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Abstract—Developers make various decisions during software
development. The rationale behind these decisions is of great
importance during software evolution of long living software
systems. However, current practices for documenting rationale
often fall short and rationale remains hidden in the heads
of developers or embedded in development artifacts. Further
challenges are faced for capturing rationale in OSS projects; in
which developers are geographically distributed and rely mostly
on written communication channels to support and coordinate
their activities. In this paper, we present an empirical study
to understand how OSS developers discuss rationale in IRC
channels and explore the possibility of automatic extraction of
rationale elements by analyzing IRC messages of development
teams. To achieve this, we manually analyzed 7,500 messages of
three large OSS projects and identified all fine-grained elements
of rationale. We evaluated various machine learning algorithms
for automatically detecting and classifying rationale in IRC
messages. Our results show that 1) rationale is discussed on
average in 25% of IRC messages, 2) code committers contributed
on average 54% of the discussed rationale, and 3) machine
learning algorithms can detect rationale with 0.76 precision and
0.79 recall, and classify messages into finer-grained rationale
elements with an average of 0.45 precision and 0.43 recall.

I. INTRODUCTION

Developers make various decisions during software devel-
opment. The rationale behind these decisions including raised
issues, proposed alternative solutions and arguments for or
against implementing specific alternatives is of great importance
during software maintenance and evolution. Rationale provides
a profound reasoning of why the system is designed the
way it is [26]. Documented rationale is a type of developer
documentation, an umbrella term recently coined by Robillard
et al. [36] for documents intended to assist developers in the
creation and maintenance of the system. It is considered among
the most useful information for developers during software
maintenance [25]. Rationale helps developers understand the
intent behind past decisions [20]. Time and development efforts
can be saved by documenting alternatives visited and rejected
earlier [13]. In addition, captured rationale enhances software
artifacts traceability, change impact analysis and facilitates
design verification, and knowledge sharing [21].

Missing rationale information has negative impacts on
software development, as “developers often had to defer
tasks because the only source of knowledge was unavailable
coworkers.” [20]. However, developers are often hesitant to
capture rationale explicitly due to time and cost constraints
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and rationale remains tacit in developers’ heads or embedded
in development artifacts [13]. Capturing rationale becomes
more challenging in Open Source Software (OSS) in which
developers are geographically distributed and no clear design
documentation can be detected [6]. Developers in OSS projects
rely heavily on written communication to collaborate and
coordinate their development activities such as IRC channels,
mailing lists, and Wikis. Developers’ communications occurring
over these channels contain a wealth of information about
the software system such as design decisions [18], [20],
development history, and rationale [1], [2], [44].

Internet Relay Chat (IRC) channels are increasing in popular-
ity for synchronous communications in OSS projects [7], [11],
[19], [43]. Developers use IRC channels for discussing devel-
opment and implementation details and exchanging knowledge
and ideas with other developers [17], [45]. Mozilla Foundation
describes IRC as “the primary form of communication for
members of the Mozilla community”!.

While several prior studies have examined the general role
of IRC channels in OSS development [7], [17], [43], there
is still no empirical evidence of how OSS developers discuss
rationale in IRC messages. The following excerpt from the
Apache Lucene website reinforces our motivation for studying
rationale in developers’ IRC messages.

“The IRC channel can be used for online discussion
about Lucene related stuff, but developers should be
careful to transfer all the official decisions or useful
discussions to the issue tracking system.”?

This excerpt sheds light on two important aspects. First,
developers’ discussions over IRC channels might contain
valuable rationale about development decisions. Second, there
is no systematic methodology for transferring such knowledge
to official documentation artifacts (e.g., issue trackers for most
OSS projects) other than relying on the developers to transfer
it manually. As a consequence, potential rationale lying hidden
in IRC messages is rarely made explicit or taken advantage of.

In this paper, we present the results of an empirical study
conducted on IRC chat logs of three large open source projects.
Our objective is to investigate how developers discuss rationale
while communicating on IRC channels to analyze the potential

Thttps://developer.mozilla.org/docs/Mozilla/QA/Getting_Started_with_IRC
Zhttps://lucene.apache.org/core/discussion.html
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TABLE I: Rationale elements.

Rationale element Definition
(based on Kunz and Rittel

taxonomy [22])

Issue Problem that needs discussion and negotiation to
be solved. An issue typically can not be resolved
algorithmically and does not have a single correct
solution.

Possible solution that could address the issue under
consideration.

Positive reason supporting an alternative.

Negative reason against an alternative.

The alternative selected to resolve an open issue.

Alternative

Pro-argument
Con-argument
Decision

of automatically detecting rationale in these messages. The
contribution of this paper is threefold. First, we provide
quantitative evidence of rationale existence in IRC messages
and the frequency of different rationale elements by manually
analyzing 7,500 IRC messages from three OSS projects.
Second, we explore which developers contribute to rationale
in IRC messages. Third, we investigate the performance of
different machine learning algorithms when automatically
detecting rationale in IRC messages and classifying them into
finer-grained rationale elements: issues, alternatives, arguments,
and decisions. This study is a first step towards understanding
how OSS developers discuss rationale in IRC messages.

II. BACKGROUND AND RELATED WORK

In this section, we provide a brief background about rationale
in software engineering and discuss related work on two areas:
automated extraction of rationale and studies on IRC in open
source projects.

A. Rationale in Software Engineering

Rationale is the justifications behind decisions [13]. Many
representation models have been proposed in the literature to
capture different concepts of rationale. Kunz and Rittle were
the first to capture rationale as an issue model and proposed the

well-known IBIS (Issue Based Information System) model [22].

Other representation models emerged over the years, for
example, QOC (Question, Option and Criteria) [27], PHI
(Procedural Hierarchy of Issues) [28], and DRL (Decision
Representation Language) [24]. In this paper, we identify
rationale elements based on Kunz and Rittle taxonomy [22]. We
analyze the following rationale elements: issues, alternatives,
pro-arguments, con-arguments, and decisions. The rationale
elements and their definitions are listed in Table I. We focus
on these rationale elements as they form the basis for many
other rationale models.

B. Automated Extraction of Rationale

Capturing rationale is a challenging area in the field of
rationale management. Manual methods for capturing rationale
usually fail in practice due to high overhead. Another possible
reason is the gap between the developers documenting rationale
and the ones using it at later stages. This problem is commonly
known in literature as the capture problem [13].

In a recent work, Robillard et al. [36] advocate for a
new vision of an on-demand developer documentation (OD3),

which promotes using development artifacts for the automated
generation of developer documentation. The authors discuss
its opportunities and challenges and view it as a promising
research direction for software documentation. Sharing the
same vision, several researchers have addressed exploiting
available development artifacts for the automated extraction of
rationale. Liang et al. [26] propose an algorithm for capturing
design rationale from patent documents into a three layers
model consisting of issues, design solutions, and artifacts layers.
Myers et al. [30] propose a framework for producing a rich
design history by recording designers’ interactions. Rogers
et al. [38], [40], [39] investigate the use of ontology and
linguistic features for training machine learning models to
classify rationale into decisions, alternatives, and argumentation
from two types of documents: bug reports and design sessions
transcripts. Pascarella and Bacchelli [35] propose a taxonomy
for classifying code comments among which is implementation
rationale. The authors apply machine learning algorithms for
the automatic classification of code comments into the proposed
taxonomy. Bhat et al. [3] propose a supervised machine learning
approach for detecting and classifying architectural design
decisions in issue tracking systems. Our work differs in that
we focus on extracting rationale from short, unstructured
developers’ messages in IRC channels.

Brunet et al. [6] apply supervised machine learning tech-
niques for the automatic identification of structural design
discussions in issues, commits, and pull requests. In our work,
however, we focus on analyzing more general knowledge about
development rationale. A different perspective on studying
rationale is presented in the work of Kurtanovi¢ and Maalej [23]
in which the authors study rationale concepts in user online
reviews and investigate various machine learning approaches
for the automatic mining of user rationale. However, we focus
on studying rationale from the developers perspective. In
our previous work [2], we explore rationale in developers
chat messages and the potential of using supervised machine
learning techniques for the automatic extraction of rationale.
The study presented in this paper differs in that we analyze IRC
messages of open source communities, while in our previous
work we studied chat messages exchanged during university
projects in settings more similar to commercial, closed-source
development.

C. IRC in Open Source Projects

Communication data in OSS projects is mostly recorded
and made publicly available, which attracted researches to
study their role in software development as a valuable source
of knowledge [18]. Yu et al. [48] investigate the use of IRC
(synchronous) and mailing list (asynchronous) communication
mechanisms in global software development projects. They
observe that developers actively use both as complementary
communication mechanisms. A growing body of literature
has analyzed developers communication over IRC channels.
Shihab et al. [42], [43] investigate the IRC meetings content,
participants, their contribution and communication styles.
Elliott and Scacchi [15] show that open source communities
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use IRC channels to mitigate and resolve conflicts and to
build a community. Elliott [14] studies how cultural beliefs
and values affect development processes in the organization.
Chowdhury and Hindle [9] propose an approach for the
automatic filtering of off-topic IRC discussions by exploiting
StackOverflow programming discussions and YouTube video
comments. Panichella et al. [34] investigate collaboration links
by analyzing communication data from mailing lists, issue
trackers, and IRC chat logs of seven OSS projects. Our work
differs in that we analyze a specific type of knowledge, namely
rationale, and the relation between development activities and
rationale contribution in IRC messages.

III. STUDY DESIGN

This section introduces the design of our empirical study.
We introduce our research questions and describe the different
phases of the applied research method: data collection, multiple
alias resolution and the manual annotation process.

A. Research Questions

In our analysis, we aim to evaluate IRC messages as a source
of rationale about the software system and to investigate the
potentials of automated techniques to support developers in
recovering rationale from these messages. In particular, we
answer three research questions:

RQ1I. Rationale frequency: How often do OSS developers
discuss rationale in IRC messages? While it is widely
accepted that IRC messages in OSS projects contain valuable
information about the software system and its history, there
is still a lack of empirical evidence about the presence and
volume of rationale in these messages. Answering this question
provides insights about the nature of existing rationale and
provides the basis for training and evaluating automated
classification techniques on the annotated messages.

RQ2. Rationale contributors: Which developers con-
tribute rationale in IRC messages? This question is inspired
by the work of Brunet et al. [6] that found a strong correlation
between development activities (committing into code reposi-
tory) and contributing to design discussions in pull requests,
commits, and issues. By answering this question, we aim to
find if such correlation holds between development activities
and rationale contribution in IRC discussions; Do developers
who commit more often contribute more rationale? This could
provide first insights on linking the rationale found in IRC
messages to different parts of the source code.

RQ3. Automatic classification: How accurately can we
classify IRC messages containing rationale by applying
supervised machine learning algorithms? In this question,
we aim to evaluate different supervised machine learning tech-
niques to detect and classify rationale into issues, alternatives,
arguments, and decisions. Automated techniques will help
developers exploit rational embedded in their IRC discussions,
where manual analysis is often not feasible.

B. Research Method

Our research method consists of two phases: data collection
and data analysis, as depicted in Figure 1. In the data collection

Data Collection

Crawl project data

Select 0SS

projects IRC chat
logs
IRC Project
messages committers
N

Apply content analysis
(To answer RQ1)

v 2 /
Apply supervised machine Resolve multiple aliases
learning
(To answer RQ3) v

Map rationale contributors
and committers

Data Analysis (To answer RQ2)

Fig. 1: Applied research method.

phase, we first select the OSS projects for our study. We selected
three OSS projects: Apache Lucene, Mozilla Thunderbird, and
Ubuntu. In accordance with selection criteria applied by similar
studies [33], [34], [43], we chose the three OSS projects for the
following reasons. First, to mitigate threats to external validity,
we selected projects from diverse domains. Second, the archived
IRC logs and source code repositories of the selected OSS
projects are publicly available. Third, the three projects are
popular and mature OSS projects with a large community of
active developers and users. After selecting the projects, we
crawled the IRC chat logs and source code repositories of
the three projects to extract the IRC messages and project
committers. We detail on each step in Subsection III-C.

To answer RQ1, we first annotate a sample of 7,500 IRC mes-
sages by applying content analysis techniques as described by
Neuendorf [32]. The message annotation process is explained
in Subsection III-E. To answer RQ2, we map IRC authors
who contributed rationale with the project committers. This
process consists of two steps. First, we apply an alias resolution
approach on IRC and committers identifiers separately, as
developers can use multiple identifiers within a single channel.
Second, we associate the IRC identifiers with the identifiers
used in the commit history whenever viable. Both steps are
elaborated further in Subsection III-D. Finally, to answer
RQ3, we use the annotated IRC messages as a training and
validation set to build supervised machine learning classifiers.
We compare the performance of different learning algorithms
and classification configurations in Section VL.

C. Data Collection

In this section, we describe the process of collecting and
extracting our research data from three OSS projects: Apache
Lucene, Mozilla Thunderbird, and Ubuntu. For each project,
we crawled the IRC logs and commit history, parsed the
data to extract the required fields, and stored them into a



Accepted at IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER 2018), Copyright IEEE

TABLE II: Overview of the research data.

Project IRC messages Commit history Annotation sample
(#IRC messages)
Years Channel #Messages #Messages Years #Commits
(before filtering) (after filtering)
Apache Lucene 2010-May 2017  #lucene-dev 273,123 71,897 | 2001-2017 27,787 2,500
Mozilla Thunderbird | 2012-May 2017  #maildev 299,771 291,416 2007-2017 20,569 2,500
Ubuntu 2004-May 2017  #ubuntu-devel 2,897,987 2,438,812 | 1999-2017 349,813 2,500
Total — — 3,470,881 2,802,125 — 398,169 7,500

MySQL database for further analysis. For each IRC message,
we extracted: message author, message, and date. For
each commit, we stored: committer, commit message,
and commit date. An overview of our research data is
shown in Table II. In total, we collected 3,470,881 IRC
messages and 398,169 commits from the three projects. We
detail on the collection process for each project in the following.

Apache Lucene is a Java-based full-text search engine
library. In recent years, it has become one of the most popular
free information retrieval libraries [29]. We obtained the
complete archive of the development IRC channel #lucene-
dev logged by Colabti®. Next, we filtered out automatically
generated messages, for example, messages generated when
users join or leave the channel (“*** hoss joined”). This
resulted in 71,897 messages written by 266 authors over the
last 8 years. From Lucene’s code repository, we collected
27,787 commits done by 152 committers over the last 16 years.
We also obtained the official list of committers from Lucene’s
website.

Mozilla Thunderbird is a cross platform email client with
an estimation of 25 million active users*. We crawled 299,771
IRC messages from the development channel #maildev logs.
Afterwards, we filtered out messages posted by Firebot (a
general-purpose Mozilla chatbot) which resulted in 291,416
messages written by 1,180 authors over the last 6 years.
From Thunderbird’s code repository, we collected 20,569
commits performed by 895 committers over the last 11 years.
Additionally, we imported the official list of core developers
provided by Thunderbird.

Ubuntu is a Debian-based Linux operating system. Ubuntu
is one of the most popular Linux distributions and has over
40 million desktop users and more than 500 active members
from 100 countries. The development IRC channel #ubuntu-
devel is “home to many Ubuntu developers for real-time
communication”. We fetched the complete channel archive®
and filtered out automatically generated messages such as
“=== bob2 [rob@bob2.user] has joined #ubuntu-devel”. This
resulted in 2,438,812 messages written by 13,645 authors over
the last 14 years. Likewise, we extracted 349,813 commits

3http://colabti.org/irclogger/irclogger_logs/lucene-dev
“https://blog.mozilla.org/thunderbird/
Shttps://wiki.ubuntu.com/UbuntuDevelopment
Shttps://irclogs.ubuntu.com

done by 6,724 committers over the last 18 years. Finally, we
queried the official list of core developers provided by Ubuntu.

D. Alias Resolution

“I wish we didn’t have these pseudo-names here; I don’t
know who’s who half the time.”

— Apache Lucene Developer

The multiple alias problem occurs when multiple nicknames
(aliases) are assigned to the same person [42]. It is commonly
faced in studies examining OSS repositories [4], [16], [37],
[43]. Resolving this problem is an essential step to prepare our
data for further analysis. The cause of this problem in our study
is twofold. First, we use multiple data sources in our study,
namely IRC channels and commit history, and developers might
use different identifiers on these sources. In IRC channels,
participants assign themselves nicknames when joining the
channel. A nickname is a self-chosen name [5], which can be
an abbreviation of the real name (e.g., markmiller for Mark
Miller), or a pseudonym (e.g., luceneuser). While in source
code repositories, developers use names, nicknames, emails, or
a combination of them. Second, developers might use multiple
aliases within a single source; mostly very similar ones. For
example, sagarwal, sshagarwal and sshagarwaltb are used
by the same person to write to IRC. Similarly, a developer
can commit code to a repository with different identifiers. For
example:

Michael McCandless <mikemccand@apache.org>,
Michael McCandless <mail@mikemccandless.com>,
Mike McCandless <mikemccand@apache.org>, and
mikemccand <mike@elastic.co>.

To resolve aliasing in our collected data, we applied an ap-
proach similar to the ones by Bird et al. [4] and Panichella et al.
[34]. We started with the extracted IRC message authors
and committers from the three projects (Section III-C). For
each project, we performed the following steps automatically:

1) Extract email login names: We removed emails’
domains (anything after “@”). For example,
sarowe@gmail.com and sarowe@apache.org are
converted to sarowe.

2) Normalization: We converted identifiers to lowercase,
removed punctuation (e.g., “_”), numbers and eliminated
extra whitespace. For example, JoeS, JoeS1 and JoeSI1
are all mapped to joes. Additionally, we removed the
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term “—guest” that was commonly attached to Ubuntu
IRC identifiers (e.g., yeager-guest).

3) Ignore middle names: We removed middle names and
initials if real names were provided. For example, Jory A.
Pratt is converted to Jory Pratt. We use ‘real names’ to
refer to the names that were used together with the emails
or nicknames to commit code. There is no guarantee that
they are the developers’ actual names and they can be
also abbreviated versions of their names.

4) Name similarity: We applied a string similarity algo-
rithm, Levenshtein edit distance [31], [47], to resolve
aliases within IRC and committers identifiers separately.
We set a conservative similarity threshold of 80%.

5) Email-like similarity: If multiple slightly different
names have the same email login names, we considered
them a match. For example, nicholas knize and nick
knize both have the email login name nknize. We
excluded commonly used email login names such as
mozilla@email_domain.

6) IRC authors-committers mapping: We mapped the
final list of IRC identifiers to committers identifiers to
detect IRC committers. For a more accurate mapping, we
consolidated the available information with the additional
identifiers provided on the official lists of contributors
on the project website.

Manual corrections were applied for some cases. An overview
of the IRC authors and committers for each project after
resolving aliases is shown in Table III. Although, we were
able to resolve the majority of aliases within the single source
(i.e., IRC and commit history), the mapping of IRC authors
to project committers was not feasible in some cases. The
main reason is that only the nicknames of IRC authors were
available, while in most cases names or emails were used for
committing code.

E. IRC Messages Annotation

To analyze the frequency of the rationale elements in IRC
messages, two authors of this paper applied manual content
analysis [32] on a sample of IRC messages from the three
studied projects. The manual annotation process consists of
the following steps:

1) Annotation guide: To systematize the annotation process
and assure a common understanding, we designed an annotation
guide’. The annotation guide provides instructions about the
annotation task and definitions and examples of the different
rationale elements (listed in Table I). It was developed in two
iterations. In each iteration, the two annotators used the guide to
annotate a random sample of 300 messages. The disagreements
were analyzed and the guide was refined accordingly.

2) IRC messages sampling: IRC messages are short in
length (u=54.31, M=42, SD=48.89 characters), written in
informal language and context-dependent. Analyzing messages
in isolation of the context in which they were exchanged might
lead to imprecise results. To keep the conversation context, we

7https://cloudbruegge.in.tum.de/index.php/s/HREfUUOI3 Ty8kEo

TABLE III: IRC authors and Committers.

Project #IRC authors #Committers #IRC committers
Apache Lucene 221 107 26
Mozilla Thunderbird 1,029 633 83
Ubuntu 10,657 5,961 186
D Messages without rationale |:| Messages with rationale
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Fig. 2: Content analysis results.

created our sample by randomly selecting complete chat days
instead of single messages. For each project, we randomly
selected chat days so that the total adds up to 2,500 messages.
Overall, our sample consisted of 35 chat days from Apache
Lucene, 10 days from Mozilla Thunderbird, and 8 days from
Ubuntu. This results in a sample of 7,500 messages from the
three OSS projects.

3) Manual annotation: To avoid bias during the anno-
tation, each message was annotated by the two annotators
independently. For each message, the annotators indicated
if the message contains rationale and specified the type of
rationale element(s) included in the message. A message
can be annotated with more than one rationale element. For
example, “Maybe for later version support, we should do it like
in StandardTokenizer” is annotated with alternative and pro-
argument. We used GATE [10] for the manual annotation of the
messages. During the annotation task, the complete chat days
were displayed for the annotators. This allowed the annotators
to obtain the conversation context while annotating single
messages. We refer to the annotation guide for the detailed
annotation instructions’. Annotators reported an average of 20
hours to complete the annotation task.

4) Disagreements reconciliation: All message were an-
notated twice. We consider that disagreements occur when
only one of the annotators annotated a message as containing
rationale or when the two annotators annotated a message with
different rationale elements. The average inter-rater agreement
was 83% for identifying messages containing rationale and
78% for identifying different rationale elements. Annotators
discussed and resolved their disagreements.



Accepted at IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER 2018), Copyright IEEE

TABLE IV: Frequency of rationale elements per project.

Rationale element Apache Lucene  Mozilla Thunderbird Ubuntu IRC example

Issues 27% 24% 36% “[...]1 I think we should find a way to configure the real system packages
properly; [...]”

Alternatives 37% 50% 33% “I’d rather just see php7 in experimental ASAP, and then slowly work
out all rdeps until they all seem to more or less work, then just transition
[T

Pro-arguments 19% 25% 19% “Maybe for later version support, we should do it like in StandardTok-
enizer”

Con-arguments 11% 18% 15% “But if you have lots of data this could make your GC on Solr go
wild.”

Decisions 17% 4% 15% “I had considered it, but it didn’t fit with the design I had, so I ignored

it [...]”

IV. RATIONALE FREQUENCY

To answer RQI on the rationale frequency in IRC messages,
we report on the results of the manual content analysis (see
Section III-E).

On average, 25% of the analyzed messages contain rationale
with a total of 1,910 out of the 7,500 annotated messages.
We found that rationale frequency varies among the analyzed
OSS communities, as illustrated in Figure 2. Ubuntu messages
contain the highest amount of rationale in our sample (34%),
followed by Apache Lucene messages (29%) and Mozilla
Thunderbird messages which contain the lowest amount of
rationale (13%).

Messages of OSS projects contain over twice (25% on
average) as much rationale as messages of closed-source
projects (9% on average) [2]. A possible explanation for such
increase is that OSS developers are geographically distributed
and working across various time zones. Thus, OSS developers
communicate and discuss development issues in IRC messages
more often than co-located development teams, in which regular
face-to-face meetings are more common.

Table IV presents the frequencies and examples of fine-
grained rationale elements. Alternative is the most prevalent
rationale element in developers discussions with a total of
37% among the three projects. A possible explanation is that
developers use IRC channels to discuss proposed alternatives
with other developers, in the form of “So I have some ideas
and I want to get your opinion”, more often than other
rationale elements. There are other complementary channels
in OSS projects for reporting issues or documenting final
decisions, such as issue tracking systems, which might affect
their frequency in IRC messages. However, the argumentative
discussions of possible alternatives happen mostly through
written communication channels in the absence of regular face-
to-face meetings. For example, messages like “Hi guys..I want
to patch the issue [Issue#]” in which developers reference an
already opened issue to discuss their solution alternatives were
commonly encountered during the manual annotation.

The second more frequent rationale element is issue with
a total of 30%, followed by pro-arguments (20%), and finally
con-arguments and decisions with an equal frequency of 14%.
Developers tend to provide pro-arguments supporting their
proposed alternatives, e.g., “to make it 100% correct it would

need to be volatile”, which might explain the higher frequency
of pro-arguments. The two annotators agreed that identifying
decisions was the most difficult among other rationale elements.
We noticed that the decisions are usually not clearly stated in
the messages even when a consensus is reached.

We found that 85% of the messages containing rationale only
discuss one rationale element, 13% discuss two elements, and
a few messages discuss three elements (1%). To gain further
understanding on how developers discuss rationale in IRC
messages, we analyzed the pair-wise co-occurrence correlation
between different rationale elements at the message-level. In all
three projects, there is a moderate negative co-occurrence corre-
lation between issues and alternatives (Pearson’s correlation <=
-0.4), and with a lesser degree between issues and other rationale
elements (Pearson’s correlation <= -0.1). We also found a
mild negative co-occurrence correlation between alternatives
and decisions in all three projects (Pearson’s correlation <=
-0.2). Most developers communicate on IRC messages through
informal short messages. The short length of these messages
could explain the absence of any strong correlations between
the different rationale elements, as messages when containing
rationale most likely contain only one element.

V. RATIONALE CONTRIBUTORS

In this paper, we analyze messages from IRC channels
dedicated to discussing development issues and we interpret
the results with the underlying assumption that message authors
are developers contributing to the OSS project. However, IRC
channels are public and anyone can join the ongoing discussion.
Answering RQ2 provides the opportunity to investigate how
participation in rationale discussions in IRC messages is related
to committing actual code changes.

We distinguish between two types of IRC message authors
(process described in Section III-D). Committers are developers
who are committing to the project code repository and are
identified from the project commit history. Others are the
message authors who were not mapped into a committer name.

The analysis in this section is conducted on the analyzed
message sample of 7,500 messages (2,500 messages from each
project). From the IRC message authors, we identified 14
committers and 20 others for Apache Lucene, 27 committers
and 43 others for Mozilla Thunderbird and 41 committers and
116 others for ubuntu. In all three projects, the number of other
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Fig. 3: Messages and rationale contribution of Committers and
Others per project.

participants is larger than the number of committers. This is
typically expected due to the public nature of IRC channels
in OSS projects. However, the developers make efforts to
keep the discussions in the development channels focused on
development matters, e.g., “[...] please ask support questions
in #ubuntu; I realize that it’s noisier there, but consider what it
would be like here if everyone asked for user help here rather
than in #ubuntu :-)” is a developer reply to an end-user who
posted a general question.

Figure 3(a) shows the number of messages written by
each group of message authors. In both Apache Lucene and
Ubuntu, the number of messages written by others exceeds
the number of messages written by committers. While in
Mozilla Thunderbird, committers wrote more messages than
other authors even though the number of identified committers
(27 committers) is less than other authors (43 others).

We found that the percentage of rationale contribution is
proportional to the number of messages written by each group.
In other words, the more messages written the more rationale
contributed. Overall, committers contributed 40%, 78% and
44% of the rationale in Apache Lucene, Mozilla Thunderbird,
and Ubuntu, respectively. On average, committers contributed
54% of the discussed rationale in the analyzed IRC messages.

Issue-  65% 35%
>
Alternative - 56% 44% b
Q
=
Pro argument - 49% 51% g
f
Q
Con argument-  68% 33% Y
@
Decision - 60% 40%
Issue - 30% 70% g
Alternative - 20% 80% =
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o
Con argument- 15% 85% g
Decision - 100% <
Issue - 57% 43%
Alternative - 58% 42%
&
Pro argument - 59% 41% 5
fe
Con argument- 61% 39%
Committers
Decision - 48% 52% Others

50% 0% 50% 100%

Fig. 4: Rationale elements distribution per project.

Figure 3(b) displays the percentages of messages containing
rationale among the messages contributed by each group.
In both Mozilla Thunderbird and Ubuntu, the percentage of
messages containing rationale by committers is higher than
by others. In Apache Lucene, the percentages of messages
containing rationale are similar for committers and others.

To deepen our understanding of how different groups
contribute to rationale discussions, we analyzed the distribution
of the rationale elements among committers and other authors,
as shown in Figure 4. Committers contributed more decisions
than other authors in both Mozilla Thunderbird and Ubuntu. A
possible interpretation is that committers have more influence
on the project development and authority to make decisions.
However, messages written by other authors contain more
decisions than the committers in Apache Lucene. For other
rationale elements, there is no strong difference between the
IRC author groups and the frequency of the rationale elements.

VI. AUTOMATIC CLASSIFICATION

In this section, we investigate the potential of supervised
machine learning techniques for the automated extraction of
rationale on two levels of granularity: binary and fine-grained
classification.

Rationale binary classification focuses on the classification
of messages into two categories: messages with rationale and
without rationale. Rationale fine-grained classification focuses
on the classification of messages with rationale into the fine-
grained rationale elements: issues, alternatives, pro-arguments,
con-arguments, and decisions. We performed the classification
on the message level as previous work found it to be more
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TABLE V: Binary classification results.

Classification algorithm Messages with rationale Messages without rationale

Precision  Recall F1 ‘ Precision  Recall Fl1
MNB 0.55 0.69 0.61 0.88 0.81 0.85
SVM 0.65 0.50 0.56 0.84 0.91 0.87
KNN 0.57 0.10 0.17 0.76 0.98 0.85
Decision Tree 0.50 032 039 0.79 0.89 0.84
Random Forests 0.76 0.14 0.23 0.77 0.98 0.86

TABLE VI: Binary classification results with different configu-
rations: (1) Balanced dataset + 10-fold cross validation, and
(2) Project cross validation (without balancing techniques).

Config. IRC messages MNB SVM
Precision  Recall F1 \ Precision  Recall F1
o With rationale 0.76 079 0.77 0.76 0.74  0.75
Without rationale 0.78 075  0.77 0.75 0.77 0.76
@) With rationale 0.41 046 039 0.54 033 037
Without rationale 0.80 0.77  0.77 0.79 090 0.84

accurate than sentence level classification when categorizing
rationale elements from short developers’ messages [2].

For training and validating the classifiers, we applied
a 10-fold cross validation on the manually annotated IRC
messages in Section III-E. For evaluating the performance of
different machine learning classifiers, we use standard metrics
in machine learning: precision, recall, and F-Measure (F1).
They are calculated as follows: Precision; = % and
Recall; = %. Where T'P; is the number of messages
that are correctly classified as being of type ¢, F'P; is the
number of messages that are incorrectly classified as being of
type ¢ and F'N; is the number of messages that are incorrectly
classified as not being of type ¢. The F-Measure is the harmonic
mean of the precision and recall.

A. Rationale Binary Classifier

1) Setup: We preprocess the messages by converting the
message text into lowercase, splitting it into single tokens and
converting it into a vector space model by applying TF-IDF
as a weighting method. We compare the performance of five
classification algorithms: Multinominal Naive Bayes (MNB),
Support Vector Machines (SVM), K-Nearest Neighbors (KNN),
Decision Tree and Random Forests. The experiments were
performed using WEKAS.

2) Data Balancing: A common challenge in supervised
machine learning is imbalanced training datasets, which might
cause the classification algorithm to skew towards the majority
class and ignore the minority class. This problem is present
in our dataset, in which only 25% of the messages contain
rationale. We address this problem by applying a combination
of over-sampling and under-sampling, common balancing
techniques, as it proved to achieve better performance than
applying each technique separately [8]. In particular, we apply
SMOTE and random under-sampling on the annotated messages.
SMOTE (Synthetic Minority Over-sampling Technique) [8]

8http://www.cs.waikato.ac.nz/ml/weka

over-samples the minority class by generating synthetic exam-
ples and under-sampling [12] uses a subset of the majority
class.

3) Project Cross Validation: For testing the generalizability
of our classification models, we apply project cross validation.
Project cross validation is a 3-fold cross validation with one
fold per project. The classifier is trained on the messages of
two projects and tested on the messages of the third project.
The process is repeated three times rotating the projects and
the averaged results are reported.

4) Results: Table V shows the classification results of the
different classifiers. Overall, all the classifiers have a better
performance when classifying messages without rationale. This
result is expected due to the sparseness of the messages
containing rationale in the annotated sample (25%). For the
messages with rationale, MNB is the classifier with the best
balance between precision (0.55) and recall (0.69) and the
highest F-measure of 0.61. Examples of the classification
results of the MNB binary classifier are shown in Table VII.
The second best classifier is SVM with better precision than
MNB (0.65) but lower recall (0.50). Random forests has
the highest precision of 0.79, however, with a low recall of
0.14. Considering the small percentage of messages containing
rationale, a classifier with a low recall is not desirable.

Table VI (1) shows the increase in the classification perfor-
mance of messages with rationale when training the classifier
on the balanced dataset, compared to the results in Table V.
MNB has a better performance than SVM for the messages
with rationale. However, the classification performance for
messages without rationale decreased slightly as an expected
result of under-sampling.

The averaged results of applying project cross validation are
shown in Table VI (2) (without balancing techniques applied).
The overall performance of the classifiers decreased comparing
to the results when the messages from the same project are
used for training the classifier. Nevertheless, these results show
that the generated classifiers can be applied with a reasonable
accuracy across projects.

B. Rationale Fine-Grained Classifier

1) Setup: We apply the same preprocessing steps in binary
classification (Section VI-A1). Rationale fine-grained classifica-
tion is a multi-label classification problem, in which a message
can be classified into more than one rationale element (as
explained in Section III-E). We compare between two popular
transformation methods: Binary Relevance (BR) and Label
Powerset (LP) [46]. We apply the two learning algorithms that
have the better performance in the binary classification: MNB
and SVM. The experiments were performed using MEKA®.

2) Results: Table VIII provides an overview of the classifi-
cation results of the different rationale elements. MNB has a
better recall than SVM for all rationale elements when applying
BR. On the other hand, SVM has a better precision in detecting
all rationale elements. When comparing the F-measure, MNB

%http://meka.sourceforge.net
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TABLE VII: Classification examples.

Classification = IRC message Manual Automatic
“This bug was found because I reduced the maximum hit number  With rationale With rationale
randomly when collecting results”

Binary “Never check email on waking up :)” Without rationale Without rationale

“But if you have lots of data this could make your GC on Solr go
wild”

With rationale

Without rationale

Fine-grained

“So I've seen 2 modes of failure. The first is getting more than 1
doc back for query-by-id (and we always use update, so it should be
impossible)”

“Also I find the Overseer loop here a bit hard to digest. For one thing,
instead of the Boolean refreshClusterState I think it’s clear enough to
simply have clusterState be null as the check. Then it’s clear what the

Issue

Alternative

, Pro-argument,
Con-argument

Issue

Alternative, Pro-argument,
Con-argument

job of that condition is to do.”

“This would be solved in part by doing the separate scanner class like

current StandardTokenizer”

Alternative Issue, Pro-argument

TABLE VIII: Fine-grained classification results.

Rationale Binary Relevance
element
MNB SVM
Precision  Recall F1 ‘ Precision  Recall F1
Issue 0.45 0.44 0.59 0.51 040 044
Alternative 0.46 0.60 0.52 0.54 0.47  0.50
Pro-argument 0.30 0.66 041 0.46 0.38 042
Con-argument 0.20 0.60 0.30 0.35 023 028
Decision 0.19 0.55 0.28 0.32 0.23  0.27
Label Powerset
MNB SVM
Precision  Recall Fl1 ‘ Precision  Recall F1
Issue 0.53 0.38 0.44 0.48 047 048
Alternative 0.48 0.55 0.51 0.54 0.57 0.56
Pro-argument 0.68 0.52  0.59 0.44 0.37 040
Con-argument 0.25 036 0.30 0.35 022 0.27
Decision 0.32 035 0.33 0.29 0.25  0.27

performs better than SVM for all the elements except for pro-
argument. When applying LP, no classifier achieved higher
scores on all the accuracy measures. Classifying decisions
and con-arguments has the lowest accuracy among different
rationale elements. This is understandable considering the
sparseness of these elements in the messages with rationale
(only 14% as reported in Section IV).

Overall, MNB with LP has the best average F-measure of
the rationale elements among the different classifiers. Table VII
provides examples of correctly and incorrectly classified
messages. The examples were produced by a BR and MNB
fine-grained classifier. We observed that the classifier tends
to assign more rationale elements than what is present in the
message, provided that MNB has better recall than precision
for all elements.

We explored other classification features such as Part-Of-
Speech tagging, sentiment, and message length. These features
did not have significant improvement on the classification
performance and were not reported here for space limitation.

VII. DISCUSSION

One of the main causes for the rationale capture problem
is the additional overhead of writing it manually. Our long-
term research goal is to minimize this overhead by developing
automated techniques to support developers in capturing and
linking rationale across different development artifacts. And
eventually making the captured rationale available to use during
different maintenance and evolution tasks. In this paper, we
focus on developers’ communication over IRC channels as one
of the potential sources for extracting rationale. We discuss
our findings by revisiting our research questions.

How often do OSS developers discuss rationale in IRC
messages? On average, 25% of developers’ IRC messages con-
tain development rationale. Alternatives are the most discussed
rationale elements, followed by issues, arguments and finally
decisions. We also found that techniques analyzing rationale
in IRC messages should consider the context of the exchanged
conversation. During our analysis, we observed that developers
discuss rationale in a sequence of short messages with mostly
one rationale element. With this in mind, recovering rationale
as chunks of conversations allows for a better comprehension
of the argumentation flow leading to the decision.

The use of IRC messages as a complementary channel
with other communication mediums is apparent. Consequently,
the rationale is fragmented across these channels. References
to emails, issue trackers, and commits were common cases.
Exploiting these references can be a first step towards the
linkage of the rationale across different channels. Messages
discussing particular commits or code branches could be
employed to extract traceability links between code fragments
and the rationale related to them in IRC messages.

Which developers contribute rationale in IRC messages?
A developer might discuss the rationale behind an implementa-
tion when communicating with other developers through IRC
messages. Linking the development activities of developers to
their discussion is a first step towards recovering the related
rationale. To achieve this, it is necessary to identify OSS
developers across multiple communication channels.
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In this paper, we distinguished between two groups of
IRC authors: Committers who are committing code to project
repository, and Others whose IRC identifiers could not be
mapped to committers names. Committers contributed on
average 54% of the rationale in IRC messages. An interesting
finding is that the volume of the rationale contributed by each
group is correlated to the number of messages written by
that group (i.e., Committers or Others) rather than who wrote
the message. This posts an important question: Who are the
Others? If they are contributing to the rationale discussions,
could they not be developers themselves?

We applied a set of name resolution heuristics and the Lev-
enshtein edit distance algorithm [31], [47] with a conservative
similarity threshold of 80%. Within the single source, i.e., IRC
channels and code repositories, we resolved an average of 20%
aliases. However, on average, only 9% of IRC authors were
mapped to committers. This result might be due to the fact that
developers use different identities on different channels and
linking these identities is not always feasible. For example, in
some cases, very short versions of the developers’ names are
used in IRC channels complicating its mapping to an actual
developer name, e.g., mvg. Also using pseudonyms is common,
e.g., lovemeblender and blackbug. Future improvements to
the resolution method could explore different values for the
threshold and follow the automated approaches with a manual
inspection for resolving ambiguous cases.

In the ideal case, identification methods such as the one
proposed by Robles and Gonzalez-Barahona [37] should be
applied to track and maintain awareness of developers’ activities
across different project repositories. Such methods should take
developers’ privacy into account while being designed and
applied.

How accurately can we classify IRC messages containing
rationale by applying supervised machine learning algo-
rithms? The primary results of applying supervised machine
learning techniques are promising for detecting rationale in
IRC messages with 0.76 precision and 0.79 recall. For the
fine-grained classification into different rationale elements, the
classification performance varies according to the rationale
element frequency in the analyzed message, i.e., the more
instances of the rationale element in the training data the
better the performance. Future work could investigate different
techniques for improving the classification performance. For
example, adding classification features on whether the neighbor
messages contain rationale. We hypothesize that this will
improve the classification accuracy as developers tend to
discuss rationale in a sequence of consecutive messages.
Another technique to explore is applying data augmentation
approaches [41] to address the sparsity of rationale in IRC
messages.

Threats to Validity. We based our definition of rationale
elements on Kunz and Rittle’s taxonomy in their well-known
IBIS [22]. Although different rationale representations exist
in the literature, the considered rationale elements are basic
elements that are shared among most rationale models [13].

We analyzed the messages through manual analysis by hu-
man annotators which is a highly subjective process. To mitigate
this threat, we applied a peer-annotation process in which each
message is annotated by two annotators independently. Both
annotators are graduate students with a software engineering
background. Moreover, an annotation guide was developed and
used during the annotation process. Another threat to validity
is sampling bias. To mitigate this threat, we randomly selected
a large sample of 7,500 messages from three OSS projects
from three diverse domains.

We rely on an automated alias resolution approach to map
IRC authors to committers. However, some aliases might
remain unresolved. Also, the fact that developers can use freely-
chosen nicknames might result in a missing mappings between
IRC authors and committers. Regarding the generalizability
of our results, we selected popular OSS projects with a large
community of users and developers. We conducted project
cross validation to test the generalizability of the generated
classification models across different projects. We encourage
further study replications on OSS projects of different sizes.

VIII. CONCLUSION

In this paper, we presented the results of an empirical
study on the rationale in IRC messages of OSS communities.
We collected IRC logs from three OSS projects: Apache
Lucene, Mozilla Thunderbird, and Ubuntu. We manually
analyzed a sample of 7,500 messages and provide a quantitative
evidence on how developers discuss rationale in their IRC
messages. We found that committers contribute 54% of the
discussed rationale on average. However, we did not find a
strong correlation between the development activities and the
rationale contribution. Finally, we evaluated various machine
learning classification techniques for the automated extraction
of rationale on two granularity levels: binary and fine-grained
classification. We achieved 0.76 precision and 0.79 recall for
the binary classification, and an average of 0.45 precision and
0.43 recall for the classification into finer-grained rationale
elements. This study is a first step towards supporting the
automated documentation of rationale in IRC messages.
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