
DWARF
Distributed Wearable Augmented Reality Framework

Technische Universität München, Chair for Applied Software Engineering
Prof. Bernd Bruegge Ph.D., Prof. Gudrun Klinker, Ph.D.

The Chair for Applied Software Engineering at the
Technische Universität München is doing research on
the field of Augmented Reality systems. Augmented
reality (AR) is a technology by which a user’s view
of the real world is augmented with additional infor-
mation from a computer model. Users can work with
and examine real world objects while receiving addi-
tional information about those objects or the task at
hand. Rather than pulling the user into the computer’s
virtual world, AR brings information into the user’s
real world, thereby building upon people’s visual and
spatial skills. AR constitutes a very promising new
user interface concept for many applications, e.g., in
medicine, exterior construction, interior design, the as-
sembly, maintenance, and repair of complex technical
objects, and games (as seen in figure 1).

From a software architecture point of view AR sys-
tems can be divided into a set of components that each
contribute a dedicated functionality to the whole sys-
tem.

Figure 1. Setup of a Game Application

The task was to find a solution where rapid proto-
typing with several researchers on different computers
should be possible. This way we wanted to accom-

modate the heterogeneous infrastructure of the chair
consisting of several Intel-based PCs and laptops with
Windows and Linux, Apple workstations and laptops,
and Compaq iPAQ PDAs. Additionally it should be
possible to integrate third party components such as
external trackers into the system. The solution to these
requirements a framework for component-based peer-
to-peer systems, called Dwarf. We model Augmented
Reality applications as distributed systems which form
spontaneously from mobile and stationary components.
Such a system can reconfigure itself at runtime by ex-
changing components and changing component config-
urations. As communication infrastructure we chose
CORBA.

Architecture. The Dwarf framework is based on
the concept of collaborating distributed services. The
services are interdependent and expose their require-
ments, called Needs, and offers, called Abilities, with
the help of service managers. On each network node of
a Dwarf system, there is one service manager; there
is no central component. The service manager controls
its local services and maintains descriptions of them.
Each service manager cooperates with the others in the
network to set up connections between services. Each
service has an xml description of its Abilities, Needs
and connectors (communication protocols). See figure
2. This concept extends the approach of the CORBA
Component Model (CCM) of required and offered in-
terfaces respectively event sinks and sources towards
more flexibility in the inter-service communication and
is part of the research efforts.

Each Ability has a set of attributes describing
quality-of-service parameters of that service. Likewise,
each Need specifies a predicate about the quality of ser-
vice it expects. This predicate is used by the service
manager to select abilities that can provide a sufficient
quality of service to satisfy a given need. This pred-
icate can also be used at runtime to ensure that the
desired quality of service is still provided.

1



ModuleCore

:Service

:Need

:Type

ModuleCore

:Service

:Ability

Figure 2. Services get connected by Needs
and Abilities

Implementation. The stationary computers are con-
nected together using standard 100 megabit ethernet;
the mobile computers (laptops and palmtop) are con-
nected using IEEE 802.11b wireless ethernet.

The Dwarf services are realized as separate pro-
cesses and threads within single processes. Distributed
middleware, consisting of CORBA and several Dwarf
service managers, connect the services together.

Upon startup, each service registers itself, via
CORBA, with its service manager running on the local
machine, which listens for connections on a well-known
TCP port. The middleware is lightweight enough to
run on the Linux-based palmtop as well as the full-
sized machines.

The service managers running on the different ma-
chines communicate with one another using SLP and
CORBA and set up connections between the services.
The services then use CORBA method calls or CORBA
notification service events to communicate.

The format of communication between the ser-
vices is specified in CORBA IDL. Some services have
CORBA interfaces with specified methods that are
called by other services; most, however, communicate
using CORBA structured events.

The implementation of the Dwarf service manager
uses the open-source OmniORB CORBA implemen-
tation 1, which is also used for the services written in
C++. Additionally, it uses OmniNotify, a CORBA No-
tification Service implementation based on OmniORB.
Both OmniORB and OmniNotify were cross-compiled
to Linux StrongARM so that the middleware could
run on the palmtop. Services written in Java use
OpenORB, an open-source Java CORBA implementa-
tion 2, and JavaORB, its predecessor, which was neces-
sary for the Java 1.1 virtual machine needed to control
the Cortona VRML browser under Windows.

To find services managed by other service managers,
the service managers use OpenSLP 3, an implemen-
tation of the Service Location Protocol SLP. This al-
lows services to be found based on type and named

1http://omniorb.sourceforge.net
2http://openorb.sourceforge.net
3http://www.openslp.org

attributes. OpenSLP can evaluate predicates based on
boolean expressions, including wild cards, which is used
to connect the matching needs and abilities based on
their predicates and attributes.

Tool support. As a general-purpose monitoring and
debugging tool, we implemented a tool that presents
a graphical view of the network of interconnected ser-
vices that dynamically changes when the system con-
figuration changes. It also allows developers to view
arbitrary event streams in the system, which proved
invaluable for debugging (see figure 3).

Figure 3. Monitoring and debugging tool for
distributed services

Using Dwarf, we have previously built Pathfinder,
an experimental system for campus navigation; Fata-
morgana for the visualization of prototype automo-
bile designs; Tramp for automobile repair; FixIt for
machine maintenance; and Paarti, prototype vehicle
construction. We also built Sheep, a multiplayer col-
laborative game (figure 1) with tangible user interfaces.
Finally, new projects based on Dwarf are underway.
At the time of writing, these include Archie, a collab-
orative architectural design system, Heart, a system
for cardiac surgery, and Pong, a set of simple Aug-
mented Reality games authored with a Python-based
scripting interface.

2



Benefits

Our project is the first that uses CORBA to realize
an Augmented Reality system. Since that first proto-
type in 2000 several others have been built based on
the described concept. To use CORBA as the under-
lying middleware had several advantages over alterna-
tives such as socket communication, Java RMI, SOAP,
DCOM, or proprietary solutions.

Platform and language independence. CORBA al-
lows us to develop our services in a broad range of
programming languages. In particular, we use C++,
Java, and Python. With CORBA we are free to chose
the development language from case to case. Usually
we chose programmin language and operating system
because we need to build against a third-party library
to implement a service. Currently we have a mixture of
services deployed on workstations and laptops running
Apple Mac OS X, Linux, and Microsoft Windows. We
even have services running on a Compaq iPAQ with
Linux.

Rapid prototyping. As we used the concepts of the
Dwarf framework, all developers were forced to use
components running as separate processes. This lead
to a clear and lean definition of the communication
between different components in CORBA IDL files.
In addition, the relationship between components of a
running system could be displayed dynamically. This
allowed us the very late integration of several student
developers in the overall process without the need for
lengthy documentation of the current system state, a
simple look at the debugging tool sufficed. In fact,
several people unfamiliar with the overall system were
given and completed successfully self-contained tasks
such as adding a collision detection component two
weeks before the final deadline of the overall system.

Use available hardware. CORBA is running on every
hardware and operating system that is already avail-
able at our chair. So we can concentrate on developing
the service functionality instead of thinking about the
best hardware/operating system combination for a new
system.

Integration of third-party hard- and software. The
implementation of Augmented Reality systems is very
laborious if every component should be built from
scratch. On the other side, there are several compo-
nents available from other research groups that could
be reused. Quite often these components require a

fixed runtime environment, porting would be to costly.
CORBA helps us to develop wrappers around these
components in the required programming language and
operating system.

Remote monitoring. As a general-purpose monitor-
ing and debugging tool, we implemented a tool called
the Dwarf Interactive Visualization Environment. In
analogy to visual programming interfaces in systems
such as AVS, this tool presents a graphical view of the
network of interconnected services that dynamically
changes when the system configuration changes. It also
allows developers to view arbitrary event streams in the
system, which proved invaluable for debugging. In ad-
dition, the tool let us explain the running system to
technically interested spectators and illustrate the dis-
tributed nature of Dwarf.

3


