
1
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Software Engineering I:
Software Technology

WS 2008/09

UML 2.0

Prof. Bernd Bruegge, Ph.D.
Florian Schneider

Applied Software Engineering
Technische Universitaet Muenchen

2
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Outline for today

•  Further Reading
•  UML 1 to 2: A giant leap
•  Overview of important changes covered in this

lecture
•  Frames and nesting
•  Activity diagrams
•  Deployment diagrams
•  Sequence diagrams
•  Profiles, Stereotypes
•  And other changes

3
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Further reading

•  G. Booch, J. Rumbaugh, I. Jacobson
•  “The Unified Modeling Language User Guide”, 2nd Edition,

Addison-Wesley Professional, 2005
•  For German readers: “Das UML Benutzerhandbuch. Aktuell

zur Version 2.0”, Programmer’s Choice series, Addison-
Wesley, 2006

•  UML Superstructure, V2.1.2
•  http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF
•  For a list of all UML specifications, see

http://www.omg.org/spec/UML/

4
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Recent History of UML

March
2003:
• UML 1.5

July
2005:
• UML 2.0

November
2007:
• UML 2.1.2

5
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

A giant leap

•  UML now usable with Model Driven Architecture
(MDA)
•  Better support for the automatic transformation of a

Platform Independent Model (PIM) into a Platform
Specific Model (PSM)

•  UML based on Meta Object Facility (MOF)

6
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Overview of important changes (non-
comprehensive)

 Frames and nesting
•  Changes in diagram notation:

•  Activity diagram
•  Deployment diagram
•  Sequence diagram

•  Profiles and stereotypes
•  New diagram types:

•  Composite structure diagrams
•  Timing diagrams
•  Not covered in this lecture

7
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Common notation for all UML 2.0 diagrams

•  Mandatory: contents area

•  Optional: frame with a heading

<heading> ::= [<diagram kind>]<name>[<parameters>]

Frame

8
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Keywords for Diagram Kinds

•  activity
•  class
•  component
•  interaction
•  package
•  state machine
•  use case

•  The following abbreviated forms
are usually used:

•  act (for activity frames)
•  cmp (for component frames)
•  sd (for interaction frames)
•  pkg (for package frames)
•  stm (for state machine frames)
•  uc (for use case frames)

Why are interaction frames titled “sd”?
 Historical: sequence diagram

9
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Example of Activity Diagram with Frame

10
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

UML 2.0 diagrams can be nested

•  UML 2.0 supports nested diagrams
•  e.g. an activity diagram inside a class

•  The frame concept visually groups elements that
belong to one diagram

11
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Where are we now?

 Introduction
 Frames and nesting
 Changes in diagram notation:

 Activity diagram
•  Deployment diagram
•  Sequence diagram

•  Profiles and stereotypes
•  Other changes

12
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Again, the Activity Diagram Example

13
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Activity Diagram Changes in UML 2.0

•  New node taxonomy
•  See graphic:

•  New node types
•  Loop node
•  Sequence node
•  Activity final node
•  Flow final node
•  Activity parameter node
•  Central buffer node
•  Data store node

14
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Activity Diagram Changes: Action

•  UML 1: Action is operation on transition of a
state machine

•  UML 2: Action
•  Is part of an activity
•  Has local pre- and post conditions

15
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Activity Diagram: Activity Nodes & Edges

•  An activity consists of activity nodes
•  There are three types of nodes

•  Executable nodes
• Most prominent: Action

•  Object nodes
• E.g. a document

•  Control nodes

•  An edge is a directed connection between nodes
•  There are two types of edges

• Control flow edges
• Object flow edges

16
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Activity Diagram: Control Nodes

•  Initial node
•  Final node

•  Activity final node
•  Flow final node

•  Fork node
•  Join node
•  Merge node
•  Decision node

17
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Activity Diagram: Action Nodes and
Object Nodes

•  Action Node

•  Object Node

18
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Activity Diagram: Object Nodes vs. Pins

•  Different notations with same semantics
•  Pins: abbreviated notation for object node
•  Both define object flow in an activity

19
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Activity Diagram Example

Initial
node

Merge
node

Final
node

Action
Object
node

Fork
node

Join
node

Object
flow

Control
flow

20
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Where are we now?

 Introduction
 Frames and nesting
 Changes in diagram notation:

 Activity diagram
 Deployment diagram
 Sequence diagram

•  Profiles and stereotypes
•  Other changes

21
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Deployment Diagram Changes I

•  New node types:
•  Device
•  Execution

environment

22
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Deployment Diagram Changes II

•  Artifacts can now manifest any packageable
element, not just components

•  Manifestation is shown by a dependency with
keyword «manifest»

23
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Deployment Diagram Changes III

•  A deployment now has a deployment
specification

24
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Sequence Diagram Changes

•  New concept of interaction fragments

•  Before going into detail with interaction
fragments, we cover the concept of an
interaction

25
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Interaction

•  An Interaction is a concept providing a basis for
interaction diagrams:
•  Sequence diagrams
•  Communication diagrams
•  Interaction overview diagrams
•  Timing diagrams

•  An interaction is a unit of behavior that focuses
on the observable exchange of information
between connectable elements.

•  We only focus on the impact of interactions on
sequence diagrams

26
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Usage of Interactions

•  UML Interactions are used to get a better grip of an
interaction situation

•  Interactions are also used during the detailed design
phase if precise inter-process communication must be
set up according to formal protocols

•  When testing is performed, the traces of the system can
be described as interactions and compared with those
of the earlier phases.

27
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Example of an Interaction: Sequence
Diagram

28
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Interaction Fragment

•  Interaction Fragment
•  Is a piece of an interaction
•  Acts like an interaction itself

•  Combined Fragment
•  Is a subtype of interaction fragment
•  defines an expression of interaction fragments
•  defined by an interaction operator and corresponding

interaction operands

29
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Interaction Operators

•  A combined fragment defines an expression of
interaction fragments. The following operators are
allowed in an combined fragment expression:
•  Alt
•  Opt
•  Par
•  Loop
•  Critical
•  Neg
•  Assert
•  Strict
•  Seq
•  Ignore
•  Consider

30
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Alt and Else Operators

•  The interaction operator alt designates that the
combined fragment represents a choice of behavior.
•  At most one of the operands will be chosen. The chosen

operand must have an explicit or implicit guard expression that
evaluates to true at this point in the interaction. An implicit true
guard is implied if the operand has no guard.

•  The set of traces that defines a choice is the union of the
(guarded) traces of the operands.

•  An operand guarded by else designates a guard that is
the negation of the disjunction of all other guards in the
enclosing combined fragment.
•  If none of the operands has a guard that evaluates to true,

none of the operands are executed and the remainder of the
enclosing interaction fragment is executed.

31
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Example of a Combined Fragment

32
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Opt and Break Operators

•  Option: The interaction operator opt designates
a choice of behavior where either the (sole)
operand happens or nothing happens.

•  Break: The interaction operator break
represents a breaking scenario: The operand is
a scenario that is performed instead of the
remainder of the enclosing interaction fragment.
•  A break operator with a guard is chosen when the

guard is true
•  When the guard of the break operand is false, the

break operand is ignored and the rest of the enclosing
interaction fragment is chosen.

•  The choice between a break operand without a guard
and the rest of the enclosing interaction fragment is
done non-deterministically.

33
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Parallel and Critical Operator

•  Parallel: The interaction operator par designates a
parallel merge between the behaviors of the
operands of a combined fragment.
•  The event occurrences of the different operands can be

interleaved in any way as long as the ordering imposed by
each operand is preserved.

•  A parallel merge defines a set of traces that describes all
the ways that event occurrences of the operands may be
interleaved.

•  Critical: The interaction operator critical
designates that the combined fragment represents
a critical region.
•  The traces of the region cannot be interleaved by other

event occurrences (on the Lifelines covered by the
region). This means that the region is treated atomically
by the enclosing fragment.

34
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Example of a Critical Region

The Operator must make sure to forward a 911-call to the Emergency object
 before doing anything else. Normal calls can be freely interleaved.

35
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Time Constraint with Messages

•  In this example, time constraints are associated with the duration of a
Message and the duration between two event occurrences.

36
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Where are we now?

 Introduction
 Frames and nesting
 Changes in diagram notation:

 Activity diagram
 Deployment diagram
 Sequence diagram

 Profiles and stereotypes
•  Other changes

37
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Excursion: Meta Modeling

•  Meta model: A model describing a model
•  Meta class: Part of the meta model, describing

the structure of a model element

•  Why are we talking about this?
1.  Meta models can be used to explain UML notation
2.  More about this in Friday’s lecture
3.  We need the term meta class on the following slides

38
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

UML Profiles

•  Lightweight extension mechanism for UML
•  Concepts partially present in earlier versions

•  Stereotypes
•  Tagged Values

•  Established as a specific meta-modeling
technique in UML 2.0
•  Contains mechanisms that allow meta classes from

existing meta models to be extended
•  ability to tailor the UML meta model for different

platforms or domains
•  consistent with the OMG Meta Object Facility (MOF)

•  MOF will be covered on Friday

39
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Stereotype

•  Defines how an existing meta class may be
extended

•  Can only be used in conjunction with a meta
class

•  A meta class may be extended by one or more
stereotypes

•  Why should I want to do this?
•  You may want to use platform or domain specific

terminology

40
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Stereotype Notations

•  The application of a stereotype is shown with a
String enclosed in guillemets before the
classifier name
•  E.g. «boundary»
•  Stereotypes you might already know:

•  «file» extends meta class Artifact
•  «framework» extends meta class Package

•  Stereotypes can additionally have an image
•  The image may replace the standard notation of the

element the stereotype has been applied to

41
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Stereotype application I

•  The attributes of a stereotype are called tagged
values

•  Applying a stereotype to an instance of a meta
class means instantiating the stereotype
•  If the stereotype has attributes, you have to provide

values for them

•  Confused? See following slide…

42
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Stereotype application II

43
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Graphics for Stereotypes

•  One can also use icons or graphical symbols to identify a
stereotype
•  When the stereotype is applied to a UML model element, the

graphic replaces the standard notation for the model element.
•  Example: When modeling a network, define graphics for

representing classes of type Switch, Server, Router, Printer, etc.

Graphics for

Class of type

Router

Graphics for

Class of type

Switch

Graphics for

Server Class

44
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Pros and Cons of Stereotype Graphics

•  Advantages:

•  UML diagrams may be easier to understand if they contain

graphics and icons for stereotypes

•  This can increase the readability of the diagram, especially

if the client is not trained in UML

•  And they are still UML diagrams!

•  Disadvantages:
•  If developers are unfamiliar with the symbols being used, it can

become much harder to understand what is going on
•  Additional symbols add to the burden of learning to read the

diagrams

•  If you end up applying stereotypes all over your model,
you should think of defining a profile.

45
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Stereotypes vs. Keywords

•  Not to be mixed up with keywords
•  Same notation (String enclosed in guillemets)
•  «interface» is no stereotype!
•  «extend» is no stereotype!

•  See Annexes B and C of the UML Superstructure
specification.

46
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Other notable Changes in UML 2.0

•  Composite Structure Diagrams
•  Timing diagrams
•  See further reading for more details!

47
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Thank you!

•  Exercise Sheet: Friday (tomorrow)
•  Friday’s lecture: The UML 2.0 Meta
model

48
© 2008 Bernd Bruegge
 Software Engineering I: Software Technology WS 2008/9

Explanation of the Interaction on the
previous slide

•  The example on the previous slide shows three
messages between two anonymous lifelines of
types User and ACSystem: CodePin, CardOut
and OK
•  The message CardOut overtakes the message OK in

the way that the receiving event occurrences are in the
opposite order of the sending event occurrences.

•  Such communication may occur when the messages
are asynchronous.

•  A fourth message Unlock is sent from the
ACSystem to the environment
•  Through a gate with the implicit name out_Unlock.

