Software Engineering I: Software Technology

WS 2008/9

Methodologies

Prof. Bernd Bruegge, Ph.D. Applied Software Engineering Technische Universitaet Muenchen

Û

1

Software Engineering SS 2008

Outline

- A mountaineering example
- Project context
 - Goals, client types
 - Environment, methods, tools, methodology
- Methodology spectrum
 - Planning, design reuse, modeling, process, control&monitoring, redefinition
- Different types of planning
- Different ways to use models
- Use of processes in software development

Key Decisions in an Expedition

- A leader must answer several key questions to create a successful expedition
 - What mountain should be climbed?
 - What types of tools should be used?
 - Who should be member of the team?
 - Does the expedition need a leader?
- Different answers to these questions lead to different styles:

Siege style Fixed-rope Free Solo

Alpine style

Key Parameters in a Software Project

- Project goals
- Schedule
- Cost
- Project organization
- Software life cycle model
- Tools
- Methods
- Team members and organization

Influenced by Methodology

Methodology

Definition: Software engineering methodology

 Collection of methods and tools for developing and managing a software system to achieve a specific goal in a given project environment

Project environment

 Defined by the client and current state of the development organization. Constrains the project manager (Example: Hierarchical or project-based organization)

Methods

 Techniques to choose from in a given project environment (Example:Object-Oriented Analysis, waterfall model)

Tools

 Devices or programs that support the development and management activities (Example: CASE Tool, IDE) A methodology specifies for a specific project environment 1) when methods or tools should be used and when not 2) what to do when unexpected events occur. U

Key Parameters in a Project Environment

- Participants' expertise
 - Beginner, expert, slow learner, fast learner
- \implies Type of Client
 - Domain knowledge, decision power
 - End user access
 - No end user available, end user participates in requirements elicitation, end user participates in usability tests
 - Technological climate ("technology enablers")
 - Geographical distribution
 - Project duration
 - Rate of change

Client Type

Domain Knowledge Decision Power	High	Low
High	Local King Client	Pseudo Client
Low	Proxy Client	No Client

Key Parameters in a Project Environment

- Participants' expertise
 - Beginner, expert, slow learner, fast learner
- Type of Client
 - Domain knowledge, decision power
- ➡ End user access
 - No end user available, end user participates in requirements elicitation, end user participates in usability tests
 - Technological climate ("technology enablers")
 - Geographical distribution
 - Project duration
 - Rate of change

End User Access

- Clients and end users usually do not have the same interests
- Clients are interested in
 - an early delivery date
 - as much functionality as possible
 - low cost
- End users are interested in
 - a familiar user interface
 - an easy to learn user interface
 - a system that supports their specific task well
- If the project success depends on the usability of the product, then
 - end users should be included in the project
 - usability tests should be conducted with the end users.

Project Environment

- Participants' expertise
 - Beginner, expert, slow learner, fast learner
- Type of Client
 - Domain knowledge, decision power
- End user access
 - No end user available, end user participates in requirements elicitation, end user participates in usability tests
- Technological climate ("technology enablers")
 - Geographical distribution
 - Project duration
 - Rate of change

Technological climate

- Depending on the requirements expressed by the client, a project may be constrained in the technological components it has to use.
 Examples:
 - A project needs to improve a legacy system
 - It deals with well-known and mature technology but the technology might be out of date
 - A project develops a first-of-a-kind prototype
 - based on a new technology enabler
 - Usually has to deal with preliminary versions of components and immature technology.

Geographical Distribution

- "Single room" projects: Participants in a single room
- Reasons for distributed projects:
 - Organization may have resulted from the merger
 - Organization is a consortium, located in different geographical locations
 - Part of the organization must be collocated with client
- Geographical distribution has pros and cons:
 - Increases the availability of skill
 - May take advantage of different time zones
 - \checkmark Slows down communication and decision making
 - Lowers awareness among teams
 - \checkmark Leads to loss of information between sites
 - High communication cost
 - ? Promise of low cost labor (Originally the reason for many offshoring projects).

Software Engineering SS 2008

Terminology (Shoring and Sourcing)

Off-shoring

- Originally used in the design of oil platforms
- Offshoring describes the relocation of business processes from one country to another. This includes any business process such as production, manufacturing, or services.

Outsourcing

 The practice of hiring an external organization to perform functions in a country other than where the functions are developed.

Nearshoring

- Outsourcing services to a lower-wage country that is relatively close in distance or time zone (or both).
- Downsizing,
- Check Wikipedia for these definitions
- Dumbsizing?

Methodology Issues 10 14 2008

- Methodologies provide general principles and strategies for selecting methods and tools in a given project environment
- Key questions for which methodologies provide guidance:
 - How much involvement of the customer?
 - How much planning?
 - How much reuse?
 - How much modeling before coding?
 - How much process?
 - How much control and monitoring?

How much Planning?

- Two styles of navigation [Gladwin 1964]
 - European navigation:
 - Current Location and Desired Location
 - Planned Route
 - Route Deviation and Route Correction
 - "Polynesian navigation"

"European Navigation" (Plan-based)

Polynesian Navigation (Situation-based)

Situated action

- Context-dependent action [Suchman 1990]
 - Selection of action depends on the type of event, the situation and the skill of the developer
- European Navigation is context independent
 - Event: "Course deviation in the morning"
 - Action: "Course correction towards planned route"
 - Event: "Course deviation in the evening"
 - Action: "Course correction towards planned route"
- Polynesian Navigation is context dependent
 - Event: "Birds seen", Context: Morning
 - Action: "Sail opposite to the direction of the birds
 - Event: "Birds seen", Context: Evening
 - Action: "Sail in the direction of the birds".

Pros and Cons of Software Project Plans

- Plus
 - Very useful to kick off a software project
 - Useful also if the outcome is predictable or if no major change occurs
- Con:
 - Of limited value to control the project when
 - the outcome is unpredictable
 - when unexpected events occur that change the project environment, tools or methods
- Examples of unexpected events:
 - Appearance of new technology unknown at project start
 - A visionary scenario turns out to be unimplementable
 - Company is merged with another one during the project.

How much Modeling?

- Advantages of modeling:
 - Modeling enables developers to deal with complexity
 - Modeling makes implicit knowledge about the system explicit
 - Modeling formalizes knowledge so that a number of participants can share it
- Problem with modeling:
 - If one is not careful, models can become as complex as the system being modeled.

Managerial Challenges of Modeling

- Formalizing knowledge is expensive
 - Takes time and effort from developers
 - Requires validation and consensus
- Models introduce redundancy
 - If the system is changed, the models must be changed
 - If several models depict the same aspects of the system, all of them must be updated
 - If one model becomes out of sync, it loses its value
- Models become complex
 - As the model complexity becomes similar to the complexity of the system, the benefit of having a model is reduced significantly.

Model of a Software Project

How many objects are there if you instantiate this class diagram? Simon says 1 Thomas says 6 Oscar says 10

ሆ 23

Use Patterns to Reduce Complexity

Reducing the Complexity of Models

- To reduce the complexity of large model we use navigation and abstraction
- Start with a simplified model and then decorate it incrementally
 - Start with key abstractions (use animation)
 - Then decorate the model with the additional classes
- To reduce the complexity of the model even further
 - Use inheritance (taxonomies, design patterns)
 - If the model is still too complex, show the subclasses on a separate page

Where do we need Models?

- Models support three different types of activities:
 - Communication: The model provides a common vocabulary. An informal model is often used to communicate an idea
 - Analysis/Design: Models enable developers to reason about the future system
 - Archival: Compact representation for storing the design and rationale of an existing system.

Models to support Communication

- Also called conceptual models
- Most often used in the early phases of a project and during informal communications.
 - The model does not have to be consistent or complete
 - The notation does not even have to be correct
- The model is used only to communicate an idea to *a person*
 - If the idea is understood, the model has served its purpose
- UML is our preferred notation for models to support communication
- Communication Media:
 - A Whiteboard, a slide or even a napkin.

"Napkin Design"

Models to support Analysis and Design

- Also called specification models
- The model provides a representation that enables developers to reason about the system
- The model is used to communicate the idea to *a* computer
 - The model needs to be made consistent and complete
 - The notation must be correct so the model can be entered into a CASE tool
- UML is our preferred notation for models to models that support analysis and design.

Methodology Issues

- Methodologies provide guidance, general principles and strategies for selecting methods and tools in a given project environment.
- Key questions for which methodologies provide guidance:
 - How much involvement of the customer
 - ✓ How much planning?
 - How much reuse?
 - ✓ How much modeling?
 - How much process?
 - How much control and monitoring?

Problems with linear Models

Waterfall Modell

The Waterfall Model is a Dinosaur

Software Engineering SS 2008

Problem: Controlling Software Development with a Process

- How do we control software development?
- Two opinions: Maturity vs agility
- Through organizational maturity (SEI, Humphrey)
 - Repeatable process, Capability Maturity Model (CMM)
- Through agility (Takeuchi, Nonaki, Schwaber):
 - Large parts of software development is empirical in nature; cannot be modeled with a defined process
 - There is a difference between defined and empirical process
- How can software development better be described?
 - with a defined process control model
 - with an empirical process control model.

Defined Process Control Model

- Requires that every piece of work is completely understood
- Deviations are seen as errors that need to be corrected
- Given a well-defined set of inputs, the same outputs are generated every time
- Precondition to apply this model:
 - All the activities and tasks are well defined to provide repeatability and predictability
- If the preconditions are not satisfied:
 - Lot of surprises, loss of control, incomplete or wrong work products.

Empirical Process Control Model

- The process is imperfectly defined, not all pieces of work are completely understood
- Deviations are seen as opportunities that need to be investigated
 - The empirical process "expects the unexpected"
- Control is exercised through frequent inspection
- Conditions when to apply this model:
 - Frequent change, unpredictable and unrepeatable outputs.

Ways to React to Complexity and Change

Additional References

- Hirotaka Takeuchi Ikujiro Nonaka ("Rugby Methodology")
 - The New New Product Development Game, Harvard Business Review, 1985
- Watts Humphrey (Capability Maturity Model, CMM):
 - Managing the Software Process, Addison-Wesley, Reading Massachusetts, 1989
- Ken Schwaber, Mike Beedle (Scrum)
 - Agile Software Development with Scrum, Prentice Hall, Upper Saddle River, NJ, 2001
- A lot of ongoing discussion on the internet (blogs). Find your way via Google and Wikipedia. Example:
 - Development: Empirical or Planned? <u>www.controlchaos.com/old-site/debate.htm</u>

Summary

- A project has many contexts
 - Goals, client types
 - Environment, methods, tools, methodology
- Methodology issues
 - Planning, design reuse, modeling, process, control&monitoring, redefinition
- Different types of planning
 - European vs. Polynesian navigation
- Different types of models
 - For communication, specification and archival
- Different ways to control processes
 - Defined vs empirical process control models.

Backup Slides

Local King Client

High Domain Knowledge, High Decision Power

- Can answer developer questions and make decisions without having to ask anybody else
- Has deep knowledge of the application domain (and/or the solution domain)
- Usually collocated with the project
- Does not have to report to anybody else
 - Can effectively collaborate with the project manager and often even with the developers.

Proxy Client

High Domain Knowledge, Low Decision Power

- Proxy clients are sent for the "real client" Reasons:
 - Real client has no time
 - Physical distance would make collaboration of the real client with the project organization difficult
- Proxy clients have sufficient knowledge of the application domain
 - They can answer clarification questions from the developers
- Proxy clients do not have sufficient power
 - They cannot make major decisions, they have to ask somebody else => time delay!

Pseudo Client

Low Domain Knowledge, High Decision Power

- The pseudo client is a member of the development organization
 - Often even developers act as pseudo clients
 - If the system is targeted at a new market segment, the pseudo client often comes from marketing
- Pseudo clients can make decisions within a short time
- Pseudo clients have a limited knowledge of the application domain.

"No Client"

- A project can start without a client
 - Example: A visionary product is developed before a market segment is opened
- In these cases the project manager should still select a client, usually a pseudo client who acts as an end user
 - The stakes of the developers can be balanced against the stakes of the future user.

