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Abstract

Software engineering is hampered by the fact that soft-
ware systems quickly become so complex that they are
hard to understand, evolve and maintain. Closer integra-
tion of code and model helps, because the model serves as
a map to the code and the code fills in the details for the
model. Simultaneously, one avoids consistency problems.
TUBE, a programming language and an integrated envi-
ronment, achieves this integration by usingtopic mapsto
manage both code and data (including meta-data and non-
code artifacts). This enhanced expressiveness is comple-
mented by an interactive way of system construction that
cannot be achieved by static programming languages.

Keywords: Software Design and Development, Soft-
ware Development, Prototype-Based Object-Oriented
Programming, Model Integration

1 Introduction

One of the greatest problems in software engineering is
that a software system quickly becomes so complex that
it is hard to understand and thus to evolve and main-
tain. The usual solution is to provide the developer with
a formal or semi-formal description of themodel, a view
of the system at a high level of abstraction. The model
and code artifacts existing independently leads to several
problems, however: You cannot look up the details in the
code when reading the model and you cannot find out
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about design decisions when editing the code. Addition-
ally, separate evolution of the two kinds of artifacts sooner
or later leads to them becoming inconsistent. Then how
can we integrate code and model? There are two schools
of thought that answer this question: First, the “the model
is the code” faction consists of people who like the Uni-
fied Modeling Language UML or more generally, model-
ing. Model-Driven Architecture(MDA, [9]) is their way
of producing UML models that can be executed. Second,
the “the code is the model” faction is represented by var-
ious kinds of agile development methods,eXtreme Pro-
gramming(XP, [3]) being the most popular example. This
group wants to make the source code so expressive that
it clearly represents the concepts that have been imple-
mented in it. Both schools have their problems: in MDA,
a lot of complexity is hidden in generators. When having
to adapt them, one is back to writing regular source code,
in a manner that is much more difficult than regular cod-
ing. In XP, the expressiveness of normal source code is
rarely enough for clearly displaying all of the modeling
knowledge.

The core idea of our programming language and inte-
grated environment TUBE is to let model and source code
live in the same space. To express modeling concepts, we
turn to a data structure that comes from the field of knowl-
edge representation:topic maps[4]. If we start with a
topic map to express our concepts and then add code to
make them executable, we get a light-weight version of
MDA, without inheriting its complexity. In spirit, TUBE

is also closely related toliterate programming[8].

The code structure is laid out using the two basic con-
structs from topic maps, topics and associations. Topic
maps being graph-based, these correspond to nodes and
edges in graphs. Different semantic aspects of the code



can be modeled by annotating topics and associations with
semantic information. This leads to our semantics being
very flexible and declarative. With this preparation, all
kinds of data can be integrated with the code and we get
the following benefits: Tracing and linking between code
and non-code artifacts is easy; further annotations (read:
meta-data) of the code do not interfere with its execution
(seemulti-dimensionalityin [11]); and we can use an ar-
senal of existing topic map tools to present, manage and
query our inter-linked software system.

The fine-grained and explicit way of representing code
gives us an “assembly language” for code structure where
many aspects can be modeled and queried using just a few
atomic constructs. On the other hand, it is now the respon-
sibility of an editor tool to shield the programmer as much
as possible from unnecessary details and to give meaning-
ful visualizations (at varying levels of abstraction) of the
structure (see Sect. 5).

When programming in our integrated development en-
vironment (IDE), we wanted to have a feeling of interac-
tivity that resembles how modeling and ontology building
happens. Static programming languages such as Java [6]
have great IDEs, but these are mainly supporting a static
view of a system. We therefore turned to the dynamic
programming languageSelf [12] for inspiration: TUBE

copies many of its semantic concepts and its way of inter-
active program construction.

The rest of the paper is organized as follows: We first
give an informal overview of the semantics (Sect. 2). Due
to space constraints, the formal definition of the semantics
can only be sketched (Sect. 3). Sect. 4 shows advanced
ways of modeling structure in TUBE. Sect. 5 presents our
implementation of TUBE. The paper concludes (Sect. 8)
after outlining related (Sect. 6) work and our comprehen-
sive future research (Sect. 7).

2 Programs as Hyper-Graphs

In this section we informally introduce the elements of the
TUBE programming language and describe the structure
of a program, the message dispatch algorithm and the role
of the embedded program language.

2.1 Topic Maps

Topic mapshave their origin in knowledge representation
and the semantic web and are therefore strongly focused
on describing domain knowledge. They are standardized
as ISO-Standard ISO/IEC 13250 [4]. Topic maps consist
of three main concepts (so-calledtopic map items): topics,
associations and occurrences.Topicsare used to represent

a subject(any real-world “thing” or conceptual entity).
Topics are related to each other throughassociations. As-
sociations are labeled by a set ofrole names, one for each
topic that they relate. To provide topics with attributes
(e. g., to link to documents or other additional informa-
tion), one can attachoccurrencesto them. An occurrence
is a (key,value) pair where the value is either a reference
to a (conceptual or real-world) resource or a literal. As-
sociations and occurrences can themselves be represented
as topics for further annotation through associations. This
so-calledreification enables meta-descriptions to be part
of the topic map object level. For further information on
topic maps, consult [10].

2.2 Topics and the Embedded Program-
ming Language

In TUBE, all programming elements such as methods,
data objects and prototype objects are represented by top-
ics. There are two main kinds of topics: First,content top-
icsstore information and can be evaluated; we do not dis-
tinguish between code, literals and expressions. Second,
primitive topicsstore primitive language constructs that
are not available via theembedded language(see below).
An example is the setter primitive that replaces an existing
child by a new one (the association stays the same).

The embedded programming language1 provides the
basic data objects as well as the syntax for defining the
content of a method. With this approach, we are able to
separate the structure of a program (which is handled by
the topic map) and the algorithms and expressions (which
are provided by the embedded language). As we will point
out in the following chapters, this leads to a very expres-
sive programming style which enables the developer to
much better integrate model aspects of the software with
code than would be possible without the use of graphs.

2.3 Associations and Message Dispatch

In the TUBE prorgamming language, program execution
is graph traversal initiated by messages. Message dispatch
comprises two major steps: Finding the right topic and
evaluating it. Therefore, two primitive semantic opera-
tions are used, thelocate() and theeval() operation (see
Sec. 3). To control message dispatch, four different kinds
of associations determine semantic behavior:child, dele-
gate, parentandassociateassociations (Fig. 1). All of the
associations can have a name and additionally be tagged
asshared. Note that whenever we talk about a delegate

1In our implementation, we use Python as the embedded language



or a child etc., we mean the topic that the corresponding
association points to.

2.3.1 Finding a Topic

A message consists of a name and a set of parameters.
If we send a message to a topic, we want to find a child
whose association name matches the message name. This
is the topic that we need to evaluate.

obj2

obj1
D: sh

"Class"

"Instance"

D: delegate
C: child
P: parent
A: associate data "Member"

P:C: x

assoc

"Associate"A: y

Figure 1: Structuring objects in a TUBE graph: Constructs
like the class-instance relationship or relations to mem-
bers and associated objects are modeled explicitly in the
graph

2.3.2 Evaluating a Topic

To evaluate a topic,eval() is invoked on that topic. As
a first step, the parameters that come with the message
(e. g., a dictionary{x = 10, y = 7}) are destructively set
as the topic’s children. During the execution of the em-
bedded language code, the program has access to all of its
direct children and associates and thus to the parameters
as well.

2.3.3 Sending a Message and Delegation

In the simplest case, the topic that has received the mes-
sage has a child whose name matches that of the mes-
sage. Then the child is copied by thelocate() operation
andeval() is executed in place. The copying is done to
create fresh instances of the parameter variables for each
invocation. If the topic has no child with the name given
in the message,locate() searches recursively for a match-
ing child among the delegates (see Fig. 2). When the cur-
rently searched topic has no more delegates, the parents
and their delegates are searched.

The distinction between parents and delegates (see
Fig. 3) can be seen as the distinction between nesting
and inheritance: If topics are nested (associated with a
parent-association) the found topic stays in its context
(lexical scope) by being copied to where it was found dur-
ing locate(). If a topic is a delegate of another topic, the
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Figure 2: Recursive searching for a matching child fol-
lowing the delegates hierarchy implementing inheritance
and class membership.

found child is copied to the entry point of the message (the
topic that it was originally sent to) and uses therefore the
entry point’s context (parents etc.). Note that by copying
nodes this way, we are building the static context of code.
There are two points where dispatching can begin: At the
me-topic (the entry point) and theglob topic that manages
the global namespace.

                                                   delegation
nesting
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Figure 3: Hierarchy of nesting and delegation: Delegates
are searched for a matching child first, then the parents
and their delegates.

2.3.4 Copying and Sharing

We use copying (cloning, [13]) of prototypes for object
creation rather than class instantiation. Copying is imple-
mented by a generic operation that is directed by associ-
ation annotations: When copies are made of a topic, the
sharedtag of an association determines if associated top-
ics are copied as well: Non-shared topics are copied (deep
copy, e. g., to model “instance variables” from the Java
world) and shared topics are associated to the same topic
as the prototype (shallow copy, e. g. for “static class vari-



ables”). This allows us to declaratively specify the copy
semantics of our objects.

3 Formal Semantics

To define the semantics of TUBE, we have split the lan-
guage into two parts: On one hand, theembedded lan-
guage is responsible for defining basic language con-
structs such as expressions, loops etc. On the other hand,
the structural languagedefines message passing, struc-
tural elements etc. This section gives a brief overview of
the operations that make up the semantics of the struc-
tural language. When used in the programming language,
these are also calledprimitives, the setter primitive being
the most prominent example. The embedded language is
Python (see Sect. 5.1); for its semantics, consult [14].

3.1 Atomic Semantic Operations

The following operations are the basic building blocks of
the semantics:

exec : Topic × Topic × Topic → Void
Evaluate the topic content either (1) in the embed-
ded language, passglob andmeas parameters or
(2) as a TUBE primitive

clone : Topic → Topic
Copy the topic/association including the annota-
tions

newTopic :→ Topic
Create a new topic. Associations are topics,
too. A separate relationassoc〈〉 stores triples
(topic,source,target).

3.2 Composite Semantic Operations

We define the following composite operations using rule-
basedstrategies(see next section):

locate : Topic × Msg → Topic
Find a topic, set up its context

eval : Topic × Params → Void
Assign the values given by the parameter dictio-
nary to the corresponding children, evaluate the
topic content

jmpToDynDelg : Topic × Msg → Void
Jump to the dynamic delegate, execute it in place

graphCopy : Topic → Topic
Copy a contiguous graph component

set : Topic × Msg × Value → Void
Assign a new value to the child of a topic

obj1

meth

sub1 sub2

obj2

meth

sub2

delegate

dynamicdelegate

Figure 4: Inobj2, we would like to override just the
sub-methodsub2 of meth. The two versions ofmeth are
connected by an implicit (and invisible) association called
a dynamic delegate. A box with bars indicates that this
topic is marked as having a dynamic delegate.

3.3 Strategies

Each composite semantic operation is defined by astrat-
egy, a named parameterized set of rewrite rules that have
functional guards and functional “where” definitions. A
strategy returns a value by adding the termreturn〈〉 to the
term store. If there are no rules that can fire, it is consid-
ered a failure of the operation. Due to space constraints,
we do not show the definitions of the semantic operations,
but instead demonstrate a smaller helper strategy below.
findMatchAtCurrentLevel() looks for a topic that has a
child whose name matches a message identifier. Terms are
written with angle brackets, functions with parentheses.

findMatchAtCurrentLevel(x, msg)
local: cur
rules:
→ cur〈x〉
assoc〈e, n, m〉, cur〈n〉 | name(e) = msg
→ return〈m〉, · · ·

assoc〈e, n, m〉, cur〈n〉 | isDelg(e)
→ cur〈m〉, assoc〈e, n, m〉

4 More Structural Modeling

In this section we slightly extend the feature introduced in
Sect. 2 and give examples of more sophisticated structural
modeling.

Sub-Methods and Nested Overriding. The idea is as
follows: Instead of having large monolithic methods with
sections that are named by comments, we turn each sec-
tion into a helper method that has just that (potentially
very long, but descriptive) name. If we iterate that pro-
cess, we get a tree of methods that call sub-methods. Ide-
ally, none of these methods has more than a few lines of



code (7 ± 2 pieces fit into short-term memory and can
thus be grasped at one glance). This practice is common
in XP and gives us a semantic skeleton of the program if
we ignore the source code and look only at the method
names. In contrast to Java and Self, TUBE can represent
the tree explicitly, as lexical scope can be nested arbitrar-
ily. To really make this construct useful, though, we have
to provide for selective overriding of nested topics. To see
how this works, take a look at Fig. 4. We do not want
to override all ofmeth, justsub2. We need to solve two
problems if this is to work: First, children ofmeth in obj2
have to be able to find the children of the overriddenmeth.
Second, if the overriding topic calls the overridden one
(like send super calls in Java), overriding children have to
get called first.

To solve the first problem, one can mark a topic as “hav-
ing a dynamic delegate”. From now on, this topic is con-
nected to its dynamic delegate via a virtual delegate as-
sociation. We compute its target by searching among the
delegates of the parent for a child that has the same name
as the source topic. Note that the delegates of the parent
could be recursively dynamic, leading to general applica-
bility of this principle. Having this kind of dynamic del-
egation helps to avoid too many explicit associations and
keeps our program structure flexible. The second problem
is solved by providing an operationjmpToDynDelg that
executes the delegatein place2. It then sees the overriding
children before its own.

Packages and Method Groups. Modeling nested
namespaces—as needed for packages (modules)—is easy
in TUBE. One just adds intermediate associations: For ex-
ample, if there is a global objectglob.obj that we want to
put into a namespace calledpkg, we add an empty topic.
It becomes a child calledpkg of glob and has the ob-
ject as a child calledobj. We can even make the names-
pacepkg show up only when browsing the program: it
becomes invisible to message dispatch if we use a delega-
tion association (instead of a child one) fromglob topkg.
In the same manner, we can structure objects by naming
groups of related methods.

5 Implementation

Currently, the prototype of the TUBE implementation is
split into two parts: A front end, the Tube Editor, that
browses and modifies a TUBE topic map. And a back end
that loads and interactively executes a program.

2Internally, we copy the dynamic delegate “before” the delegating
topic and point to it with a delegation association.

def fun(glob,me):
    print "Hello:",me.x(),"!"

child: foo

3

child: x

PrimSetter()

child: _x

Figure 5: The root topic is the object, it has no content. Its
child foo is a method.foo’s child x contains the default
value for a parameter, whereas childx allows one to as-
sign a value tox via the primitive operationPrimSetter.
We are not showing the parent associations.

>>> from tube import TubeEnvironment
>>> env = TubeEnvironment()
>>> env.read("paper-demo.tube")
>>> env.glob.foo(x="world")
Hello: world !
>>>

Figure 6: Executing the program from Fig. 5 from the
Python command line.

5.1 Back End: Python

The back end is seamlessly integrated into the dynamic
language Python which becomes the runtime environment
of TUBE: After having started the Python command line
and imported the TUBE Python module, one can load a
serialized version of a TUBE program. Afterwards, every
TUBE topic is represented by a Python object and serves
as an interface between the world of Python and the world
of TUBE. Accessing an attribute of a topic starts thelocate
algorithm and, if successful, returns another topic.eval is
started by putting arguments in parenthesis behind a node.
Example:glob.foo() first locates the childfoo of node
glob and then evaluates it. Evaluation jumps back into
the Python world; executable code is always defined as a
Pythonfunction that has the twoPythonargumentsglob
andme. These are TUBE topics and are the ticket back
into the TUBE world. Accordingly, eachTubeparameter
x is accessed viame.x. Fig. 5 shows a small example with
Python source code, Fig. 6 the interaction with the Python
interpreter to run it.

5.2 Front End: TubeEditor

The front end is a separate application for editing, brows-
ing and visualizing TUBE programs (Fig. 7). Browsing



Figure 7: The window on top shows the example from
Sect. 5.1 in the TUBE editor: the widget on top is a
Smalltalk-style structural browser. The bottom left shows
a list of all topics and the bottom right is for editing top-
ics and associations. On bottom, a window from the
GraphViz application contains a visualization that has
been exported by the editor.

means traversing the child and delegate structures. In edit-
ing, one configures topics and associations. For visualiza-
tion, TubeEditor relies on the external GraphViz applica-
tion from AT&T. The editor is implemented in Objective
C using the Cocoa framework of Mac OS X.

6 Related Work

The notion of having a runtime environment in which one
can interactively construct programs and mix code with
data is obviously not new. Examples of programming lan-
guages that have found very elegant ways of providing
these facilities are: Lisp [7] and Self [12]. Especially the
latter inspired our semantics for graphs. Self is a very ma-
ture development environment and many considerations
have gone into performance optimizations. Conversely,
TUBE is a prototype with emphasis on model integration
and dynamic execution. Language features of TUBE that

are new compared to Self are: nested lexical scope, dy-
namic delegates for nested overriding and complete uni-
formity of methods and objects as universal closures.

AHEAD Algebraic Hierarchical Equations for Appli-
cation Design[2], a framework for large-scale gener-
ative programming has influenced the way TUBE will
support multiple artifact kinds and flexible composition.
AHEAD’s focus on large-scale static generative program-
ming is different from TUBE’s preference for dynamic
features and flexible modeling.

Starting with Java “Tiger” 1.5, Java also gets meta-data
facilities [5] that point in the direction of model integra-
tion and are used for generative programming.

7 Future Research

We anticipate the following milestones in developing
TUBE:

Pure Java implementation.We are going to implement
the current prototype in Java, using “Jython”, the Java im-
plementation of Python. Browsing, searching and visual-
ization abilities will be greatly extended and persistence
is going to be completely topic-map-based.

Aspect-oriented programming (AOP).Nested overrid-
ing already gave a glimpse at full-featured support. We
need to investigate how an existing program can and
should be modified when adding an aspect. As an added
benefit, using graph composition for applying aspects will
allow us to compose both code and data.

Component-based programming.We are going to use
the constructs introduced by the last stage and some of the
modeling abilities that are already there to permit grey-
box components and invasive composition [1]. We don’t
have the dichotomy between instances and class that is
found, for instance, in Java. And our way of using asso-
ciations is quite compatible with the connectors-and-ports
approach used by the component community.

Meta-Programming.TUBE only having topics and as-
sociations as basic constructs is going to help us towards
designing a very simple and elegant meta-protocol. Re-
flection will benefit in the same manner. Finally, the flexi-
bility and non-obtrusiveness of annotations in topic maps
lead to perfect hooks and parameters for meta programs.

Type system.It is clear that much functionality that
should be part of a standard library, such as graph traver-
sal, would profit greatly from a type system and related
mechanisms such as multiple dispatch (used in languages
such as Common Lisp [7]). Ideas in this area include
light-weight types, inferred interfaces and stateful multi-
methods.



Further IDE enhancements.Leverage TUBE’s expres-
siveness to manage a complete software development
process (requirements engineering, issue tracking, cross-
model annotations etc.); persistent snapshots of the sys-
tem for version control and for import and export of “mod-
ules”; UML integration.

8 Conclusion

In this paper, we have presented TUBE, a program-
ming environment that integrates code and knowledge-
representation-based data. This leads to many synergies:
it allows us to express more modeling knowledge di-
rectly in the software system; we can integrate all artifacts
that are relevant to its understanding; and code structure
can be explored using professional knowledge represen-
tation tools. Picking the dynamic programming language
Python as meta and object language of our prototype al-
lowed us to write meaningful programs right from the
start.
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