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Abstract—Bug reports submitted by users and crash reports
collected by crash reporting tools often lack information about
reproduction steps, i.e. the steps necessary to reproduce a failure.
Hence, developers have difficulties to reproduce field failures and
might not be able to fix all reported bugs.

We present an approach to automatically extract failure
reproduction steps from user interaction traces. We capture
interactions between a user and a WIMP GUI using a cap-
ture/replay tool. Then, we extract the minimal, failure-inducing
subsequence of captured interaction traces. We use three algo-
rithms to perform this extraction: Delta Debugging, Sequential
Pattern Mining, and a combination of both. Delta Debugging
automatically replays subsequences of an interaction trace to
identify the minimal, failure-inducing subsequence. Sequential
Pattern Mining identifies the common subsequence in interaction
traces inducing the same failure.

We evaluated our approach in a case study. We injected
four bugs to the code of a mail client application, collected
interaction traces of five participants trying to find these bugs,
and applied the extraction algorithms. Delta Debugging extracted
the minimal, failure-inducing interaction subsequence in 90% of
all cases. Sequential Pattern Mining produced failure-inducing
interaction sequences in 75% of all cases and removed on average
93% of unnecessary interactions, potentially enabling manual
analysis by developers. Both algorithms complement each other
because they are applicable in different contexts and can be
combined to improve performance.

Index Terms—bug fixing, failure reproduction, field failures,
bug reporting, reproduction steps, steps to reproduce, user
interactions, delta debugging, sequential pattern mining, cap-
ture/replay, record/replay, software maintenance, software evo-
lution

I. INTRODUCTION

“93% of 1,477 participating software developers en-
counter problems when reproducing failures due to
missing knowledge at least weekly, 70% daily.” [14]

Reproducing a failure allows software developers to verify that
a problem exists and constitutes a first step towards identifica-
tion of the failure cause and fixing the bug causing the failure.
To reproduce a particular failure, developers need information
about reproduction steps, i.e. the steps necessary to trigger
the failure, and information about the failure environment,
i.e. the setting in which the failure occurs [21]. Because
developers are usually not present when users employ an
application in the field, they do not have first hand information
about reproduction steps and failure environments. Hence,
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developers often face problems when reproducing failures: In
a survey [14], 93% of 1,477 participating developers reported
that they face problems due to missing knowledge when
reproducing failures at least weekly, 70% faced such problems
on a daily basis.

Developers usually use two ways to acquire information
about reproduction steps and failure environments: bug report-
ing and collection of field data. During bug reporting, users
who experience a failure report the failure together with its
reproduction steps and its failure environment. Research has
shown that this approach has some challenges because bug
reports submitted by users often do not contain reproduction
steps or their reproduction steps are wrong or incomplete ([13],
[23]). Alternatively, developers can instrument applications
and collect field data, i.e. data about the runtime behavior
and runtime environment of deployed programs [16]. Such an
approach usually generates a huge amount of trace data and it
is usually not possible for developers to analyze such datasets
manually. Therefore, reproduction steps and information about
the failure environment should be extracted automatically.

We present an approach to collect field data automatically
and extract reproduction steps from captured data. Our vi-
sion is to automatically identify reproduction steps as they
would be described by users, thereby relieving users from
manually describing them. We use an industrial capture/replay
tool to capture interactions between a user and a graphical
user interface using the “windows, icons, menus, pointer”
paradigm (WIMP GUI). Then, we use three algorithms to
extract reproduction steps from captured interaction traces:
Delta Debugging [22] (DD), Sequential Pattern Mining [15]
(SPM), and a combination of both (SPM+DD). DD oper-
ates on a single interaction trace and systematically replays
subsequences of it to identify the minimal, failure-inducing
subsequence. SPM operates on a set of interaction traces
which trigger the same failure and extracts a common sub-
sequence, eliminating interactions which are irrelevant for
failure reproduction and approximating the minimal, failure-
inducing sequence. We also combined both algorithms and
study whether the combination improves performance.

Our approach is inspired by Zimmermann et al. [23] who
suggest to “use capture/replay tools to provide reproduction
steps automatically”. In contrast to most related work captur-
ing field data on code execution level, we target interactions of
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users with a WIMP GUI. We hypothesize that this approach
introduces less performance overhead, produces a smaller
amount of monitoring data, relieves users from manually
describing reproduction steps, and allows developers to discuss
reproductions steps with users. In previous work [17], we
presented an approach which captures user interactions with
a WIMP GUI and presents them to developers during failure
reproduction. This work improves our previous work by min-
imizing the captured interaction trace, i.e. removing captured
interactions which are not necessary for failure reproduction.

We evaluated our approach and compared the extraction
algorithms in a case study. We injected four bugs in the source
code of an e-mail application. To collect interaction traces, we
asked five participants to “hunt” for the bugs, i.e. to interact
with the application until a failure is triggered. Interactions
between participants and the WIMP GUI were captured by an
industrial capture/replay tool. Then, the algorithms DD, SPM,
and SPM+DD were run on this dataset for evaluation purposes.

The contributions of this paper are threefold: First, we
apply the Delta Debugging algorithm to traces of user-GUI
interactions. Second, we propose to use Sequential Pattern
Mining to extract reproduction steps from interaction traces.
And third, we evaluate and compare both algorithms and their
combination in a case study. Overall, we illustrate how re-
production steps can be extracted automatically from captured
interaction traces.

This paper is organized as follows: Section II defines
terminology and important concepts and Section III reviews
related work. Section IV describes how we capture user-
GUI interactions and extract reproduction steps from them.
Section V presents design and results of the case study.
Section VI discusses case study results as well as limitations
and implications of both the case study and the approach.
Finally, Section VII concludes the paper.

II. BACKGROUND

In this section we define terminology and properties of
interaction sequences. We use the term “failure” to denote
an exception or a crash of the target application and the term
“bug” to denote an algorithmic or coding mistake causing a
failure. Further, we use the term “bug report” to denote a report
containing information about a instance of failure.

A user interaction denotes any interaction between a user
and a WIMP GUI that can be captured by a capture/replay tool.
For example, button clicks, selection of main menu actions,
clicks on toolbar icons, or text entry in text fields. Because
each interaction occurs at a given time, captured interactions
form a sequence, i.e. a number of interactions totally ordered
by time. We use the term “interaction trace” to denote the
sequence of user interactions captured by the capture/replay
tool. Otherwise we use the term “interaction sequence”. Each
interaction trace is also an interaction sequence. By removing
an arbitrary number of interactions from a given interaction
sequence, a sub-sequence can be created.

A given interaction sequence can have different properties.
If a given interaction sequence can be replayed successfully by

the capture/replay tool, we call it “replayable” (replayability
property). Successful replay means that all its interactions
can be simulated by the capture/replay tool without triggering
a replay failure. A given interaction sequence is ‘“failure-
inducing” when its execution - either manually by a user/
developer or automatically by a capture/replay tool - trig-
gers a failure (failure-induction property). Failure-inducing
interaction sequences may have another property: minimality
(minimality property). A given, failure-inducing interaction
sequence is minimal if no subsequence exists which also
triggers the same failure. Our goal is to automatically identify
the minimal, failure-inducing subsequence of an interaction
trace. We define “reproduction steps of a failure” as a minimal,
failure-inducing interaction sequence that triggers the failure.
Reproduction steps of a given failure f can be unique or
non-unique (uniqueness property). We call reproduction steps
of a failure unique if no other reproduction steps for the
same failure exist. For example, a failure triggered by special
characters in text input does not have unique reproduction
steps because entering different special characters lead to the
same failure, i.e. multiple interaction sequences triggering the
failure exist.

III. RELATED WORK

This section reviews related work aiming to minimize
failure-inducing input as well as approaches to support de-
velopers in reproducing field failures.

Minimizing Failure-Inducing Input: In their seminal pa-
per [22], Zeller and Hildebrand apply DD to interactions of
users with the Mozilla browser for one particular bug. In
this spirit, we apply the DD algorithm to traces of user-GUI
interactions, replicating their case study and confirming their
results. We are not aware of further related work which applies
DD to traces of user-GUI interactions. Hsu et al. [10] collect
traces of branching events and method calls at runtime and
use the BIDE algorithm to identify bug signatures, i.e. patterns
which are frequently part of failing traces. We use a similar
approach, but we apply it to user interactions.

Minimization approaches which take a failure-inducing
trace as input and automatically identify the minimal subpart
required for failure induction have been proposed for several
types of input such as textual input [22], file system and
stream operations [5], and object interactions [4]. In contrast
to those approaches, we apply minimization to traces of user
interactions.

Reproducing Field Failures: Clause and Orso [5] present an
approach to debugging field failures by recording file system
and stream actions, minimizing captured traces, and replaying
them. Their goal is similar to ours but our approach operates
on user interactions.

Several approaches to reproduce field failures use a combi-
nation of field data collection and in-house execution syntheti-
zation: BugRedux [11] is a general framework to collect failing
field executions and to synthesize executions which trigger the
same failure. F3 [12] extends BugRedux to synthesize passing
and failing executions and exploits them to identify potentially
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faulty program entities. MIMIC [24] extends F* by comparing
a model of correct behavior to failing executions and iden-
tifying violations of the model as potential explanations for
failures. While those approaches operate on code level, our
approach operates on user-GUI interaction level.

Capture/replay approaches have been proposed to capture
and replay user, application, and system events at different
levels of abstraction (e.g. [2], [3], [8]). Herbold et al. [9] and
Steven et al. [18] capture the application events triggered by
user actions and enable developers to replay them. Those tools
focus on capturing and replaying software execution but do not
minimize captured traces.

Other approaches collect runtime data from deployed soft-
ware: Tucek et al. [19] re-execute applications to collect
additional failure information. Artzi et al. [1] generate and
execute multiple tests to reproduce a given failure. Several
tools for automated crash reporting exist which report failures
and context information via the Internet such as MS Windows
Error Reporting [7] or Apple Crash Reporter. Those tools
collect information about system runtime and context but
usually don’t capture user interactions. Roehm et al [17]
monitor high-level user interactions preceding failures and
present them to developers but do not minimize captured
traces.

Zimmermann et al. [23] propose to educate bug reporters to
provide information about reproduction steps when composing
a bug report which is complementary to our approach.

IV. APPROACH

This section describes our approach to automatically extract
reproduction steps from interaction traces. Figure 1 shows
an overview of the approach which consists of two main
steps. First, interactions between a user and a WIMP GUI
are capture with a capture/replay tool and temporarily stored
on the user device. Examples of captured user interactions
are menu selections, button clicks, context menu selections,
drag-and-drop actions, textual inputs, and keyboard shortcuts.
Because the approach uses a capture/replay tool to collect
field data, interaction traces can be replayed automatically.
Failure instances are detected by monitoring the failure log
of the target application. Whenever a log entry originating
from a failure instance is detected, information about the
failure is extracted from the log. Then, the trace of interactions
preceding the failure instance together with failure informa-
tion is sent to an analytics server and stored in a database.
Second, interaction traces in the database are analyzed on the
analysis server. The purpose of the analysis is to extract the
minimal, failure-inducing subsequence of a trace and present
this subsequence as reproduction steps to developers. We use
Delta Debugging (DD), Sequential Pattern Mining (SPM), and
a combination of both algorithms (SPM + DD) to perform
this extraction. We chose the DD algorithm because it has
demonstrated capabilities to minimize failure-inducing input in
several occasions. Additionally, we consider SPM additionally
to DD because our case study showed that some interaction
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Figure 1. Overview of Approach
DD = Delta Debugging, SPM = Seq. Pattern Mining
Arrows denote information flow

traces cannot be replayed automatically which makes DD
inapplicable.

A. Delta Debugging-Approach

The Minimizing Delta Debugging algorithm [22] (DD)

minimizes a failure-inducing interaction trace to a minimal,
failure-inducing interaction sequence. DD performs a binary
search on the input interaction sequence. It splits the input
interaction sequence in two subsequences and tests each of
them individually. If any of the two subsequences trigger the
failure, DD marks it as a minimal, failure-inducing interaction
sequence and recursively continues to search in it for a shorter,
failure-inducing subsequence. If none of the sub-sequences
fails, DD increases the granularity and splits the input in-
teraction sequence in multiple subsequences. DD increases
the granularity until each subsequence contains only one
interaction. DD checks whether a given interaction sequence
induces a failure by replaying the interaction sequence with
the capture/replay tool.
Output interaction sequences of DD are guaranteed to be 1-
minimal, i.e. no single interaction can be removed from the
output sequence without removing its failure induction. We
refer to [22] for further details on the DD algorithm.

Figure 2 shows how DD is used in our approach. Intuitively,
DD tests subsequences of an interaction trace until it finds
a minimal, failure-inducing subsequence. The prerequisite for
employing DD is a failure-inducing interaction trace which can
be replayed by the capture/replay tool. During its operation,
DD uses the capture/replay tool to replay subsequences of the
input sequence and to check whether they cause a failure. The
output of DD is guaranteed to be a replayable, 1-minimal,
failure-inducing interaction sequence.
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B. Sequential Pattern Mining-Approach

Sequential Pattern Mining (SPM) [15] is a field of data
mining concerned with finding frequent subsequence in a
database of sequences. The fraction of sequences which a
subsequence has to be contained in to qualify as resulting
subsequence is called the support value. Several algorithms
have been designed to solve the SPM problem. We use the
BIDE algorithm [20]. It mines frequent, closed sequences, i.e.
the longest subsequence with a given support.

Figure 3 shows how SPM is used by our approach. SPM

requires a set of interaction sequences which trigger the same
failure as input. We run the BIDE algorithm with a support
of 100% on such a dataset. Intuitively, this identifies common
subsequences within the dataset. Thereby SPM removes inter-
action which occur only in a single sequence or a subset of
sequences (and hence are probably unnecessary to reproduce
the failure) and approximates the minimal, failure-inducing
interaction sequence.
There is no guarantee that the resulting interaction sequence
is replayable, minimal, or failure-inducing. If the failure has
unique reproduction steps, then they are contained in the SPM
output sequence.

C. Combination of SPM and DD

DD and SPM have different, complementary strengths.
DD has strong guarantees regarding minimality and failure-
induction but might requires a replayable interaction sequence
and might require considerable execution time. Instead, SPM
represents a fast way to filter out unnecessary interactions.
Hence, we combined both algorithms to improve performance
(see Fig. 4). Prerequisite for the combined approach (SPM +
DD) is a set of interaction traces triggering the same failure
(same as for SPM). Those interaction traces are first processed
by the SPM algorithm. If the resulting interaction sequence
is replayable and failure-inducing (the prerequisites for DD),
then DD can process it and the final output is a 1-minimal,
failure-reproducing interaction sequence. If the intermediate
sequence does not fulfill those properties, SPM + DD will not
provide useful output.

D. Illustrative Example

In the following we discuss an example to illustrate the
operation of the extraction approaches introduced above. Fig-
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Figure 4. Overview of Combined Approach (SPM+DD)
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User2: A B C E G HX,
User3: A B C E F G HX
Userd: A B C D E G HX;

Result of Sequential Pattern Mining (support=100%) : ABCEGH
Result of Delta Debugging: AB EH
Result of SPM + DD: ABEH

Figure 5. Illustrative Example

ure 5 shows interaction traces of four different users. Each
user interaction is represented as a letter. Each interaction trace
triggers the same failure, indicated by X1. We assume that the
minimal, failure-inducing interaction sequence is ABEH. The
result of DD is ABEH for the four user interaction traces,
assuming that each interaction trace is replayable. This equals
the minimal, failure-inducing interaction sequence. The result
of SPM for the four interaction traces is ABCEFH which
is not minimal but contains the minimal, failure-reproducing
interaction sequence as a subsequence. When combining SPM
and DD, first SPM is run on the four interaction traces which
results in the interaction sequence ABCEFH. This intermediate
result is further minimized by DD to ABEH, the minimal,
failure-inducing interaction sequence.

V. EVALUATION

We prototypically implemented the approach described in
the section above and evaluated it in a case study. This section
discusses design and results of this case study. In this case
study, we defined the following research questions:

o RQ1: Are the failure-inducing interaction traces captured

by the QF Test tool replayable?

« RQ2: How well do the extraction approaches (DD, SPM,
SPM + DD) perform in terms of filtering, i.e. which
fraction of unnecessary interactions can they remove?

¢« RQ3: Can the extraction approaches (DD, SPM, SPM
+ DD) automatically identify reproduction steps, i.e. a
minimal, failure-inducing interaction sequence?

RQ1 addresses the prerequisites for using DD: to have a
replayable, failure-inducing interaction trace. We explicitly
investigate this question because our industry partner reported
that they rarely can replay a captured interaction trace without
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manual manipulations. QF Test is the capture/replay tool we
use in this case study and investigation of this question consti-
tutes an investigation of how well an industrial capture/replay
tool can process interactions of real users. The goal of this re-
search is to automatically minimize captured, failure-inducing
interaction traces, i.e. to identify and remove interactions
which are not necessary to reproduce the failure. RQ2 and RQ3
address the performance of the proposed approaches. RQ2
addresses in general what fraction of unnecessary interactions
were removed while RQ3 addresses whether the ideal situation
was achieved by the different extraction approaches.

A. Case Study Design

The goal of this study is to collect user interaction traces and
apply the extraction algorithms to evaluate their performance.
To accomplish this goal, we had participants interact with an
application that contained injected bugs and captured their
interactions with an industrial capture/replay tool.

The capture/replay tool QF-Test [6] is used to capture user
interaction traces in this case study. QF-Test was chosen after
a review of existing capture/replay tools where it proved to be
the most suitable tool. QF-Test captures GUI interaction events
such button clicks, view activations, and text input which
are performed by users using mouse and keyboard as input
devices. Captured interaction traces are stored in a human-
readable XML format. Every user interaction is stored as a
separate XML entry. Because of this format, interaction traces
captured with QF-Test can be manipulated, e.g. interactions
can be added or removed. Manipulation interaction sequences
can be replayed using QF-Test by passing a manipulated xml
file.

The mail client “Simple Mail” is used as target application
in this case study (see Figure 6). It is implemented using the
Eclipse Rich Client Platform (RCP) technology and is con-
tained in the Eclipse RCP distribution as example application.
Simple Mail is a mail client which allows users to manage
different mail accounts, compose new mails, and check for
new mails. Its WIMP GUI consists of a main menu, an icon
bar, account tree, and separate tabs for each mail.

We injected four bugs in the code of Simple Mail which
were designed to mimic real failure scenarios. The “imple-
mentation” of each bug displayed a error message dialog
(which named the bug/ failure to make it user-visible) and
subsequently closed the application. The following bugs were
injected:

Bug A Composing 8 mails at the same time
This bug mimics the scenario when an action is repeated too
often and leads to a failure. It can be reproduced by creating
seven new mails using the “Create mail” icon (one mail is
automatically created at application startup).

Bug B Checking for new mails
This bug mimics the scenario when a failure occurs indepen-
dent of user input. It can be reproduced by checking for new
mails using the “Check mails” icon.

Bug C Entering invalid character(s) in mail text
This bug mimics the scenario when entering an invalid text

= RCP Product ===
File Help
+ B4
= me@this.com ¢ Message 2 = a
== other@aol.com
Subject: This is a message about the cool Eclipse RCP!
From: nicole@mail.org

Date:  10:34 am

This RCP Application was generated from the PDE Plug-in Project wizard. This sample
shows how to:
- add a top-level menu and toolbar with actions
- add keybindings to actions
- create views that can't be closed and
multiple instances of the same view
- perspectives with placeholders for new views
- use the default about dialog
- creste a product definition

Figure 6. Screenshot of Simple Mail

character triggers a failure. It can be reproduced by entering
a non-ASCII character in the mail body and pressing Enter.

Bug D Composing a mail which is too long
This bug mimics the scenario when excessive memory con-
sumption leads to a failure. It can be reproduced by composing
a mail body text which has more than 25 lines of text.

The case study was conducted with five participants aged
between 25 and 30. All participants had a software engineering
background, i.e. they had some experience with developing,
bug-fixing, and using software. Participants had no previous
knowledge about the injected bugs and Simple Mail.

Participants were presented the Simple Mail application.
Their task was to “find” the injected bugs, i.e. to interact with
Simple Mail till a bug is triggered and a failure message pops
up. The participants interaction with the Simple Mail GUI
were recorded using the QF-Test. When a bug was found,
participants had to write down the bug id (which was shown in
the failure message dialog) and reproduction steps according to
their opinion. No time limit for finding the bugs was imposed
on participants. Because of the purpose of this case study part
was to collect failure-inducing interaction traces, we helped
participants with hints when they didn’t find a bug after five
minutes. Table I shows for each participant the bug ids found,
the time taken to find a bug, and the number of interactions
till the bug was found. All participants found all bugs which
is not surprising as we helped them with hints. On average,
participants took 1 min 55 sec to find a bug and performed
88 interactions in that time. We used this dataset of failure-
inducing interaction traces to run our extraction algorithms.
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Table I
OVERVIEW OF DATA COLLECTED DURING CASE STUDY

[ Part. ID | Bug Type | Time (mm:ss) | Number of Interactions |

1 B 00:20 22
1 D 01:30 88
1 A 00:10 16
1 C 04:24 109
2 B 00:10 16
2 C 02:04 31
2 A 01:10 78
2 D 06:25 223
3 B 00:10 12
3 A 01:00 24
3 C 04:50 168
3 D 03:20 86
4 B 00:36 28
4 D 01:20 54
4 A 00:25 60
4 C 04:20 256
5 B 00:35 28
5 A 03:00 310
5 D 00:10 18
5 C 02:30 111

B. Case Study Results

Table II shows the results of running the extraction algo-
rithms on interaction traces collected from study participants.
For each interaction trace, i.e. each combination of partici-
pant and bug, the table presents the length of the captured
interaction trace, the length of its reproduction steps (i.e.
the minimal, failure-inducing subsequence), and whether the
interaction trace was replayable with QF-Test. For each of
extraction algorithm, the table shows the length of the output
sequence, the fraction of unnecessary interactions removed by
the prototype, whether the output sequence is minimal and
failure-inducing, and the execution time. Execution time was
measured by running the prototypes on a MacBook Pro (i7
quad-core processor @2.5 GHz, 8 GB RAM). The execution
times are given to enable relative comparison of execution
times of different extraction algorithms.

Only 25% of interaction traces (5/20) were replayable
directly. We had to manually inspect and manipulate the
remaining interaction traces to make them replayable. Manip-
ulations included removing window resizing actions, adding
close dialog-actions when they were not captured successfully,
adding selection events of GUI elements before subsequent
actions could target them, removing events which were cap-
tured multiple times. Those manipulations enable replayability
but do not change the user’s interaction flow. We managed to
make 14 interaction traces (70%) replayable by the manipu-
lations (marked ‘“‘after manipulation (AM)” in Table II). One
interaction trace was not replayable even after modifications.

Bugs A and B can be triggered only by a single sequence
of interaction, i.e. they have unique reproduction steps. In
contrast, bugs C and D can be triggered in multiple ways due
to the fact that text can be entered in different ways, e.g. by
typing or copying.

DD was applicable to 95% of interaction traces. One
interaction trace (participant 2, bug C) was not replayable

and hence DD could not be applied. For 95% of interaction
traces (18/19), DD identified the minimal, failure-inducing
subsequence. For one interaction trace (participant 5, bug A),
DD returned a 1-minimal, failure-inducing sequence which
was not minimal. On average, DD filtered out 99.9% of
interactions unnecessary for failure reproduction. The cost for
such good performance was payed in execution time ranging
from 4 minutes to 9 hours 36 minutes.

Because SPM needs a set of interaction traces triggering
the same failure as input, we used captured interaction traces
of participants per bug as input for SPM, i.e. one SPM run
was performed for each bug type. SPM was applicable to
75% of interaction traces and 75% of bug types. It was
not applicable to interaction traces of bug D because each
participant performed different interactions triggering bug D.
Hence, SPM cannot identify a common subsequence which is
failure-inducing. The same situation holds for bug C where
participants had to enter different special characters to trig-
ger the failure. To make SPM applicable, we preprocessed
interaction traces of bug C and replaced the entered special
character with a common special character. The execution time
of the SPM ranged from 12 seconds to 25 seconds. SPM
did not find the minimal, failure-inducing sequence for any
interaction sequence. Nevertheless, all SPM output sequences
were failure-inducing and SPM managed to filter out 93%
of interactions unnecessary for failure reproduction. Because
the SPM output sequences were only 1.8 times longer than
the minimal, failure-inducing sequence, we hypothesize that
developers can manually analyze SPM output sequences and
extract reproductions steps.

SPM + DD was applicable to 75% of all interaction traces
and found the minimal, failure-inducing sequence for all of
these interaction traces, i.e. it filtered out 100% of interactions
unnecessary for failure reproduction. The execution time of
SPM + DD ranged from 3 minutes 44 seconds to 18 minutes
47 seconds. This constitutes a performance improvement to
DD alone in three ways: First, even for the interaction se-
quence which was not replayable but contained the failure-
inducing sequence, the minimal, failure-inducing sequence
was found. Second, SPM + DD found the minimal, failure-
inducing sequence for the interaction trace for which DD
produced a 1-minimal but not minimal sequence. Third, the
execution time was reduced dramatically, in one instance from
8 h to 18 min. Similarly, the performance of SPM + DD
improved compared to SPM alone as SPM + DD returned
minimal sequences for all interactions. This improvement in
filter quality has to be paid with a higher execution time.

VI. DISCUSSION
In this section we discuss the results of the evaluation case
study as well as general aspects of our approach.
A. Case Study Discussion

This section discusses results and limitations of the case
study.
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1) Discussion of Case Study Results: In the case study,
five of 20 interaction traces captured with the capture/replay
tool could be replayed directly, 14 traces needed manual
manipulation to make them replayable, and one trace could not
be replayed. This observation corresponds with experiences
of our industry partner reporting that almost no captured
interaction trace can be replayed directly and that they usually
have to manipulate captured traces to make them replayable.
This observation constitutes a problem for DD which requires
a replayable interaction sequence to operate. Therefore, we
suggest future research to study the state of the practice of
capture/replay tools, i.e. how capture/replay tools are used
in practice and identify problems and improvements when
dealing with interactions of real users.

The DD algorithm identified the minimal, failure-inducing

sub-sequence of an interaction trace in 18 of 20 cases. Because
of its construction, it is suitable for failures with non-unique
reproduction steps and its output sequences are always failure-
inducing. On the downside, it required a lot of execution time,
e.g. 4,5 minutes for an interaction trace of 12 interactions and
up to 8 h for an interaction sequence of 210 interactions. When
studying reasons behind this observation, we found that most
of the time was spent to control the capture/replay tool, i.e. to
start replays. Because the execution time depends on several
factors, it is difficult to generalize but we conclude that the
filter quality of the Delta Debugging algorithm has to be paid
by investing execution time. Furthermore, the Delta Debugging
algorithm requires a replayable interaction sequence which is
not always available.
When DD was applied to the interaction trace of participant 5
and bug A, it filtered out most of the unnecessary interactions
(from 310 interaction down to 14 interactions) but not all
of them. When investigating this observation, we found the
reason in the 1-minimality guarantee of DD: The DD algo-
rithm guarantees that its result is 1-minimal [22], i.e. that it
is not possible to remove one interaction from its result and
maintain the failure-induction. But DD does not guarantee that
a subsequence of its result sequence exists which is shorter
by two or more interactions and still induces the failure. This
was the case for interaction trace of participant 5 and bug
A. In the case study, this situation occurred in one of 20
interaction traces. Future work has to investigate the impact
of this limitation and, if necessary, identify improvements of
the Delta Debugging algorithm.

The Sequential Pattern Mining algorithm was applicable
to 15 of 20 interaction traces in the case study. For those
interaction traces, it filtered out 93% of the unnecessary
interactions and all its resulting interaction sequences were
failure inducing. These results show that the Sequential Pat-
tern Mining algorithm does not guarantee minimality as the
Delta Debugging algorithm does. But the resulting interaction
sequences were on average 1.8 times longer than the mini-
mal, failure-inducing sequence and contained maximal eight
interactions. Hence, we hypothesize that manual inspection of
the resulting interaction sequence becomes possible. Further-
more, the resulting interaction sequence of SPM is failure-

inducing for failures which have unique reproduction steps
because those reproduction steps have to be contained in every
interaction trace. The execution time of SPM algorithm in the
order of seconds was rather short, especially when comparing
it to the execution time of the DD algorithm processing the
same data. While it is difficult to generalize the execution time,
these results show that SPM can quickly filter out the majority
of unnecessary interactions.

The SPM algorithm had difficulties when processing interac-
tion traces of bugs C and D: it was applicable to interaction
traces of bug C after manual preprocessing and it was not
applicable to interaction traces of bug D. To trigger those bugs,
users had to enter text which fulfilled a certain criterium, for
bug C entering a special character and for bug D entering text
that exceeded a certain length. To fulfill each criterium, users
can execute several different interaction sequences, i.e. those
bugs to not have unique reproduction steps. Consequently, the
interaction traces contain different failure-inducing sequences
and SPM is not able to recognize a common, failure-inducing
subsequence. We conclude that the current version of the
SPM algorithm is not applicable to failures with non-unique
reproduction steps. In the following we discuss two ways to
overcome this limitation: trace preprocessing and an adaptation
of the SPM algorithm. Preprocessing was demonstrated for
interaction traces of bug C in the case study: before the SPM
algorithm was run, the interaction traces were preprocessed
and all special characters were substituted by a shared special
character. The SPM results for interaction traces of bug C
indicate that preprocessing makes SPM applicable, but previ-
ous knowledge is necessary to determine which preprocess-
ing operations to perform. Another approach to make SPM
applicable to failures with non-unique reproduction steps is
to adapt the SPM algorithm: instead of running SPM once
with a support of 100%, SPM can be run multiple times with
decreasing support values (e.g. 100%, 90%, 80%, ...) until
one or more interaction sequences are found. We hypothesize
that such an approach is able to identify different interaction
sequences triggering the same failure. Such information could
be used by developers to accelerate cause identification and
detection of duplicate bug reports. We leave the implementa-
tion and evaluation of this adaptation as future work.

The case study also investigates the combination of SPM
and DD to improve performance. Intuitively, the SPM algo-
rithm with its short execution time filters out most unnecessary
interactions before the DD algorithm identifies the minimal
sequence in the remaining interaction sequence. This combi-
nation requires multiple interaction traces triggering the same
failure and a failure with unique reproduction steps. In that
case, SPM produces an interaction sequence which is failure-
inducing and therefore can be further minimized by DD.
The combination of SPM and DD was applicable to 15 of 20
interaction traces and three of four bugs. All its results were
minimal and failure-inducing. The SPM+DD combination
performance nice: it was able to correctly identify reproduc-
tions steps of two cases which DD alone could not handle
(interaction traces of (participant 5, bug A) and (participant
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2, bug C)). Also, the execution time was drastically reduced,
e.g. from 8 h to 18 seconds for bug A. We conclude that
the SPM+DD combination improves performance compared
to DD and SPM alone but its application is limited compared
to DD.

2) Discussion of Case Study Limitations: As with every
case study, our case study design has some limitations which
we discuss in the following as starting points for future work.
The case study was conducted with a single, basic application.
As Simple Mail is an Eclipse RCP application, it represents
state of the art implementation technology. But the general-
izability of the approach to other, more complex applications
has to be investigated by future work. We remark at this point
that the transferability depends on the capture/replay tool used
for capturing and replaying user interactions. We hypothesize
that our approach can be applied to applications for which a
capture/replay tool exists which can reliably capture and replay
interaction of real users.

The case study uses four bugs which were designed to
mimic common failure situations such as out of memory
exceptions or text input validation exceptions. We do not claim
the bugs to be representative and future work should study
other types of bugs and the generalizability of our approach.

The case study uses the capture/replay tool QF-Test to
capture and replay user interactions. Before choosing QF-
Test, we compared different available capture/replay tools and
identified QF-Test as the most suitable tool. To generalize
the results beyond QF-Test, future work should study other
capture/replay tools.

B. General Discussion

Because of their requirements, DD and SPM are applicable
in different contexts. DD requires a replayable interaction trace
and might need considerable execution time. If these require-
ments are satisfied, DD is applicable and its strong guarantees
for minimality and failure-induction can be exploited. In
contexts where the interaction trace is not replayable (as it was
the case for 15 interaction traces in the case study) DD is not
applicable. SPM requires multiple interaction traces triggering
the same failure. We hypothesize that such traces can be
collected when an application is used by multiple users and
those experience the same failures. As those interaction traces
do not have to be replayable for SPM to operate, SPM can
be used in the context of multiple, non-replayable interaction
traces where DD can’t be used.

Compared to most related work, our approach captures and
processes traces on the level of user interactions instead of
code execution. This has the advantage that it relieves users
from manually describing reproduction steps when reporting
failures and allows developers to discuss extracted reproduc-
tion steps with users. We hypothesize that such discussions
provide developers with insights about user behavior preceding
failures, helps to identify wrong developer assumptions, and
complements runtime information on code execution level.
The disadvantage of this approach is that capturing user
interactions might capture sensitive data and violate user

privacy. Hence, future work should investigate privacy issues,
i.e. measures for protecting user privacy while enabling failure
reproduction.

We envision two use cases for our approach: In the first
use case, our approach is deployed in the field to document
field failures experienced by users. In the second use case, our
approach is deployed in-house during testing to document fail-
ures detected by human testers. In both cases, each failure and
its reproduction steps are documented automatically, enabling
developers to reproduce it and fix the corresponding bug.

The analysis of interaction traces is currently performed on
the analysis server (see Figure 1). This design was chosen to
introduce as less performance overhead as possible on the user
device. However, if the analysis could be performed on the
user device and only extracted reproduction steps were sent
to developers, the amount of data sent to developers would
be greatly reduced. We hypothesize that this reduction has
a positive effect on both the data transfer as well as privacy
concerns. Hence, future work should investigate if the analysis
can be accomplished on the user device.

Because our approach concentrates on the extraction of
reproduction steps from user interaction traces, it has some
limitations. It focuses on user interactions as source of non-
determinism while there are other sources of non-determinism
such as e.g. network traffic. Further, it addresses capturing
and reproduction of the failure environment only indirectly
by using a capture/replay tool. Hence, our approach should
be combined with other approaches which complement it and
tackle these limitations.

VII. CONCLUSION

We presented an approach to extract failure reproduction
steps from user interaction traces. It captures user-GUI in-
teractions with a capture/replay tool and uses three different
algorithms to extract reproduction steps: Delta Debugging
(DD), Sequential Pattern Mining (SPM), and a combination of
both. We found that only 25% of interaction traces captured
with a state of the practice capture/replay tool were replayable
directly, threatening the applicability of DD which requires
replayable traces as input. After manual modifications, DD
was applicable to 95% of all traces and identified reproduction
steps in 90% of all cases. Its output sequences are guaranteed
to be minimal and failure-inducing. Besides its dependency on
replayable traces, the execution time of DD was rather long.
Furthermore, we studied SPM as complementary algorithm
overcoming the limitations of DD. SPM was directly applica-
ble to 50% of all traces and after manual modifications to 75%.
In these cases, SPM identified and removed on average 93%
of unnecessary interactions, potentially enabling developers
to manually analyze output sequences to extract reproduction
steps. SPM does not guarantee minimality or failure-induction
of its output sequences and the SPM version used in this paper
is applicable only for failures with unique reproduction steps.
Moreover, we found that combining SPM and DD improves
performance in terms of execution time and filter quality. But
the combination is applicable to a smaller amount of traces.
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Overall, these advantages and disadvantages of each extraction
algorithm should be considered when choosing among them.

Future work should investigate several directions. First, it
should investigate the state of the practice of capture/replay
tools and ensure that interactions of real users can be captured
and replayed reliably. Second, it should further evaluate the
presented approach to address the limitations of the case
study. Third, it should investigate how the capture tool can
be deployed on user devices. Fourth, it should improve the
SPM algorithm to tackle failures with non-unique reproduction
steps. And fifth, it should investigate privacy issues arising
when capturing user interactions.
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