
Team Composition in Software Engineering Project Courses
Dora Dzvonyar

Chair for Applied Software Engineering
Technical University of Munich, Germany

dzvonyar@in.tum.de

Lukas Alperowitz
Chair for Applied Software Engineering
Technical University of Munich, Germany

alperowi@in.tum.de

Dominic Henze
Chair for Applied Software Engineering
Technical University of Munich, Germany

henzed@in.tum.de

Bernd Bruegge
Chair for Applied Software Engineering
Technical University of Munich, Germany

bruegge@in.tum.de

ABSTRACT
Composing well-balanced, effective development teams for soft-
ware engineering project courses is important for facilitating learn-
ing, fostering student motivation as well as obtaining a successful
project outcome. However, team composition is a challenging task
for instructors because they have to consider a variety of possibly
conflicting criteria such as practical constraints, skill distribution,
or project motivation.

In this paper, we describe our process for composing develop-
ment teams based on a pre-defined set of criteria that we have
established from our experience conducting project courses since
2008 and constantly refined since. We reflect on these criteria by
analyzing the team synergy and project satisfaction of participating
students as well as their perspective on challenges in their teams
in one concrete instance of a multi-project capstone course. Our
findings show that lack of motivation, problems with interpersonal
relationships and communication issues affect the less satisfied
teams more than the others.

CCS CONCEPTS
• Social and professional topics→ Software engineering edu-
cation; • Software and its engineering→Programming teams;
Agile software development;

KEYWORDS
Software Engineering, Project Course, Team Composition, Team-
work, Applied Education, Experiential Learning, Agile Methods

ACM Reference Format:
DoraDzvonyar, Lukas Alperowitz, Dominic Henze, and Bernd Bruegge. 2018.
Team Composition in Software Engineering Project Courses. In SEEM’18:
SEEM’18:IEEE/ACM International Workshop on Software Engineering Educa-
tion for Millennials , May 27-June 3 2018, Gothenburg, Sweden. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3194779.3194782

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SEEM’18, May 27-June 3 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5750-0/18/05. . . $15.00
https://doi.org/10.1145/3194779.3194782

1 INTRODUCTION
Software Engineering is an inherently creative, intellectually com-
plex and collaborative discipline [8, 12, 17]. Students need to apply
their theoretical knowledge in practical projects to become skilled
software engineers [2, 17]. Therefore, we need to teach in applied,
project-based courses if we want to prepare students for their later
careers [13, 34, 43]. In particular, teamwork [17, 28, 40] and involv-
ing industry partners in university courses [19, 43] are considered
to be important aspects of applied software engineering education.

Team composition is regarded as a determinant of software
project success, as close collaboration and good communication
within the team are integral for creativity and for mastering tech-
nological challenges [18, 39]. With regard to a university context,
having well-composed teams is also an important factor for learn-
ing experience [31]. Letting students form teams on their own as
well as random assignment have been reported to yield suboptimal
results [15, 21, 41], suggesting that a more formalized approach for
team composition is needed.

However, composing project teams is a challenging task, since
a large amount of criteria need to be taken into account. Students
often have heterogeneous prior knowledge, and while some of these
differences can be smoothed out through teaching [25, 27], it has
shown to be beneficial to balance the project teams in terms of
knowledge so that less experienced participants can learn from
more advanced peers [29, 41]. In addition to skills and experience,
instructors have to keep in mind cultural and personal differences
that can impact later team performance [5, 15, 21] while often
having limited knowledge about the participants of their course
[36]. Although not all of these issues are connected to or caused
by factors of team composition, instructors should aim to compose
project teams based on a defined set of validated criteria to ensure
a strong starting position for their teams.

The goal of this research is to provide instructors with a set of
criteria and a process to create project teams for software engineer-
ing courses. We have developed both based on our experience in
holding multi-project courses with industry partners since 2008,
having conducted over 100 industry projects with more than 1200
participants. After reviewing relevant related work in team com-
position for software engineering project courses, we present our
set of criteria as a recommendation for composing project teams.
We then describe our process for composing project teams along
with the information and criteria we use at each step. We critically
reflect on the process using a concrete instance of a multi-project

https://doi.org/10.1145/3194779.3194782
https://doi.org/10.1145/3194779.3194782

SEEM’18, May 27-June 3 2018, Gothenburg, Sweden D. Dzvonyar et al.

capstone course for mobile application development. In particular,
we investigate teams with low project satisfaction and synergy
and discuss which of the stated reasons are connected to the team
composition.

2 RELATEDWORK
Early work on the (automatic) composition of teams in a beginner
software engineering course without the involvement of industry
partners is described in [20]. The input data for the selection of
teams consists of information about previous computer science
courses and grades, preferred teammates and information about
time commitment. This data is used to calculate a score "reflecting
the amount and quality of work each student is capable of pro-
ducing" [20] in order to compose teams that are above a specified
optimum.

Amanual assignment process in a course for distributed software
engineering involving 350 students working in around 60 teams is
described in [5]. Students prioritize the projects after short presen-
tations by the staff and submit a questionnaire with self-reported
skills. Team composition is then done based on students’ project
priorities, aiming for a balance of knowledge and keeping in mind
that skills relevant to a project should be present in the team.

In terms of a more formalized process of team composition, a
decision support system for a project manager based on a list of
factors affecting dynamic role allocation in software engineering is
presented in [11]. However, their model was designed for industry
and has not been evaluated in education. In a university context,
[33] present a set of criteria for the "systematic and rigorous forma-
tion of groups" in software engineering courses based on individual
characteristics and behavior with a focus on skills and personality
as well as group metrics. With regard to skills, [30] describe a bal-
ance of technical and less technical majors, and [31] delay project
team formation until after the first exam of the course in order to
use the results to balance teams. Some researchers favor a random
assignment of teams [3], while others base the process primarily
on students’ priorities [24, 42].

Our aim is to contribute to provide both a set of criteria and
a corresponding process for instructors of software engineering
project courses to contribute to closing the gap in current academic
research.

3 TEAM COMPOSITION CRITERIA
In this Section, we present the criteria which are the basis of our
team composition process. Some of them are evaluated at the team
level, while others are taken into account at a personal level. We
grouped the criteria into four categories as depicted in Figure 1 and
describe each of them in this section along with relevant academic
research on their impact on team performance.

3.1 Practical Constraints
These criteria have to be considered to create fair circumstances
for all teams and to avoid putting certain teams at a disadvantage.

Criterion A.1: Team Size. We create teams of similar size unless
a project requires more manpower due to a challenging problem or
a demanding industry partner. Some studies indicate that student

teams of 2-3 members perform better in terms of project scores
than those of size 6-7 [31], but larger teams lead to an experience
closer to that of working in industry. In any case, we recommend
instructors to decide on the desired team size upfront to have a
clear goal for the team composition process.

Criterion A.2: Development & Test Devices. The technologies
involved in the course determine which devices are needed for
development and testing. For instance, a web development project
course requires only a laptop or computer, while a course on iOS
app development also requires iPhones or iPads. A lack of test de-
vices makes it difficult for the students to test their applications in
the target environment and thus could prevent them from adopting
state-of-the-art software engineering practices such as continu-
ous delivery [29]. Therefore, we set a minimum threshold for the
number of test and development devices in each team.

Criterion A.3: Schedule Flexibility. A project course typically
requires not only a large time investment, but also a certain flexi-
bility in terms of scheduling within the team for team meetings or
work sessions. Scheduling problems have been reported to cause
issues in student projects [1, 41], which is why we inquire about
other commitments the students have during the semester, such as
other courses with a heavy workload or excellence programs with
a busy schedule. If we suspect that the student is overcommitting,
we communicate clearly about the expected time investment and
flexibility to ensure that they make an informed decision.

3.2 Skill Distribution
One of the biggest challenges of project courses results from the
participants having very heterogeneous prior knowledge. As in-
structors of a project course, we can smooth out some of these
differences in prior knowledge through teaching, but we believe
that we achieve the best learning outcome for all course partici-
pants if we create a setting in which less experienced students can
learn from their more advanced peers.

Whether in industry or in university courses, software engineers
need a wide variety of skills to accomplish great work [10]. In addi-
tion to knowledge in technologies and activities directly related to
software engineering such as requirements elicitation or modeling,
social and personal skills like the ability to compromise or man-
age one’s own time are important [38]. Skill-related issues have

Team Composition

Practical
Constraints

Skill
Distribution

Motivational
Factors

Personal
Criteria

Team Size

Development &
Test Devices

Schedule
Flexibility

Balanced SE
Experience

Project
Requirements

Course
Motivation

Project Priority

Gender
Distribution

Language Skills

Figure 1: Team Composition Criteria

Team Composition in Software Engineering Project Courses SEEM’18, May 27-June 3 2018, Gothenburg, Sweden

been reported to be among the most common problems in student
projects, resulting in additional workload [1, 6]. Hence, we ensure
the following criteria are met by the teams we compose.

Criterion B.1: Balanced Software EngineeringExperience. In
order to facilitate peer learning, we create balanced teams with re-
gard to technical skills and prior knowledge in object-oriented
software development, user experience design, and software mod-
eling. This allows team members who are more skilled in one of
these areas to be responsible for the most challenging tasks while
guiding their less advanced teammates, creating a setting in which
everyone can develop their skills [15, 30, 37]. Balanced teams cre-
ate fair circumstances across the projects [15, 31] and have been
reported to have a positive effect on team performance and group
synergy [31, 41]. Section 4 details which skills we take into account
and how we achieve a balance.

Criterion B.2: Project Requirements. In addition to a general
balance in each team with regard to software engineering skills,
some of the projects require experience in a particular field or
technology such as computer vision or embedded programming.
We aim to meet such requirements whenever this is possible. Thus,
we ensure that the most critical and technologically challenging
projects are adequately staffed, lowering the risk for a project team
to have a heavyworkload since all teammembers need to familiarize
themselves with a completely new technology [6, 36, 41].

3.3 Motivational Factors
Motivation has been regarded as an important factor for satisfaction
in the software engineering industry [16, 31]. Conversely, a lack of
motivation has also shown to be a recurring challenge in student
projects, leading to team members becoming inactive or dropping
out, leaving behind an increased workload for their teammates [1].
Motivation-Hygiene Theory proposes a dual model: motivators are
factors that increase a person’s work satisfaction and involvement,
while hygiene factors cause dissatisfaction if they are not met [22].

Motivation of students is influenced positively and negatively
by a variety of criteria, not all of which are associated with team
composition: while the grade can be a motivator for some students,
others participate in the course to learn new things and to con-
tribute to a challenging project [6]. However, teamwork in software
engineering project courses is an "emotive issue" [15] and the im-
pact of the perceived quality of team composition on motivation
should not be underestimated by the instructor.

Criterion C.1: CourseMotivation. Since our project courses are
electives and we typically receive more applications than the num-
ber of places we can offer, we can prioritize students based on
their motivation for the project course as a whole. We ask them
about their reasons for choosing the course from the variety of
electives offered, which gives us an impression of what they want
to take away from their project and whether their motivation fits
the learning outcomes of the course.

Criterion C.2: Project Priority. We let the course participants
prioritize all projects offered in the course and give this criterion
great importance when composing the project teams. Some projects

are always more popular than others [5], which means that in most
cases not everyone can get their top choice. Nevertheless, our aim
is to assign every student to one of their top-prioritized projects,
unless this conflicts with other team composition criteria.

3.4 Personal Criteria
A wide variety of personal factors have been examined by re-
searchers with regard to their impact on teamwork. For instance,
lack of cultural fit within a team has been identified as a source of de-
motivation, communication problems and conflict [6, 11, 15, 16, 35].
Compatibility of work habits and way of thinking are regarded
as beneficial for teamwork [11, 23, 37, 44], but a demographic or
cultural mix can also widen students’ experience and lead to the
acquisition of new skills [15].

Personality is another criterion that has been widely discussed.
Taking personality profiles into account when composing teams
has been shown to increase performance, collaboration and knowl-
edge acquisition in student courses [9, 33]. While these criteria are
interesting for future work, we do not formally include them in the
team composition process at this time. However, we do take into
account two other criteria for composing project teams.

Criterion D.1: Gender Distribution. The results of experiments
studying gender in software engineering teams have not yielded
clear results [14, 35], but research has shown that fostering col-
laboration across genders can break down stereotypes [19]. With
a distinct lack of female students at the Department of Informat-
ics,1 our aim is to distribute female participants equally across the
project teams.

Criterion D.2: Language Skills. We ask for the students’ lan-
guage skills in German, English (the official language of the course)
as well as their native language to avoid situations we have ex-
perienced to be problematic. First, we do not want a project team
with only one non-German-speaking member; we found that in this
case the team members default to their native German language in
work meetings as well as informal conversations, leaving the only
foreign student isolated. Second, we try to avoid having a group of
2-3 visiting students from the same country in a team because they
have shown to build a tightly coupled sub-group that is prone to
isolate themselves from the rest of the team. While this criterion is
not our highest priority, we regard it as a hygiene factor that can
impact team communication and take it into account as long as it
does not conflict with other, more important criteria.

4 TEAM COMPOSITION PROCESS
As instructors, our goal is to assign course participants to project
teams with the aim of composing well-functioning teams. At the
beginning of the course, the participants provide us with data about
their background with regard to software engineering as well as
their personal details and interests using a structured questionnaire.
In terms of prior knowledge, we ask for their experience with
software engineering workflows and tools as well as technologies
relevant for the course. In addition to their existing knowledge,

1TUM Faculty for Informatics facts and numbers from 2016: http://bit.ly/2DMjWm1

http://bit.ly/2DMjWm1

SEEM’18, May 27-June 3 2018, Gothenburg, Sweden D. Dzvonyar et al.

Assign each
participant to

1st priority team

Initial Team
Assignment

Check size
of teams

Assign members of
overstaffed teams to
understaffed teams
(descending priority)

no

yes Check
required skills
for all projects

skill
objectives

fulfilled

no

Exchange participants
between teams

(comparable instructor
rating & project priority)

Revised Team
Assignment

yes Check
development
& test devices

no

yes Check gender
distribution &

language
skills

personal
require-
ments
fulfilled

no

yes

Check com-
plete assign-

ment for
consistency

Final Team
Assignment

team size
constraint
satisfied

device
constraints

satisfied

Figure 2: Overview of our Team Composition Process

students can specify whether they are particularly interested in
developing their skills in each of these domains.

In order to obtain more reliable answers, we ensure the partici-
pants that the information provided will not be used to assess their
contribution in any way but will be used to create balanced project
teams. The questionnaire also collects data about the participants’
development and test devices (Criterion A.2), language skills in
German and English (Criterion D.2), their gender (Criterion D.1) as
well as current program of study, which gives them the opportunity
to update the information they provided when they applied for the
course. Finally, students prioritize all projects based on the project
descriptions and customers’ presentations (Criterion C.2).

The composition of the project teams takes place with 2-4 in-
structors present in order to get a more complete overview of all
factors through peer discussion. As a first step, the instructors con-
sider each student individually and convert their self-reported skills
and interests into a more comparable and objective rating. Despite
the fact that we ask the participants to be honest about their skills
so that we can create the best teams possible, students are prone to
overestimating their own capabilities [6]. Therefore, we carefully
assess each students’ self-reported skills and verify them using
experiences with the student from e.g. previous courses under our
supervision. Although some educators recommend conducting in-
terviews with students to obtain more reliable data [6], the size of
our course makes this approach impractical and limits us to using
second-hand knowledge.

After verifying the self-reported information with the knowledge
at hand, we rate each participant on the following scale:

(1) Novice: The student has little hands-on knowledge in soft-
ware engineering or is at the beginning of their studies.

(2) Normal: The student’s performance and skills are average.
(3) Advanced: The student has above-average knowledge in

software engineering or has performed remarkably well in
previous courses.

(4) Expert: The student has considerable experience in not only
software engineering, but also with developing for the tech-
nology used in the project course (e.g. they have an appli-
cation in the AppStore for a course on mobile app develop-
ment).

Figure 2 shows an overview of the process after assigning a rating
to each participant. The instructors start with an initial assignment

of the first project priority for each student (Criterion C.2). Since
the priority distribution of projects varies strongly [5], this results
in a distribution that is unequal in terms of team size and most
other criteria. In order to equalize team size (Criterion A.1), we
first evaluate which students we can move from the most popular
teams to less overcrowded ones while keeping the average priority
as high as possible.

We then iteratively check our criteria: We start by balancing the
teams to contain an equal amount of Advanced and Expert partic-
ipants while also considering projects with special requirements
(Criteria B.1 and B.2). We then verify that each team has a sufficient
amount of development and test devices (Criterion A.2), and we
aim at having at least one female student in each team as well as
minimizing language conflicts (Criteria D.1 and D.2).

In summary, our team composition process is based on the iter-
ative refinement of the assignment based on a variety of criteria,
which are sometimes ambiguous or even conflicting. The manual
process takes between 3 and 5 hours. Our instructors often find
it cumbersome to take all criteria into account, which is why we
are currently working on algorithmically supporting the process.
The fact that there are multiple instructors present makes it easier
to reach an acceptable solution through discussion and a better
overview of the information.

5 CASE STUDY
In this section we use a concrete instance of a project course on
mobile application development from the winter semester 2016/17.

5.1 Setting
We use our multi-project course iPraktikum as a concrete example.
The course takes place every semester with 70-80 developers in 10-
12 project teams working in parallel to develop mobile applications
in the context of a larger system architecture for real customers
from industry. While the mobile components are developed on the
iOS platform, many projects also include sensors, wearable devices
or application servers running e.g. machine learning algorithms.
The structure and teaching methodology of the course have been
described in detail in [7, 29].

This instance of the course involved 80 students with a heteroge-
neous background: 46% of the participants were Bachelors students
and 54% were Masters students from 5 different fields of study,

Team Composition in Software Engineering Project Courses SEEM’18, May 27-June 3 2018, Gothenburg, Sweden

Table 1: Concrete team composition criteria in the case study

Criterion Measure Total T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11
Team Size (A.1) Number of developers 80 8 7 7 8 8 7 7 7 7 7 7
Development & test
devices (A.2)

Amount of dev. devices 48 5 5 4 5 5 4 4 3 5 3 5
Amount of test devices 67 4 5 7 5 7 7 9 5 6 5 7

Balanced
software engineering
experience (B.1)

Instructor rating "Novice" 20 1 1 2 3 3 1 1 0 3 2 3
Instructor rating "Normal" 34 5 4 2 2 2 5 4 5 1 3 1
Instructor rating "Advanced" 24 1 2 2 3 3 1 2 2 3 2 3
Instructor rating "Expert" 2 1 0 1 0 0 0 0 0 0 0 0

Project priority (C.2) Avg. priority overall — 5.04 6.26 6.03 4.08 9.39 6.01 4.15 8.51 5.46 5.33 5.75
Avg. priority in project team — 1.38 1.57 1.14 1.13 4.00 1.29 1.00 4.57 1.71 2.00 1.14

Gender distribution (D.1) Female participants 12 1 1 1 2 1 2 1 0 1 1 1
Language skills (D.2) Non-German-speakers 26 4 2 0 3 4 2 2 4 2 2 3

including two engineering degrees without a big proportion of
computer science courses in their curricula. Moreover, we had a
ratio of roughly 1/3 foreign or exchange students for whom we had
little or no information about their prior courses and experiences.

In order to prepare the participants for their projects, we held a
week-long introductory course in which we taught them iOS devel-
opment. The introductory course contained homework assignments
corrected by tutors. Following this, we held a Kickoff meeting on 20
October 2016 in which the customers presented their problems to
all participants. Based on these presentations as well as the project
descriptions, the students prioritized the projects and provided us
with the information needed for our team composition process. In
addition, we collected short statements from the tutors for each
participant regarding their performance in the introductory course,
which we used to verify the self-reported information to create a
more accurate instructor rating as described in Section 4.

We assigned the 80 developers to 11 teams. Table 1 shows the
concrete values for each criterion used in the process, both for
the overall set of participants as well as for the resulting project
teams. Schedule flexibility (Criterion A.3) and project requirements
(Criterion B.2) could not be quantified and are thus not represented
in the table.

We created teams of 7-8 developers with a minimum of 4 test
devices (iPhones or iPads) and 3 development devices (MacBooks)
based on the average number of devices in the course overall. With
regard to skills, we assigned an instructor rating to each student
as described in Section 4. We then used these ratings to distribute
skills equally among the project teams, balancing novice students
with teammates who have advanced or expert knowledge while
keeping in mind to staff projects with special requirements accord-
ingly. Finally, we took care of distributing genders and non-German
speakers so that our personal criteria were fulfilled in most teams.
In T8, we broke the female participant constraint; although it would
have been possible to assign at least one female to each team be-
cause 12 were registered in the course, this team already had the
lowest average priority and we did not want to deteriorate it further.
The team composition process took 4.2 hours and was done by 3
instructors.

Each team was led by a duo of project leader who is a doctoral
candidate, as well as a team coach, a student who has taken the
course before and helps the development team with regard to com-
munication and agile practices. The iPraktikum ran for 15 weeks

and finished on 2 February 2017. The results of the course, includ-
ing a short description of the projects as well as recordings of the
students’ presentations are available online.2

5.2 Methodology
After the end of the course, we sent out an anonymous question-
naire to all developers as well as team coaches. The questionnaire
was composed of the following parts:

(1) Project Satisfaction A rating of the respondent’s overall
experience in their project on a scale from 1 to 10,

(2) Team Synergy a set of questions to determine their per-
ceived team synergy, and

(3) Description of problems in the team an open-ended ques-
tion asking participants to describe at least one problem
occurring in their project team.

The scale for 2) was adapted from the team effectiveness audit
tool presented in [4]. We selected the questions from the Team
Synergy section, except those who do not apply in the context of a
university course, such as the team being valued by other parts of
the organization. We ended up with the following 5-Point Likert
items for the Team Synergy Scale:
• There was a common sense of purpose for this team.
• Members were clear about their roles within the team.
• There was effective communication within the team.
• I felt valued as an individual member of the team.
• Morale within the team was high.
• There was effective and appropriate leadership within the team.
• All individuals performed to the best of their ability within
the team.

We sent the questionnaire after the projects were finished, but
before the students received their grades to avoid influencing their
answers through the final assessment. We emphasized that the
questionnaire was anonymous on a team level and that we would
strictly not use the provided information for grading.

5.3 Results
We received 81 responses to the questionnaire, which amounts to
a response rate of 89% (minimum 50% of each team). We analyzed
students’ project satisfaction and team synergy scores on a team

2http://www1.in.tum.de/ios1617

http://www1.in.tum.de/ios1617

SEEM’18, May 27-June 3 2018, Gothenburg, Sweden D. Dzvonyar et al.

level, followed by an analysis of the open-ended responses of all
respondents.

5.3.1 Team-level analysis. As a first step, we calculated the Team
Synergy Score (TSS) of each respondent on a summated scale from
the 7 items, giving us a score between 5 and 35 with a median at
28 and the mean TSS at 27.9. Cronbach’s alpha for the sample was
0.88, which points to good internal consistency of the items in the
scale across respondents [26]. The Project Satisfaction Score (PSS)
did not need further processing since it had already been collected
as a single score between 1 and 10. The median PSS was 8, and the
mean score was 8.1. Figures 3 and 4 visualize the mean as well as
the standard deviation for both PSS and TSS by team.

Upon examining the data, we identified the teams T6 and T7 as
‘problematic teams’ in the scope of our case study, as they received
noticeably lower averages for both PSS (5.3 and 7.0) and TSS (21.3
and 21.9, respectively). Moreover, the variance of both scores was
higher than for the other teams, suggesting a low level of agreement
between team members. A Kruskal-Wallis Test run on the Project
Satisfaction Score yielded a significant result (χ2 = 27.209,p =
0.0024), and a post-hoc analysis was conducted to determine which
of the 11 teams differed significantly from each other. We performed
a Benjamini-Hochberg-adjusted Dunn Test because of its support
of groups with an unequal number of observations. The results
of the post-hoc analysis revealed a significant difference between
both ‘problematic teams’ T6 and T7 to T8, which was the team with
the highest PSS. In addition, T6 also differed from two other teams,
namely T1 and T10. The fact that the post-hoc analysis did not
yield more significant results is due to the large number of groups
compared and the relatively small amount of subjects per group.
We confirmed our initial observation with the two project leaders
and team coaches, who agreed that there were recurring issues in
their teams.

Allianz BMW BSH iHaus LMU McKinsey
T1 T2 T3 T4 T5 T6

Team	Average 8,85714286 8,5 8 8,125 8,14285714 5,25
Variance 1,47619048 0,85714286 1,14285714 0,69642857 0,80952381 7,642857143
StdDev 1,21498579 0,9258201 1,06904497 0,83452296 0,89973541 2,764571783
Min 7 7 7 7 7 2
Max 10 10 10 9 9 8
Summated	Score	(Team	Avg) 29,9 29,9 27,6 24,9 29,0 21,3
StDev 2,45 3,24 1,62 3,63 2,00 7,20
Min 27 26 25 19 27 8
Max 33 34 30 30 32 28

Row	Labels
2
3
4
6
7
8
9
10
(blank)
Grand	Total

1

Project	
Satisfaction

Team	
Efficacy

8,1

1
2
3
4
5
6
7
8
9
10

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

A
vg

. P
ro

j.
Sa

tis
fa

ct
io

n
Sc

or
e

Figure 3: Average Project Satisfaction Scores (PSS) per team 2
3
4
5
6
7
8
9
10

27,9

5

10

15

20

25

30

35

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

A
vg

. T
ea

m
 S

yn
er

gy
 S

co
re

Figure 4: Average Team Synergy Scores (TSS) per team

Following this, we analyzed the distribution of project priorities
from the beginning of the course. As described in Section 5.1, the
students prioritized all 11 projects after the course Kickoff event.We
then took these priorities into account when assigning the students
to project teamswith the aim of giving each participant their highest
possible choice (Criterion C.2) as long as it does not conflict with
other criteria we have to take into account. The average project
priorities among all participants as well as the mean priority among
the members of the resulting project team after composition are
shown in Table 1.

Our analysis shows that T7, T4, T3 and T11 were ranked highest
in terms of priorities, with an average project priority between 1.00
and 1.14 in the composed project teams. T5 and T8 were staffed
with students who had prioritized those projects considerably lower,
with an average priority of 4.00 and 4.57, respectively. This was
unavoidable due to all course participants giving these two projects
a low priority.

5.3.2 Analysis of open-ended responses. We employed a provi-
sional coding technique [32] based on an initial set of codes we
developed from our set of team composition criteria described in
Section 3, and revised codes while we reviewed the responses. The
final set of codes as well as their frequency in the survey responses
is shown in Figure 5. The following codes are directly connected
to our team composition criteria: Scheduling difficulties (Crite-
rion A.3), inadequate skills of team members (Criteria B.1 and B.2)
and lack of motivation or uneven contribution (Criteria C.1 and C.2).
These codes occurred in just over one-third of the responses. 37%
of responses concerned communication within the team, which
was the most frequent code. These responses contained problems
connected to inefficient communication about tasks, a lack of direc-
tion in meetings, or issues with the feedback and discussion culture
within the team.

Following this, we examined whether the codes occur more
frequently in our previously identified ‘problematic teams’ T6 and
T7. Out of the total of 81 responses, 15 were from members of these
two teams, which is comparable to the response rate of the other
teams. The frequency of occurrence of each code divided into our
two sub-samples is shown in Figure 5. Although the responses of
T6 and T7 make up 18.5% of the overall data, they account for 25%
of occurrences of issues concerning team communication, and the
proportion is higher for lack of motivation or contribution and
personal relationships, with 37.5% and 75%, respectively.

5.4 Discussion
The aim of our case study was to examine which problems occur
in project teams and to critically reflect if and how these can be
influenced by the team allocation. We identified two teams that
differed from the others in their average satisfaction scores and
team synergy scores. The fact that the Kruskal-Wallis Test resulted
in a significant difference of these teams from some of the others
despite the large number of groups compared and the small number
of responses in each group lent statistical support to our initial
observation. We also received confirmation from the two project
leaders that there were more issues in the way those two teams
worked compared to the rest of the course.

Team Composition in Software Engineering Project Courses SEEM’18, May 27-June 3 2018, Gothenburg, Sweden

Looking at the priority the members of those teams gave the
project at the beginning of the course, our results do not show a con-
nection between mean priority of the assigned members and TSS or
PSS scores: T6 and T7 did not consist of students who had ranked
those projects lower; T7 was even the only team that consisted
exclusively of people having given the project their top priority.
Conversely, the teams T5 and T8 that had the lowest project rank-
ings amongst their members did not end up with a lower PSS or
TSS than the higher-prioritized teams; T8 even had the highest TSS
of all teams! This suggests that those teams did not feel less moti-
vated or satisfied with their project. One could draw the conclusion
that the project priority does not influence students’ experiences
in project courses at all. However, we think that this is only partly
the case.

With regard to how students prioritize projects, our experience
shows that high average project priority is dependent on the follow-
ing factors: the quality of the kickoff presentation by the customer,
the clarity of the presented problem and the perceived achievability
of a solution. The teams with lower ratings were lacking in at least
one of these factors: while T8 had an interesting and clear problem,
the poor presentation and questionable achievability led to an over-
all low priority of this project. In comparison, T5 had a high-quality
customer presentation, but the problem was so vague that this also
led to a low average priority among the course participants. While
these factors influence participants’ priorities, they have little effect
on their experience in later stages of the project. We think that the
project priority is a motivational hygiene factor as described in Sec-
tion 3.3, and our experience shows that students react much more
strongly to being assigned to a low-priority team in recent years
than when we started teaching project courses. Getting assigned to
a high-priority project affects the initial motivation of participants;
it helps teams to start strong [5] and prevents early dropouts of
unsatisfied students. However, we sent out the questionnaire after
the course, which gave us insight into their experience as a whole.
Further investigation is necessary to empirically validate the impact
of project priority on students’ experience, with a focus on the first
weeks of the project. Our experience shows that project motivation
is even gaining importance: Students who end up in a low-priority
team show a much stronger reaction now than they did ten years
ago, and we have 1-2 dropouts due to the project assignment at
the beginning of each course. One could argue that Millennials put
a larger emphasis on being intrinsically motivated to work on a
particular problem.

0

5

10

15

20

25

30

35

S
c
h

e
d

u
li
n

g

d
if

fi
c
u

lt
ie

s

In
a
d

e
q

u
a
te

s
k
il
ls

 o
f

te
a
m

m
e
m

b
e
rs

L
a
c
k
 o

f
m

o
ti

v
a
-

ti
o

n
 o

r
u

n
e
v
e
n

c
o

n
tr

ib
u

ti
o

n

P
e
rs

o
n

a
l
re

la
-

ti
o

n
s
h

ip
s
 w

it
h

in

th
e
 t

e
a
m

C
o

m
m

u
n

ic
a
ti

o
n

w
it

h
in

 t
h

e
 t

e
a
m

C
u

s
to

m
e
r

o
r

m
a
n

a
g

e
m

e
n

t

T
e
c
h

n
o

lo
g

ie
s

in
v
o

lv
e
d

 i
n

th
e
 p

ro
je

c
t

N
u

m
b

e
r

o
f

o
c

c
u

rr
e

n
c

e
s

Responses from T6, T7 ('problematic teams') Responses from T1, T2, T3, T4, T5, T8, T9, T10, T11

Figure 5: Comparing frequency of codes in responses from
members of ‘problematic teams’ to the rest of participants

The analysis of the open-ended responses supports our intuition
that the overall experience during the course as well as the quality of
teamwork depend on a number of factors over the whole duration of
the project. Not all of these factors are connected to the composition
of the team, hence we cannot prevent all issues that can arise
over the course of the project through the team assignment alone.
However, three of the codes present in participants’ responses
can indeed be clearly mapped to our criteria, and others are also
likely to be affected by the team composition: for instance, personal
relationships within the team as well as communication depend
strongly on the members of the team. Both of these codes occurred
on average more frequently in our two ‘problematic teams’ than in
the others, and it is reasonable to argue that they are in connection
with the lower perceived team synergy and project satisfaction of
team members.

It is also noteworthy that scheduling difficulties, inadequate skills
of team members, challenges related to the customer, management
problems and issues concerning technologies involved in the project
did not occur more frequently in the two teams with lower TSS
and PSS scores. The question whether these factors are noted by
participants but have less influence on their course satisfaction than
other issues remains open.

Finally, a recurring pattern in respondents’ comments was the de-
scription of a problem that occurred at the beginning of the course,
but the team resolved it as they got used to working together. While
a structured, balanced team allocation process does not prevent all
problems or leads to an overall less workload for the team mem-
bers, we think that we are creating a strong starting point for the
teams and establish an atmosphere in which course participants
can contribute to the best of their abilities.

5.5 Validity
One of the threats to validity of this evaluation is that not all stu-
dents are experienced and mature enough to identify issues in their
team or to assess team synergy. Where possible, we verified the
participants’ perspective through conversations with the project
leaders and team coaches. An additional bias is introduced by the
fact that some respondents might have been influenced by their
desire to impress the instructors in order to receive a better grade.
We reduced this threat by stressing that the questionnaire was
anonymous on a team level, but a certain bias can still remain.

The fact that we did not have a control group limits empirical
support for our findings. Introducing a control group would have
meant composing part of the teams at random or deliberately cre-
ating teams that do not conform to our standards, which is a risk
we did not want to take considering the importance of students’
learning experience and the quality of the project outcome for the
industry partners. We grounded the individual criteria in academic
literature and based the process on our long-standing experience
conducting project courses to strengthen the basis of our approach.

6 CONCLUSION
In this paper we presented a set of criteria for composing teams
for software engineering project courses, categorized into practical
constraints, skill distribution, motivational factors and personal
criteria. We introduced the process we use to assign participants to

SEEM’18, May 27-June 3 2018, Gothenburg, Sweden D. Dzvonyar et al.

project teams and described where we get the required information
from. Finally, we used a concrete multi-project course on mobile ap-
plication development to instantiate our team composition process
and to critically reflect on the effect of our criteria on participants’
experience in the course. We determined that the priorities of mem-
bers of ‘problematic teams’ were not lower than those of the others
and thus conclude that project priority is most likely a hygiene
factor impacting the motivation at the beginning of the project,
which is gaining importance in the Millennial Generation. We rec-
ommend instructors to take into account the priorities of course
participants nevertheless, as high motivation in the beginning gives
the teams a strong starting point and helps to prevent participants
from dropping out. We are planning further studies to get a more
accurate picture of participants’ experience in the first weeks.

Our analysis of the open-ended description of issues in the
projects shows that, on average, members of our two ‘problematic
teams’ reported more problems. Especially issues centered around
lack of motivation, interpersonal relationships and communication
within the team occurred more frequently in those teams. Commu-
nication was the most frequent code overall, which suggests that
follow-up studies are needed to further investigate how project
teams communicate and how instructors can help them prevent
problems in this area.

A next step in our research is the development of a semi-automatic
team composition decision support system that builds on the pre-
sented criteria. The goal is to increase the manageability of the
currently very complex and time-consuming process by presenting
an initial, algorithmically optimal team composition to the instruc-
tors; they can then adapt this based on their intuition and knowl-
edge, thus creating a balance between algorithmic performance and
human experience.

ACKNOWLEDGMENT
The authors would like to thank everyone involved in the iPrak-
tikum who agreed to participate in our research.

REFERENCES
[1] Tero Ahtee and Timo Poranen. 2009. Risks in Students’ Software Projects. In

CSEE&T ’09. IEEE, 154–157.
[2] Victor R Basili. 1996. The role of experimentation in software engineering: past,

current, and future. In ICSE ’96. IEEE, 442–449.
[3] Cecilia Bastarrica, Daniel Perovich, and Maira Marques Samary. 2017. What can

Students Get from a Software Engineering Capstone Course? ICSE ’17 .
[4] Billy Bateman, F. Colin Wilson, and David Bingham. 2002. Team effectiveness –

development of an audit questionnaire. Journal of Management Development 21,
3 (apr 2002), 215–226.

[5] Ivana Bosnic, Igor Cavrak, Marin Orlic, and Mario Zagar. 2013. Picking the right
project: Assigning student teams in a GSD course. In CSEE&T ’13. IEEE, 149–158.

[6] Ivana Bosnić, Igor Čavrak, Marin Orlić, Mario Žagar, and Ivica Crnković. 2011.
Student motivation in distributed software development projects. In CTGDSD
’11. ACM, 31–35.

[7] Bernd Bruegge, Stephan Krusche, and Lukas Alperowitz. 2015. Software Engi-
neering Project Courses with Industrial Clients. ACM TOCE 15, 4 (2015), 17.

[8] L.F. Capretz and F. Ahmed. 2010. Making Sense of Software Development and
Personality Types. IT Professional 12, 1 (jan 2010), 6–13.

[9] L. F. Capretz. 2002. Implications of MBTI in software engineering education.
ACM SIGCSE Bulletin 34, 4 (dec 2002), 134.

[10] Luiz Fernando Capretz. 2003. Personality types in software engineering. Interna-
tional Journal of Human-Computer Studies 58, 2 (feb 2003), 207–214.

[11] G.A. Dafoulas and L.A. Macaulay. 2001. Facilitating group formation and role
allocation in software engineering groups. In AICCSA ’01. IEEE, 352–359.

[12] Norman Fenton and James Bieman. 2014. Software Metrics: A Rigorous and
Practical Approach, Third Edition (3rd ed.). CRC Press, Inc., Boca Raton, FL, USA.

[13] N. Fenton, S.L. Pfleeger, and R.L. Glass. 1994. Science and substance: a challenge
to software engineers. IEEE Software 11, 4 (jul 1994), 86–95.

[14] L. Fernández-Sanz and Sanjay Misra. 2012. Analysis of cultural and gender
influences on teamwork performance for software requirements analysis in
multinational environments. IET Software 6, 3 (2012), 167.

[15] Sally Fincher, Marian Petre, and Martyn Clark (Eds.). 2001. Computer Science
Project Work. Springer, London.

[16] A.C.C. Franca, T.B. Gouveia, P.C.F. Santos, C.A. Santana, and F.Q.B. da Silva. 2011.
Motivation in software engineering: a systematic review update. In EASE ’11.
IET, 154–163.

[17] Carlo Ghezzi and Dino Mandrioli. 2006. The Challenges of Software Engineering
Education. Springer Berlin Heidelberg, 115–127.

[18] Narasimhaiah Gorla and Yan Wah Lam. 2004. Who should work with whom?
Commun. ACM 47, 6 (jun 2004), 79–82.

[19] J.V. Harrison. 1997. Enhancing software development project courses via industry
participation. In CSEE&T ’97. IEEE, 192–203.

[20] Sallie Henry. 1983. A project oriented course on software engineering. In SIGCSE
’83. ACM, 57–61.

[21] Sallie Henry, Nancy Miller, Wei Li, Joseph Chase, and Todd Stevens. 1999. Using
software development teams in a classroom environment. InACMSIGCSE Bulletin,
Vol. 31. ACM, 356–357.

[22] Frederick Herzberg. 2005. Motivation-hygiene theory. J. Miner, Organizational
Behavior I: Essential Theories of Motivation and Leadership (2005), 61–74.

[23] H.-R. Kang, H.-D. Yang, and C. Rowley. 2006. Factors in team effectiveness:
Cognitive and demographic similarities of software development team members.
Human Relations 59, 12 (dec 2006), 1681–1710.

[24] Edward P. Katz. 2010. Software Engineering Practicum Course Experience. In
CSEE&T ’10. IEEE, 169–172.

[25] A. B. Kayes. 2005. Experiential learning in teams. Simulation & Gaming 36, 3
(sep 2005), 330–354.

[26] Paul Kline. 2013. Handbook of psychological testing. Routledge.
[27] A. Y. Kolb, D. A. Kolb, A. Passarelli, and G. Sharma. 2014. On Becoming an

Experiential Educator: The Educator Role Profile. Simulation & Gaming 45, 2
(apr 2014), 204–234.

[28] A.J. Kornecki, I. Hirmanpour,M. Towhidnajad, R. Boyd, T. Ghiorzi, and L.Margolis.
[n. d.]. Strengthening software engineering education through academic industry
collaboration. In CSEE&T ’97. IEEE, 204–211.

[29] Stephan Krusche, Lukas Alperowitz, Bernd Bruegge, and Martin O. Wagner. 2014.
Rugby: an agile process model based on continuous delivery. In RCoSE ’14. ACM,
42–50.

[30] Patricia Lago, Joost Schalken, and Hans van Vliet. 2009. Designing a Multi-
disciplinary Software Engineering Project. In CSEE&T ’09. IEEE, 77–84.

[31] R. Lingard and E. Berry. 2002. Teaching teamwork skills in software engineering
based on an understanding of factors affecting group performance. In FIE ’02.
IEEE, S3G–1–S3G–6.

[32] Matthew B Miles, A Michael Huberman, and Johnny Saldana. 2013. Qualitative
data analysis. Sage.

[33] Amir Mujkanovic and Andreas Bollin. 2016. Improving learning outcomes
through systematic group reformation. In CHASE ’16. ACM, 97–103.

[34] Tom Nurkkala and Stefan Brandle. 2011. Software studio. In SIGCSE ’11. ACM,
153.

[35] Abhoy K Ojha. 2005. Impact of team demography on knowledge sharing in
software project teams. South Asian Journal of Management 12, 3 (2005), 67.

[36] Luis Daniel Otero, Grisselle Centeno, Alex J. Ruiz-Torres, and Carlos E. Otero.
2009. A systematic approach for resource allocation in software projects. Com-
puters & Industrial Engineering 56, 4 (may 2009), 1333–1339.

[37] J.S. Reel. 1999. Critical success factors in software projects. IEEE Software 16, 3
(1999), 18–23.

[38] José Gamaliel Rivera-Ibarra, Josefina Rodríguez-Jacobo, and Miguel Angel
Serrano-Vargas. 2010. Competency Framework for Software Engineers. In CSEET
’10. IEEE, 33–40.

[39] Hugh Robinson and Helen Sharp. 2010. Collaboration, Communication and Co-
ordination in Agile Software Development Practice. Springer Berlin Heidelberg,
93–108.

[40] Kurt Schneider, Olga Liskin, Hilko Paulsen, and Simone Kauffeld. 2015. Media,
Mood, and Meetings. ACM TOCE 15, 4 (dec 2015), 1–33.

[41] Thomas J. Scott, Lee H. Tichenor, Ralph B. Bisland, and James H. Cross. 1994.
Team dynamics in student programming projects. In SIGCSE ’94. ACM, 111–115.

[42] Todd Sedano, Arthi Rengasamy, and Cecile Peraire. 2016. Green-Lighting Pro-
posals for Software Engineering Team-Based Project Courses. In CSEE&T ’16.
IEEE, 175–183.

[43] C. Wohlin and B. Regnell. 1999. Achieving industrial relevance in software
engineering education. In CSEE&T ’99. IEEE, 16–25.

[44] Hee-Dong Yang, Hye-Ryun Kang, and Robert M Mason. 2008. An exploratory
study on meta skills in software development teams: antecedent cooperation
skills and personality for shared mental models. European Journal of Information
Systems 17, 1 (feb 2008), 47–61.

	Abstract
	1 Introduction
	2 Related Work
	3 Team Composition Criteria
	3.1 Practical Constraints
	3.2 Skill Distribution
	3.3 Motivational Factors
	3.4 Personal Criteria

	4 Team Composition Process
	5 Case Study
	5.1 Setting
	5.2 Methodology
	5.3 Results
	5.4 Discussion
	5.5 Validity

	6 Conclusion
	References

