
1© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Addressing Design Goals

Bernd Bruegge, Ph.D.
Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering I:
Software Technology

WS 2008/09

2© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Overview

System Design I
 0. Overview of System Design
 1. Design Goals
 2. Subsystem Decomposition

 Architectural Styles

System Design II
3. Concurrency
4. Hardware/Software Mapping
5. Persistent Data Management
6. Global Resource Handling and Access Control
7. Software Control
8. Boundary Conditions

3© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Announcements

•  Friday: No lecture
•  Mid-term registration via TUMonline

•  Details on Thursday
•  Details about the tours to the airport are in the

exercise portal.

4© 2008 Bernd Bruegge Software Engineering Winter 2008/9

System Design

 2. Subsystem Decomposition
Layers vs Partitions
Coherence/Coupling

4. Hardware/
Software Mapping
Special Purpose
Buy vs Build
Allocation of Resources
Connectivity

5. Data
Management

Persistent Objects
File system vs Database

Access Control List
vs Capabilities
Security

6. Global Resource
Handlung

8. Boundary
Conditions

Initialization
Termination
Failure

 3. Concurrency
Identification of
Threads

7. Software
Control

Monolithic
Event-Driven
Conc. Processes

 1. Design Goals
Definition
Trade-offs

5© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Concurrency

•  System Design Activities:
•  Identify concurrent objects and address design issues

•  Nonfunctional Requirements to be addressed:
Performance, Response time, latency,
availability.

6© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Concurrency (continued)

•  Two objects are inherently concurrent if they
can receive events at the same time without
interacting

•  Source for identification: Objects in a sequence
diagram that can simultaneously receive events

•  Unrelated events, instances of the same event

•  Inherently concurrent objects can be assigned to
different threads of control

•  Objects with mutual exclusive activity could be
folded into a single thread of control

7© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Thread of Control

•  Definition Thread
•  A thread of control is a path through a set of state diagrams on which a single

object is active at a time
•  A thread remains within a state diagram until an object sends an event to

different object and waits for another event
•  Thread splitting: Object does a non-blocking send of an event.

•  Concurrent threads can lead to race conditions.
•  A race condition (race hazard) is a system design flaw where the

output of a process is depends on the sequence of other events.
•  First used in digital circuit design: Two signals racing each other to influence

the output.

8© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Example of a Race Condition

:BankAccount
c1:Customer c2:Customer :WithdrawCtrl :WithdrawCtrl

getBalance()

200

withdraw(50)

setBalance(150)

getBalance()

200

withdraw(50)

setBalance(150)

computeNewBalance(200,50)

computeNewBalance(200,50)

Assume: Initial
balance = 200

Final
balance = 150 ??!

Thread 1

Thread 2

Should BankAccount
 be another Thread ?

9© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Solution: Synchronization of Threads

c1:Customer c2:Customer
:BankAccount :WithdrawCtrl

getBalance()

200

withdraw(50)

setBalance(150)

computeNewBalance(200,50)

Initial
balance = 200

withdraw(50)

Single WithdrawCtrl
Instance

Synchronized method

End
balance = 100

10© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Concurrency Questions

•  To identify candidates for concurrency we ask
the following questions:

•  Does the system provide access to multiple users?
•  Which entity objects of the object model can be

executed independently from each other?
•  What kinds of control objects are identifiable?
•  Can a single request to the system be decomposed into

multiple requests? Can these requests and handled in
parallel? (Example: a distributed query)

11© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Implementing Concurrency

•  Concurrent systems can be implemented on any
system that provides

•  Physical concurrency: Threads are provided by hardware

 or
•  Logical concurrency: Threads are provided by software

•  Physical concurrency is provided by
multiprocessors and computer networks

•  Logical concurrency is provided by threads
packages.

12© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Implementing Concurrency (2)

•  In both cases, - physical concurrency as well as
logical concurrency - we have to solve the
scheduling of these threads:

•  Which thread runs when?

•  Today’s operating systems provide a variety of
scheduling mechanisms:

•  Round robin, time slicing, collaborating processes,
interrupt handling

•  Implementation needs to address starvation,
deadlocks, fairness -> Topic in operating
systems

•  Sometimes we have to solve the scheduling
problem ourselves

•  Topic addressed by software control (system design
topic 7).

13© 2008 Bernd Bruegge Software Engineering Winter 2008/9

System Design

 2. Subsystem Decomposition
Layers vs Partitions
Coherence/Coupling

  4. Hardware/
Software Mapping
Special Purpose
Buy vs Build
Allocation of Resources
Connectivity

5. Data
Management

Persistent Objects
Filesystem vs Database

Access Control List
vs Capabilities
Security

6. Global Resource
Handlung

8. Boundary
Conditions

Initialization
Termination
Failure

 3. Concurrency
Identification of
Threads

7. Software
Control

Monolithic
Event-Driven
Conc. Processes

 1. Design Goals
Definition
Trade-offs

14© 2008 Bernd Bruegge Software Engineering Winter 2008/9

4. Hardware Software Mapping

•  This system design activity addresses two
questions:

•  How do we realize the subsystems: With hardware or
with software?

•  How do we map the object model onto the chosen
hardware and/or software?

•  Mapping the Objects:
•  Processor, Memory, Input/Output

•  Mapping the Associations:
• Network connections

15© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Mapping Objects onto Hardware

•  Control Objects -> Processor
•  Is the computation rate too demanding for a single

processor?
•  Can we get a speedup by distributing objects across

several processors?
•  How many processors are required to maintain a

steady state load?

•  Entity Objects -> Memory:
•  Is there enough memory to buffer bursts of requests?

•  Boundary Objects -> Input/Output Devices
•  Do we need an extra piece of hardware to handle the

data generation rates?
•  Can the desired response time be realized with the

available communication bandwidth between
subsystems?

16© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Mapping the Associations: Connectivity

•  Describe the physical connectivity
•  “Physical layer in the OSI Reference Model”

•  Describes which associations in the object model
are mapped to physical connections.

•  Describe the logical connectivity (subsystem
associations)

•  Associations that do not directly map into physical
connections.

•  In which layer should these associations be
implemented?

•  Informal connectivity drawings often contain
both types of connectivity

•  Practiced by many developers, sometimes confusing.

17© 2008 Bernd Bruegge Software Engineering Winter 2008/9

DistributedDatabaseArchitecture Tue, Oct 13, 1992 12:53 AM

Application
Client

Application
Client

Application
Client

Communication
Agent for

Application Clients

Communication
Agent for

Application Clients

Communication
Agent for Data

Server

Communication
Agent for Data

Server

Local Data
Server

Global Data
Server

Global
Data
Server

Global
Data

Server

OODBMS

RDBMS

Backbone Network

LAN

LAN

LAN
TCP/IP

Ethernet Cat 5
Physical

Connectivity

Logical
Connectivity

18© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Logical vs Physical Connectivity and the
relationship to Subsystem Layering

Application LayerApplication Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Bidirectional associa-
tions for each layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Processor 1 Processor 2

Logical
Connectivity

Physical
Connectivity

19© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Hardware-Software Mapping Difficulties

•  Much of the difficulty of designing a system
comes from addressing externally-imposed
hardware and software constraints.

•  Certain tasks have to be at specific locations
•  Example: Withdrawing money from an ATM

machine
•  Some hardware components have to be used from a

specific manufacturer
•  Example: To send DVB-T signals, the system has to

use components from a company that provides
DVB-T transmitters.

20© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Hardware/Software Mappings in UML

•  A UML component is a building block of the system.
It is represented as a rectangle with tabs

•  Components have different lifetimes:
•  Some exist only at design time

•  Classes, associations
•  Others exist until compile time

•  Source code, pointers
•  Some exist at link or only at runtime

•  Linkable libraries, executables, addresses

•  The Hardware/Software Mapping addresses
dependencies and distribution issues of UML
components during system design.

21© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Two New UML Diagram Types

•  UML Component Diagram:
•  Illustrates dependencies between components at

design time, compilation time and runtime

•  UML Deployment Diagram:
•  Illustrates the distribution of components at run-time.
•  Deployment diagrams use nodes and connections to

depict the physical resources in the system.

•  UML Interface:
•  A UML interface describes a group of operations used

or created by UML components.
•  It is represented as a line with a circle.

22© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Component Diagram

•  Component Diagram
•  A graph of components connected by dependency

relationships
•  Shows the dependencies among software components

•  source code, linkable libraries, executables

•  Dependencies are shown as dashed arrows from
the client component to the supplier component

•  The types of dependencies are implementation
language specific.

•  A component diagram may also be used to show
dependencies on a subsystem interface:

•  Use a dashed arrow between the component and the
UML interface it depends on.

23© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Component Diagram Example

UML Interface

UML
 Component

Scheduler

Planner

GUI

reservations

update

 Dependency.

24© 2008 Bernd Bruegge Software Engineering Winter 2008/9

•  Deployment diagrams are useful for showing a
system design after the following system design
decisions have been made:
1.  Subsystem decomposition
2.  Concurrency
3.  Hardware/Software Mapping

•  A deployment diagram is a graph of nodes and
connections (“communication associations”).

•  Nodes are shown as 3-D boxes
•  Connections are shown as solid lines
•  Nodes may contain components
•  Components may contain objects (indicating that the

object is part of the component).

:PC

Deployment Diagram

:Server

25© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Deployment Diagram Example

Dependency
(between nodes)

Dependency

:Planner

:PC

:HostMachine

:Scheduler

<<database>>
meetingsDB

UML Node

UML
 Interface

26© 2008 Bernd Bruegge Software Engineering Winter 2008/9

ARENA Hardware/Software Mapping

:ArenaClient :ArenaServer

:UserMachine :ServerMachine

:AdvertisementServer
:MatchFrontEndPeer

:GamePeer

:ArenaStorage

27© 2008 Bernd Bruegge Software Engineering Winter 2008/9

5. Data Management

•  Some objects – most of the entity objects - in
the system model need to be persistent:

•  Values of the attributes of a persistent object have a
lifetime longer than a single execution

•  A persistent object can be realized with one of
the following mechanisms:

•  Filesystem:
•  If the data are used by multiple readers but a

single writer
•  Database:

•  If the data are used by concurrent writers and
readers.

28© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Data Management Questions

•  How often is the database accessed?
•  What is the expected request (query) rate? The worst

case?
•  What is the size of typical and worst case requests?

•  Do the data need to be archived?
•  Should the data be distributed?

•  Does the system design try to hide the location of the
databases (location transparency)?

•  Is there a need for a single interface to access
the data?

•  What is the query format?

•  Should the data format be extensible?

29© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Mapping Object Models to Relational
Databases

•  UML object models can be mapped to relational
databases

•  The basic idea of the mapping:
•  Each class is mapped to its own table
•  Each class attribute is mapped to a column in the table
•  An instance of a class represents a row in the table
•  One-to-many associations are implemented with a

buried foreign key
•  Many-to-many associations are mapped to their own

tables

•  Methods are not mapped

30© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Mapping a Class to a Table

User

+firstName:String
+login:String
+email:String

id:long firstName:text[25] login:text[8] email:text[32]

User table

31© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Primary and Foreign Keys

•  Any set of attributes that could be used to
uniquely identify any data record in a relational
table is called a candidate key

•  The actual candidate key that is used in the
application to identify the records is called the
primary key

•  The primary key of a table is a set of attributes whose
values uniquely identify the data records in the table

•  A foreign key is an attribute (or a set of
attributes) that references the primary key of
another table.

32© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Example for Primary and Foreign Keys
User table

Candidate key

login email
“am384” “am384@mail.org”
“js289” “john@mail.de”

firstName
“alice”
“john”

“bd” “bobd@mail.ch”“bob”

Candidate key

Primary key

League table login

“am384”

“bd”

name

“tictactoeNovice”

“tictactoeExpert”

“js289”“chessNovice”

Foreign key referencing User table

33© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Buried Association

League LeagueOwner * 1

id:long
LeagueOwner table

... owner:long
League table

...id:long

•  Associations with multiplicity “one” can be implemented
using a foreign key

For one-to-many associations we add the foreign key to
the table representing the class on the “many” end

For all other associations we can select either class at
the end of the association.

owner

34© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Another Example for Buried Association

Transaction

transactionID

Portfolio

portfolioID
...

*

portfolioID ...
Portfolio TableTransaction Table

transactionID portfolioID

Foreign Key

35© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Mapping Many-To-Many Associations

City

cityName

Airport
airportCode
airportName

* * Serves

cityName
Houston
Albany
Munich

Hamburg

City Table

airportCode
IAH
HOU
ALB
MUC
HAM

Airport Table

airportName
Intercontinental

Hobby
Albany County
Munich Airport

Hamburg Airport

cityName
Houston
Houston
Albany
Munich

Hamburg

Serves Table

airportCode
IAH
HOU
ALB
MUC
HAM

In this case we need a separate table for the association

Separate table for
the association “Serves”

Primary KeyPrimary Key

36© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Another Many-to-Many Association
Mapping

Player Tournament * *

id
Tournament table

23

name ...

novice
24 expert

tournament player

TournamentPlayerAssociation
table

23 56
23 79

Player table
id

56

name ...

alice
79 john

We realize the Tournament/Player association as
a separate table “TournamentPlayerAssociation “

37© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Realizing Inheritance

•  Relational databases do not support inheritance
•  Two possibilities to map an inheritance

association to a database schema
•  With a separate table (”vertical mapping”)

•  The attributes of the superclass and the subclasses
are mapped to different tables

•  By duplicating columns (”horizontal mapping”)
•  There is no table for the superclass
•  Each subclass is mapped to a table containing the

attributes of the superclass and the attributes of the
subclass

38© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Realizing inheritance with a separate table
 (Vertical mapping)

User table
id
56

name ...
zoe

79 john

role
LeagueOwner

Player

Player

User

LeagueOwner

maxNumLeagues credits

name

Player table
id
79

credits ...
126

id
LeagueOwner table

56
maxNumLeagues ...

12

39© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Realizing inheritance by duplicating
columns (Horizontal Mapping)

Player

User

LeagueOwner

maxNumLeagues credits

name

id
LeagueOwner table

56

maxNumLeagues ...

12

name

zoe

Player table
id

79

credits ...

126

name

john

40© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Comparison: Separate Tables vs
Duplicated Columns

•  The trade-off is between modifiability and
response time

•  How likely is a change of the superclass?
•  What are the performance requirements for queries?

•  Separate table mapping (Vertical mapping)
 We can add attributes to the superclass easily by

adding a column to the superclass table
 Searching for the attributes of an object requires a join

operation

•  Duplicated columns (Horizontal Mapping)
 Modifying the database schema is more complex and

error-prone
 Individual objects are not fragmented across a number

of tables, resulting in faster queries.

41© 2008 Bernd Bruegge Software Engineering Winter 2008/9

6. Global Resource Handling

•  Discusses access control
•  Describes access rights for different classes of

actors
•  Describes how object guard against

unauthorized access.

42© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Defining Access Control

•  In multi-user systems different actors usually
have different access rights to different
functionality and data

•  How do we model these accesses?
•  During analysis we model them by associating different

use cases with different actors
•  During system design we model them determining

which objects are shared among actors.

43© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Access Matrix

•  We model access on classes with an access
matrix:

•  The rows of the matrix represents the actors of the
system

•  The column represent classes whose access we want to
control

•  Access Right: An entry in the access matrix. It
lists the operations that can be executed on
instances of the class by the actor.

44© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Access Matrix Example

Arena League

Operator

LeagueOwner

Player

Spectator

Tournament

<<create>>
archive()
schedule()
view()
applyFor()
view()

view()

<<create>>
createUser()
view ()

view ()

view()
applyForPlayer()

view()
applyForOwner()

<<create>>
archive()

view()
subscribe()

view()
subscribe()

edit ()

Match

<<create>>
end()

play()
forfeit()

view()
replay()

Actors

Classes Access Rights

45© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Access Matrix Implementations

•  Global access table: Represents explicitly every
cell in the matrix as a triple (actor,class,
operation)

LeagueOwner, Arena, view()
LeagueOwner, League, edit()
LeagueOwner, Tournament, <<create>>
LeagueOwner, Tournament, view()
LeagueOwner, Tournament, schedule()
LeagueOwner, Tournament, archive()
LeagueOwner, Match, <<create>>
LeagueOwner, Match, end()

.

46© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Better Access Matrix Implementations

•  Access control list
•  Associates a list of (actor,operation) pairs with each

class to be accessed.
•  Every time an instance of this class is accessed, the

access list is checked for the corresponding actor and
operation.

•  Capability
•  Associates a (class,operation) pair with an actor.
•  A capability provides an actor to gain control access to

an object of the class described in the capability.

47© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Arena League

Operator

LeagueOwner

Player

Spectator

Tournament

<<create>>
archive()
schedule()
view()
applyFor()
view()

view()

<<create>>
createUser()
view ()

view ()

view()
applyForPlayer()

view()
applyForOwner()

<<create>>
archive()

view()
subscribe()

view()
subscribe()

edit ()

Match

<<create>>
end()

play()
forfeit()

view()
replay()

Access Matrix Example

Player

Match

play()
forfeit()

48© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Player

Match

play()
forfeit()

49© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Access Control List Realization

joe:Player

m1:Match

joe may play�
alice may play

I am joe,
I want to play in

match m1

Gatekeeper checks
identification against
list and allows access.

Access Control
List for m1

50© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Capability Realization

joe:Player

m1:Match

Capability

Here’s my ticket, I’d
like to play in

match m1

Gatekeeper checks if
ticket is valid and

allows access.Ticket for�

match “m1”

51© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Global Resource Questions

•  Does the system need authentication?
•  If yes, what is the authentication scheme?

•  User name and password? Access control list
•  Tickets? Capability-based

•  What is the user interface for authentication?
•  Does the system need a network-wide name

server?
•  How is a service known to the rest of the

system?
•  At runtime? At compile time?
•  By Port?
•  By Name?

52© 2008 Bernd Bruegge Software Engineering Winter 2008/9

7. Decide on Software Control

Two major design choices:
 1. Choose implicit control
 2. Choose explicit control

•  Centralized or decentralized

•  Centralized control:
•  Procedure-driven: Control resides within program code.
•  Event-driven: Control resides within a dispatcher calling

functions via callbacks.

•  Decentralized control
•  Control resides in several independent objects.

•  Examples: Message based system, RMI
•  Possible speedup by mapping the objects on different

processors, increased communication overhead.

53© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Software Control

Explicit Control Implicit Control

Rule-based
Control Logic Programming

Event-based
Control

Procedural
Control.

Centralized
Control

Decentralized
Control

54© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Centralized vs. Decentralized Designs

•  Centralized Design
•  One control object or subsystem ("spider") controls

everything
•  Pro: Change in the control structure is very easy
•  Con: The single control object is a possible

performance bottleneck

•  Decentralized Design
•  Not a single object is in control, control is distributed;

That means, there is more than one control object
•  Con: The responsibility is spread out
•  Pro: Fits nicely into object-oriented development

55© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Centralized vs. Decentralized Designs (2)

•  Should you use a centralized or decentralized
design?

•  Take the sequence diagrams and control objects
from the analysis model

•  Check the participation of the control objects in
the sequence diagrams

•  If the sequence diagram looks like a fork =>
Centralized design

•  If the sequence diagram looks like a stair =>
Decentralized design.

56© 2008 Bernd Bruegge Software Engineering Winter 2008/9

8. Boundary Conditions

•  Initialization
•  The system is brought from a non-initialized state to

steady-state

•  Termination
•  Resources are cleaned up and other systems are

notified upon termination

•  Failure
•  Possible failures: Bugs, errors, external problems

•  Good system design foresees fatal failures and
provides mechanisms to deal with them.

57© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Boundary Condition Questions

•  Initialization
•  What data need to be accessed at startup time?
•  What services have to registered?
•  What does the user interface do at start up time?

•  Termination
•  Are single subsystems allowed to terminate?
•  Are subsystems notified if a single subsystem

terminates?
•  How are updates communicated to the database?

•  Failure
•  How does the system behave when a node or

communication link fails?
•  How does the system recover from failure?.

58© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Modeling Boundary Conditions

•  Boundary conditions are best modeled as use
cases with actors and objects

•  We call them boundary use cases or
administrative use cases

•  Actor: often the system administrator
•  Interesting use cases:

•  Start up of a subsystem
•  Start up of the full system
•  Termination of a subsystem
•  Error in a subsystem or component, failure of a

subsystem or component.

59© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Example: Boundary Use Case for ARENA

•  Let us assume, we identified the subsystem
AdvertisementServer during system design

•  This server takes a big load during the holiday
season

•  During hardware software mapping we decide to
dedicate a special node for this server

•  For this node we define a new boundary use
case ManageServer

•  ManageServer includes all the functions
necessary to start up and shutdown the
AdvertisementServer.

60© 2008 Bernd Bruegge Software Engineering Winter 2008/9

ManageServer Boundary Use Case

Server
Administrator

ManageServer

StartServer

ShutdownServer

ConfigureServer

<<include>>

<<include>>

<<include>>

61© 2008 Bernd Bruegge Software Engineering Winter 2008/9

Summary

•  System design activities:
•  Concurrency identification
•  Hardware/Software mapping
•  Persistent data management
•  Global resource handling
•  Software control selection
•  Boundary conditions

•  Each of these activities may affect the
subsystem decomposition

•  Mapping Object models to relational databases.

