bernd Bruegge Software Engineering SS 2008

Dynamic Modeling of User Interfaces

•  Statechart diagrams can be used for the design
of user interfaces

•  States: Name of screens
•  Actions or activities are shown as bullets under

the screen name

64© 2008 Bernd Bruegge Software Engineering SS 2008

Navigation Path Example

List of Books on
 Software Engineering
•  User scrolls down

Name of Node:
Screen name

Home
• User Selects Books:
 Software Engineering

Action or
Activity

Object-Oriented
Software Engineering,
Bruegge & Dutoit
•  User adds book to
Shopping Cart

List of Books on
 Software Engineering
•  User selects OOSE

65© 2008 Bernd Bruegge Software Engineering SS 2008

Practical Tips for Dynamic Modeling

•  Construct dynamic models only for classes with
significant dynamic behavior

•  Avoid “analysis paralysis”

•  Consider only relevant attributes
•  Use abstraction if necessary

•  Look at the granularity of the application when
deciding on actions and activities.

66© 2008 Bernd Bruegge Software Engineering SS 2008

Model Validation and Verification

•  Verification is an equivalence check after
the transformation of two models

•  Validation is the comparison of the model
with reality

•  Validation is a critical step in the development
process Requirements should be validated with
the client and the user.

•  Techniques: Formal and informal reviews
(Meetings, requirements review)

•  Requirements validation involves several
checks

•  Correctness, Completeness, Ambiguity, Realistism

67© 2008 Bernd Bruegge Software Engineering SS 2008

Verification vs Validation of models

fM

fR

MM

R R
I I

VerificationVerificationVerificationValidation

fMS

MSystem

MSystem

System
Design

fMD

MObject

MObject

Object
Design MImpl

MImpl

fImpl

Implemen-
tation

fR

R

R

fMA

MAnalysis

MAnalysis

Analysis

68© 2008 Bernd Bruegge Software Engineering SS 2008

Checklist for a Requirements Review (1)

•  Is the model correct?
•  A model is correct if it represents the client’s view of

the the system

•  Is the model complete?
•  Every scenario is covered by the model

•  Is the model consistent?
•  The model does not have components that contradict

each other

•  Is the model unambiguous?
•  The model describes one system, not many

•  Is the model realistic?
•  The model can be implemented

69© 2008 Bernd Bruegge Software Engineering SS 2008

Checklist for the Requirements Review (2)

•  Syntactic check of the models
•  Check for consistent naming of classes, attributes,

methods in different subsystems
•  Identify dangling associations (“pointing to nowhere”)
•  Identify double- defined classes
•  Identify missing classes (mentioned in one model but

not defined anywhere)
•  Check for classes with the same name but different

meanings

70© 2008 Bernd Bruegge Software Engineering SS 2008

Attributes
Operations

League

Attributes
Operations

Tournament

Attributes
Operations

Player
Attributes
Operations

Match

Attributes
Operations

LeagueOwner 1 *

* *

Attributes
Operations

Tournament_
Boundary

Attributes
makeTournament

(name, maxp)

Announce_
Tournament_

Control

Check for consistent naming

UML Sequence Diagram UML Class Diagram

createTournament
(name, maxp)

Different spellings
in different models

for the same operation

71© 2008 Bernd Bruegge Software Engineering SS 2008

Omissions in some UML Diagrams

Attributes
Operations

League

Attributes
Operations

Tournament

Attributes
Operations

Player
Attributes
Operations

Match

Attributes
Operations

League Owner 1 *

* *

Attributes
Operations

Tournament_
Boundary

Class Diagram

Missing
Association
(Incomplete
Analysis?)

Missing class
(The control object

Announce_Tournament
is mentioned in the
sequence diagram)

*

72© 2008 Bernd Bruegge Software Engineering SS 2008

When is a Model Dominant?

•  Object model:
•  The system has classes with nontrivial states and many

relationships between the classes

•  Dynamic model:
•  The model has many different types of events: Input,

output, exceptions, errors, etc.

•  Functional model:
•  The model performs complicated transformations (eg.

computations consisting of many steps).

•  Which model is dominant in these applications?
•  Compiler
•  Database system
•  Spreadsheet program

73© 2008 Bernd Bruegge Software Engineering SS 2008

Dominance of Models

•  Compiler:
•  The functional model most important
•  The dynamic model is trivial because there is only one

type input and only a few outputs

•  Database systems:
•  The object model most important
•  The functional model is trivial, because the purpose of

the functions is to store, organize and retrieve data

•  Spreadsheet program:
•  The functional model most important
•  The dynamic model is interesting if the program allows

computations on a cell
•  The object model is trivial.

74© 2008 Bernd Bruegge Software Engineering SS 2008

1. What are the transformations?
Create scenarios and use case diagrams

- Talk with the client, observe procedures, workflows, get historical records

2. What is the structure of the system?
Create class diagrams

- Identify objects and classes.
-  What are the associations between them?
-  What is their multiplicity?
- What are the attributes?
- What operations are defined on the classes?

3. What is its behavior?
Create sequence diagrams

- Identify senders and receivers
-  Show sequence of events exchanged between objects.
-  Identify event dependencies and event concurrency.

Create state diagrams
- Only for the dynamically interesting objects.

Summary: Analysis

Dynamic Modeling

Functional Modeling

Object Modeling

75© 2008 Bernd Bruegge Software Engineering SS 2008

Backup Slides

76© 2008 Bernd Bruegge Software Engineering SS 2008

Let’s Do Analysis

•  Analyze the problem statement
•  Identify functional requirements
•  Identify nonfunctional requirements
•  Identify constraints (pseudo requirements)

•  Build the functional model:
•  Develop use cases to illustrate functional requirements

•  Build the dynamic model:
•  Develop sequence diagrams to illustrate the interaction

between objects
•  Develop state diagrams for objects with interesting

behavior

•  Build the object model:
•  Develop class diagrams for the structure of the system

77© 2008 Bernd Bruegge Software Engineering SS 2008

Problem Statement:
Direction Control for a Toy Car

•  Power is turned on
•  Car moves forward and

car headlight shines

•  Power is turned off
•  Car stops and headlight

goes out.

•  Power is turned on
•  Headlight shines

•  Power is turned off
•  Headlight goes out

•  Power is turned on
•  Car runs backward with

its headlight shining

•  Power is turned off
•  Car stops and headlight

goes out
•  Power is turned on

•  Headlight shines
•  Power is turned off

•  Headlight goes out
•  Power is turned on

•  Car runs forward with its
headlight shining

78© 2008 Bernd Bruegge Software Engineering SS 2008

Find the Functional Model: Use Cases

•  Use case 1: System Initialization
•  Entry condition: Power is off, car is not moving
•  Flow of events:

1. Driver turns power on
•  Exit condition: Car moves forward, headlight is on

•  Use case 2: Turn headlight off
•  Entry condition: Car moves forward with headlights on
•  Flow of events:

1.  Driver turns power off, car stops and headlight goes out.
2.  Driver turns power on, headlight shines and car does not

move.
3.  Driver turns power off, headlight goes out

•  Exit condition: Car does not move, headlight is out

79© 2008 Bernd Bruegge Software Engineering SS 2008

Use Cases continued
•  Use case 3: Move car backward

•  Entry condition: Car is stationary, headlights off
•  Flow of events:

1.  Driver turns power on
•  Exit condition: Car moves backward, headlight on

•  Use case 4: Stop backward moving car
•  Entry condition: Car moves backward, headlights on
•  Flow of events:

1.  Driver turns power off, car stops, headlight goes out.
2.  Power is turned on, headlight shines and car does not

move.
3.  Power is turned off, headlight goes out.

•  Exit condition: Car does not move, headlight is out

80© 2008 Bernd Bruegge Software Engineering SS 2008

Use Cases Continued

•  Use case 5: Move car forward
•  Entry condition: Car does not move, headlight is out
•  Flow of events

1.  Driver turns power on
•  Exit condition:

•  Car runs forward with its headlight shining

81© 2008 Bernd Bruegge Software Engineering SS 2008

Use Case Pruning

•  Do we need use case 5?
•  Let us compare use case 1 and use case 5:

Use case 1: System Initialization
•  Entry condition: Power is off, car is not moving
•  Flow of events:

1.  Driver turns power on
•  Exit condition: Car moves forward, headlight is on

Use case 5: Move car forward
•  Entry condition: Car does not move, headlight is out
•  Flow of events

1.  Driver turns power on
•  Exit condition:

•  Car runs forward with its headlight shining

82© 2008 Bernd Bruegge Software Engineering SS 2008

Dynamic Modeling:
Create the Sequence Diagram

•  Name: Drive Car
•  Sequence of events:

•  Billy turns power on
•  Headlight goes on
•  Wheels starts moving forward
•  Wheels keeps moving forward
•  Billy turns power off
•  Headlight goes off
•  Wheels stops moving
•  . . .

83© 2008 Bernd Bruegge Software Engineering SS 2008

Sequence Diagram for Drive Car Scenario

:Headlight Billy:Driver :Wheel

Power(on) Power(on)

Power(off) Power(off)

Power(on) Power(on)

Anything wrong with this
sequence diagram?

84© 2008 Bernd Bruegge Software Engineering SS 2008

Toy Car: Dynamic Model
Wheel

Forward

Stationary

power
on

Stationary

power
off

Backward

power
off

power
on

Headlight

Off

On

poweron
power

off

85© 2008 Bernd Bruegge Software Engineering SS 2008

Toy Car: Object Model

Car

Wheel

Motion: (Forward,

 Stationary)
 Backward,

Start_Moving()
Stop_Moving()

Headlight

Status: (On, Off)

Switch_On()
Switch_Off()

 Power

Status: (On, Off)

TurnOn()
TurnOff()

86© 2008 Bernd Bruegge Software Engineering SS 2008

Examples for syntactical Problems

•  Different spellings in different UML diagrams

•  Omissions in diagrams

87© 2008 Bernd Bruegge Software Engineering SS 2008

Is this a good Sequence Diagram?

Smart Card Onboard Computer Seat

Establish Connection
Establish Connection

Accept Connection

Accept Connection

Get SeatPosition

“500,575,300”

The first
column is
not an actor

It is not
clear where
the
boundary
object is

It is not
clear where
the control
object is

88© 2008 Bernd Bruegge Software Engineering SS 2008

Backup Slides

89© 2008 Bernd Bruegge Software Engineering SS 2008

Modeling in Action

•  If it is a Face
•  What are its Attributes?
•  Sad, Happy

•  Or is it a Mask?
•  Investigate the

functional model
•  Who is using it? -> Actors

•  Art collector
•  Bankrobber
•  Carnival participant

•  How is it used? -> Event flow

•  “Napkin design” of a Mask to be used at the
Venetian Carnival

90© 2008 Bernd Bruegge Software Engineering SS 2008

Pieces of an Object Model

•  Classes and their instances (“objects”)
•  Attributes
•  Operations
•  Associations between classes and objects

91© 2008 Bernd Bruegge Software Engineering SS 2008

Associations

•  Types of Associations
•  Canonical associations

•  Part-of Hierarchy (Aggregation)
•  Kind-of Hierarchy (Inheritance)

•  Generic associations

92© 2008 Bernd Bruegge Software Engineering SS 2008

Attributes

•  Detection of attributes is application specific
•  Attributes in one system can be classes in

another system
•  Turning attributes to classes and vice versa

93© 2008 Bernd Bruegge Software Engineering SS 2008

Operations

•  Source of operations
•  Use cases in the functional model
•  General world knowledge
•  Generic operations: Get/Set
•  Design Patterns
•  Application domain specific operations
•  Actions and activities in the dynamic model

94© 2008 Bernd Bruegge Software Engineering SS 2008

Object vs Class

•  Object (instance): Exactly one thing
•  This lecture on object modeling

•  A class describes a group of objects with similar
properties

•  Game, Tournament, mechanic, car, database

•  Object diagram: A graphical notation for
modeling objects, classes and their relationships

•  Class diagram: Template for describing many instances
of data. Useful for taxonomies, patters, schemata...

•  Instance diagram: A particular set of objects relating to
each other. Useful for discussing scenarios, test cases
and examples

95© 2008 Bernd Bruegge Software Engineering SS 2008

Analysis model vs object design model (2)

•  The analysis model is the basis for
communication between analysts, application
domain experts and end users.

•  The object design model is the basis for
communication between designers and
implementors.

