Accepted: ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM 2017), Copyright IEEE

REACT: An Approach for Capturing Rationale in
Chat Messages

Rana Alkadhi*, Jan Ole Johanssen*, Emitza Guzman', and Bernd Bruegge*

*Technical University of Munich
Department of Informatics
Garching b. Miinchen, Germany
{alkadhi, jan.johanssen, bruegge} @in.tum.de

Abstract—Background: Developers’ chat messages are a rich
source of rationale behind development decisions. Rationale
comprises valuable knowledge during software evolution for
understanding and maintaining the software system. However,
developers resist explicit methods for rationale capturing in
practice, due to their intrusiveness and cognitive overhead. Aim:
Our primary goal is to help developers capture rationale in
chat messages with low effort. Further, we seek to encourage
the collaborative capturing of rationale in development teams.
Method: In this paper, we present REACT, a lightweight approach
for annotating chat messages that contain rationale. To evaluate
the feasibility of REACT, we conducted two studies. In the first
study, we evaluated the approach with eleven development teams
during a short-term design task. In the second study, we evaluated
the approach with one development team over a duration of
two months. In addition, we distributed a questionnaire to both
studies’ participants. Results: Our results show that REACT is
easily learned and used by developers. Furthermore, it encour-
ages the collaborative capturing of rationale. Remarkably, the
majority of participants do not perceive privacy as a barrier
when capturing rationale from their informal communication.
Conclusions: REACT is a first step towards enhancing rationale
capturing in developers’ chat messages.

I. INTRODUCTION

Software development is a social and collaborative pro-
cess [14] during which software developers make various
decisions. The justification behind these decisions, other
alternatives considered and the argumentation that led to the
decisions constitute the software rationale [15]. Rationale has
many potential uses during software evolution. For example,
rationale serves as a documentation of development decisions
and improves the understandability of the software system [8].
Furthermore, documented rationale can support maintenance
and change impact analysis [4], [8]. However, explicit capturing
of rationale rarely happens in practice and rationale remains
hidden in developers’ communication and development arti-
facts [17]. Kruchten et al. [12] argue that the adoption barrier for
capturing rationale is the intrusiveness of capturing activities, as
they are not fully integrated into current software engineering
practices—i.e., the developers must change their context in
order to document rationale.

Our ongoing research on rationale capturing revealed that
chat messages constitute a rich source of rationale about
software systems [2]. In this paper, we present REACT

TUniversity of Zurich
Department of Informatics
Zurich, Switzerland
guzman @ifi.uzh.ch

(RationalE Annotations in ChaT messages), a novel lightweight
approach to capture rationale in developers’ chat messages.
REACT is designed to be integrated with developers’ messaging
platforms and enables developers to annotate the rationale
present in their messages with emojis—pictographs commonly
used in text-based communications. Developers use REACT
to individually annotate their own messages or collaboratively
annotate messages posted by other team members. To the best
of our knowledge, this work is the first to propose a method
for explicit capturing of rationale in developers’ chat messages.

In the context of this paper, we evaluated REACT within
Slack, a widely used messaging platform for exchanging chat
messages in development teams. Nevertheless, REACT is
designed to be easily applicable to other messaging platforms.
Our results show that the proposed approach is easy to learn and
simple to apply, thus lowering the adoption barrier of rationale
capturing by developers. Additionally, our findings highlight
the importance of providing developers with incentives for
justifying the efforts of capturing rationale.

The contribution of this paper is twofold. First, we present
REACT, a lightweight approach for capturing rationale in chat
messages. Second, we evaluate the approach feasibility in two
studies: a short-term study in a design task and a medium-term
study in a software project. Furthermore, we discuss the results
of a questionnaire distributed to the study participants.

II. RELATED WORK

To the best of our knowledge, no previous work has
investigated the explicit capturing of rationale from developers’
chat messages. However, few annotation approaches were
developed to capture rationale within source code. Hesse et
al. [10] developed an approach for capturing rationale of
implementation decisions using inline code comments in source
code. In their approach, text-based annotations are written
directly into the code files. Lougher and Rodden [18] proposed
a system for capturing maintenance rationale and generating
documentation by attaching comments to the source code.
Our work differs from Hesse et al. [10] and Lougher and
Rodden [18] in that we propose a lightweight approach for
capturing rationale in informal developers’ communication
through annotating chat messages by developers themselves.

Definitive version available at https://doi.org/10.1109/ESEM.2017.26

Accepted: ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM 2017), Copyright IEEE

TABLE I: Rationale elements definitions (adapted from [13]).

Rationale Element Definition

Issue Problem that needs discussion and negotiation to be
solved. Issues typically can not be resolved algorith-
mically and don’t have a single correct solution.

Alternative Possible solution that could address the issue under

consideration.
Pro-argument Positive argument supporting an alternative.
Con-argument Negative argument against an alternative.

Decision The alternative selected to resolve an open issue.

In addition, developers are not required to write further
descriptions of rationale when annotating chat messages.

The rapid growth of messaging platforms has attracted
the attention of researchers studying their use in software
development teams. Lin et al. [16] found that chat messages
are mainly used by developers for communication, collaboration
and knowledge sharing with team members. There are a few
studies investigating the role of instant messages in knowledge
management. Dennerlein et al. [7] found that the efficacy of
messaging tools for knowledge management is mainly affected
by the intended usage of these tools rather than the context of
application. Ajjan et al. [1] found that the continuous use of
instant messaging positively impacts the creation, retention
and transfer of knowledge. In our previous work [2], we
explored the nature of rationale in developers’ chat messages
and the potential of using machine learning techniques for
the automatic extraction of rationale. In our current work,
developers themselves annotate the rationale in their messages
on the spot, whereas in our previous work the extraction is
done by a supervised machine learning algorithm. Supervised
machine learning algorithms have the disadvantage of needing
a truth set—which is usually created manually, requiring a
great effort [2]. The creation of such a truth set could dissuade
teams from using this type of techniques. In contrast, in this
work, we were interested in studying mechanisms for capturing
rationale that do not need much effort to be put into practice.

III. REACT APPROACH

REACT is a lightweight approach for capturing rationale
in developers’ chat messages. The approach is based on the
manual annotation of chat messages that contain rationale by de-
velopers. We focus on capturing five rationale elements: issues,
alternatives, pro-arguments, con-arguments and decisions [13].
The rationale elements definitions are listed in Table I.

REACT rationale annotations are designed as a set of emojis,
one emoji for each rationale element. The annotations are:

L for messages containing issues,

Q for messages containing alternatives,
for messages containing pro-arguments,
for messages containing con-arguments, and

for messages containing decisions.

Team - #general
bob | 84| %0 | Company- @ Da Q

john /‘

CHANNELS @ 0w should we implement the the web crawler? @
back-end bob
feature We could either crawl the website directly from within the app or
we could crawl the website through an inter NP . /@
(Adapter) @

@ %

All Threads

fron

general

random

o1
J alice ¢ a~»
Using an Adapter might be better idea from the customer side,
since later if the website actually has an API the Adapter can be

DIRECT MESSAGES just deleted

Invite People

Fig. 1: Example of a conversation in Slack. (1) Team conversa-
tions are organized into channels, (2) emojis can be included
inline within messages or as (3) a reaction and (4) the added
reactions appear under the message.

Our use of emojis as rationale annotations was motivated
by three factors. First, emojis are very popular in modern
text communication and social media [9]. Users of messaging
platforms use emojis for liking, voting, checking off to-do items
and sharing knowledge among team members'. Second, emojis
are well integrated with most modern messaging platforms
which alleviate its intrusiveness and encourages its adoption
by developers. Third, users of messaging platforms use emojis
inline within their chat messages or to respond to messages
posted by other team members which supports the collaborative
annotations of messages among team members.

In the context of this paper, we implemented our approach
within Slack; a real-time messaging platform. Figure 1 shows
a screenshot of a conversation in Slack and describes its main
components.

We added REACT rationale annotations as custom Slack
emojis>. When using REACT, developers annotate their own
chat messages with inline or reaction annotations. Developers
can also annotate chat messages written by other team members
using reaction annotations. A message can be annotated with
more than one annotation, as a chat message might contain
more than one rationale element [2]. For example, when a
developer proposes an alternative and writes the pro-argument
supporting this alternative in the same message, the message

should be annotated with both and

IV. REACT EVALUATION

We conducted two studies to evaluate the approach in
different settings. In Study 1, we evaluated REACT during a
short-term design task. In Study 2, we evaluated REACT usage
in a medium-term project.

The study participants were part of a capstone course at the
Technical University of Munich in 2017 [3]. During the course,
students are organized in teams and develop mobile applications
for industrial clients. Each development team consisted of eight

Thttps://18f.gsa.gov/2015/12/08/using-emoji- for-knowledge-sharing/
Zhttps://get.slack.help/hc/en-us/articles/206870177- Create-custom-emoji

Definitive version available at https://doi.org/10.1109/ESEM.2017.26

Accepted: ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM 2017), Copyright IEEE

Study 1 Study 2
Applying REACT Applying REACT
in a design task in a project
& Eleven teams & One team
(20 minutes (® Two months
v
4 1\
(Manual analysis of chat messages j
(Analyze questionnaire responses)
& J

Fig. 2: Evaluation method.

to eleven students led by a project leader—usually a doctoral
student—for management activities.
We evaluated REACT along the following dimensions:

1) Correctness: Do developers apply the correct annota-

tions to their messages?

2) Collaborativeness: Do annotations encourage the col-

laborative capturing of rationale in chat messages?

3) Privacy: How do privacy concerns affect the annotation

of rationale in chat messages?

We measure Correctness and Collaborativeness quantita-
tively by performing a manual analysis of all chat messages
exchanged over the period of both studies. Additionally, we
designed a questionnaire to qualitatively investigate Privacy
and further understand developers’ opinion on this issue after
using REACT. Figure 2 shows the evaluation method. Detailed
evaluation settings and results are presented in Sections V, VI
and VII, respectively.

V. StuDY 1: REACT IN A SHORT-TERM DESIGN TASK

The aim of this study is to evaluate whether REACT is an
effective method for capturing rationale in chat messages.

A. Study Settings

Eleven development teams participated in the study. As a
starting point in our study, we gave a brief tutorial to the study
participants in which we introduced REACT and gave examples
of applying it in Slack messages. Afterwards, we presented
the participants the task of implementing a web crawler to
systematically fetch information from a website. The eleven
development teams were asked to use REACT to discuss the
issue, evaluate the different alternatives and make a decision in
their Slack team channel. When the development team arrived
at a decision, the design task was considered complete. The
tutorial and design task took approximately 20 minutes. After
the completion of the design task, two authors of this paper
studied how the eleven development teams applied REACT in
chat messages by analyzing the chat messages manually.

B. Study Results

Study participants applied a total of 342 REACT annotations
to 421 chat messages. Table II (2nd column) lists the relative
frequencies of REACT annotations in chat messages of the
eleven teams during the design task.

B Correct application of rationale annotations

B Incorrect application of rationale annotations

@6

(a) Study 1 (b) Study 2

Fig. 3: Correctness analysis.

@ Rationale annotations applied by message author

[Rationale annotations applied by other team members

49%
58%

(b) Study 2

(a) Study 1

Fig. 4: Collaborativeness analysis.

To evaluate the correctness of the applied REACT annota-
tions, we considered the annotation application to be incorrect
when developers applied a rationale annotation that does not
represent the rationale element(s) discussed in the message. For
example, when developers annotate a messages containing an
alternative with an issue annotation instead of an alternative.
Furthermore, when a message containing rationale was not
annotated, we considered it as an incorrect application of the
annotations because missing annotations contradict the primary
goal of our approach of capturing rationale in chat messages.
Figure 3a shows the percentages of correct and incorrect
application of annotations in the eleven teams’ messages. In
76% of the annotation applications, developers applied them
correctly for capturing rationale in their messages. This result
implies an easy learning curve for applying REACT to annotate
chat messages containing rationale knowledge.

With respect to collaborativeness, over half of the applied
rationale annotations were applied by the message author (58%),
as shown in Figure 4a, while 42% of the annotations were
applied by other team members. This result highlights the
collaborative nature of rationale capturing in developers’ chat
messages as many decisions in software development are made
collaboratively [11].

When comparing inline and reaction annotations, we found
that 53% of the applied annotations were inline and 47%
were applied as Slack reactions. A further analysis showed
that message authors tended to use inline annotations when
annotating their messages (91% of their annotations were
inline). In the case of the reaction annotations, 88% were
applied by other team members. This finding highlights
the principal advantage of our approach in supporting the

Definitive version available at https://doi.org/10.1109/ESEM.2017.26

Accepted: ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM 2017), Copyright IEEE

TABLE II: Relative frequency of REACT rationale annotations and examples of annotated messages.

i Relative Frequency
Ratlona'le Example of Annotated Chat Message*
Annotation Study 1 Study 2

i 11% 43% @USER hey there, should our option names also be localizable?

18% 36% @channel Hello everyone, I summarized and extended the first draft of the architecture that @USER and me created.
N Feel free to ask questions and come up with more detailed solutions and/or better ideas :slightly_smiling_face: _link_

30% 3% Using the server lets you use your own API. so you can use the crawling function with different OS (android)
Q 18% 39 Looks nice here but there will be a black bar on top on a real watch. Not usable though since the icons are too tiny.
? ? The one I have now looks similar to the one on the left. You can check out the branch
Q 23% 15% @channel when creating a String in code please do “let myString =NSLocalizedString("Text of my String", comment:

"Some comment for the translation”)” from now on for localization”

* We anonymized the messages but the essence of these messages is not affected.

annotation of chat messages by their authors as well as
collaboratively by other team members.

We also examined how developers apply the different
rationale annotations, i.e., inline versus reactions, and found
that applying issues, alternatives and con-arguments as inline
annotations were more prevalent, whereas pro-arguments and
decisions were applied more frequently as reactions. A possible
explanation for this result is that when developers write issues
and alternatives, they express their need to discuss and receive
feedback from other team members. Similarly, they write con-
arguments to oppose an alternative solution that was proposed
by another team member. In these cases, developers might
prefer to use inline annotations to attract the attention of other
team members. On the other hand, pro-arguments and decisions
are mainly used to show agreement with a statement or to
collaboratively decide to select a proposed alternative, thus
reaction annotations were more frequent in these cases.

We examined other Slack reactions applied by developers
to their chat messages to discover any patterns when applying
these reactions. We found that “thumps up” emojis were
applied almost equally to the pro-argument annotations to show
agreement when a message author proposed an alternative or
made a decision. This result shows that developers are also
using already existing and common-use emojis to express their
opinions which can be utilized for capturing rationale.

VI. StuDY 2: REACT IN A MEDIUM-TERM PROJECT

The aim of this study is to evaluate the viability of
REACT when used by developers in the context of their daily
development activities for a longer period of time (two months).

A. Study Settings

In this study, we introduced REACT to one development
team of ten members who developed a mobile application for an
industrial client. As different teams in the capstone course share
similar development settings, we selected this team randomly.
This team did not participate in Study 1 (Section V). The
study participants were introduced to REACT and to examples
of applying REACT in Slack messages in a brief tutorial.
Afterwards, the team used REACT in their daily exchange of
chat messages for a duration of two months. For the duration

TABLE III: Chat messages analyzed in the Study 2.

Slack Channel Chat Messages

Main channel 969
Front-end channel 432
Back-end channel 297
Total 1,698

of the study, participants were encouraged to ask for help or
clarifications when faced with ambiguity while using REACT.

To organize the topics of their conversations, the team created
three Slack channels: a Main channel, a Front-end channel and
a Back-end channel. In Slack channels, important messages or
files can be pinned to details pane to make it always visible
to team members. During the duration of the study, REACT
rationale annotations were pinned to each channel as a constant
reminder for developers to use them in their chat messages.
Table IIT shows the number of chat messages analyzed per
channel (excluding automatically generated messages by Slack
bots such as reminders or status updates).

In this study, chat messages were exchanged during regular
development activities throughout a medium-duration project.
The rationale elements discussed in these chat messages were
more complex and intertwined compared to Study 1 in which
the development teams discussed a concrete and short-term
design task (Section V). Therefore, we needed systematic
and more comprehensive analysis than the one performed in
Study 1. For this reason, we decided to use content analysis
techniques [19] on the team’s chat messages.

During the content analysis, we developed a coding guide
that provided definitions and examples of rationale elements>.
Each of the 1,698 messages was annotated by two coders.
One of the coders was the project leader of the team which
allowed for a more informed assessment of messages containing
rationale. We used GATE (General Architecture for Text
Engineering) [5], [6] for the manual coding. During the coding
task, the messages were shown without the applied REACT
annotations, to avoid any bias. The two coders reported an
average of 4.3 hours for the task. As a final step, the two
coders discussed and resolved their disagreements.

3https://cloudbruegge.in.tum.de/index.php/s/kz2S 18PprNpbwUR

Definitive version available at https://doi.org/10.1109/ESEM.2017.26

Accepted: ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM 2017), Copyright IEEE

119
102

40 24 24
© m s [T
0 ——

Main channel Back-end channel

Front-end channel
B Messages annotated with rationale annotations by developers

OMessages containing rationale identified during manual anaysis

Fig. 5: Rationale in team messages of Study 2.

B. Study Results

Figure 5 compares the number of team messages annotated
by developers and the number of messages identified as
containing rationale during the manual analysis. During the
manual analysis, 14% of the total messages were identified
as containing rationale. However, developers applied REACT
rationale annotations to 13% of these messages in the duration
of the study (2 months). The relative frequencies and examples
of rationale annotations are listed in Table II.

We further found that only 7% of the messages containing
rationale were annotated correctly by developers (shown in
Figure 3b). A possible explanation for this result may be
the lack of incentive for developers to annotate messages,
even with a well-integrated capturing tool, if they can not use
captured rationale directly. Another possible explanation is
that in the short-term Study 1, the design issue was clearly
introduced to developers and they focused on discussing it
and capturing the rationale in their discussions. However,
in real software projects and under the pressure of meeting
deadlines, identifying rationale elements in chat messages
requires additional effort from developers.

When analyzing how developers apply other Slack emojis
to the messages identified as containing rationale during the
manual analysis, we found that the majority of the emojis
added as reactions to the messages containing alternatives
or decisions were expressing agreement to what is written
in the message (68% and 57%, respectively). Examples of
these emojis are: “thumbs up”, “ok hand” and “white check
mark”. This result echoes the findings of Study 1 and could
indicate that already existing emojis are relevant for capturing
rationale. As shown in Figure 4b, rationale annotations were
almost equally applied by message authors (51%) and by
other team members (49%). Contrary to Study 1, we found
that annotations were applied as reactions in the majority of
their application (82%), while inline annotations were used
in only 18%. Furthermore, message authors applied inline
and reaction annotations equally and 78% of the reaction
annotations were applied by other team members. Overall,
applying Slack reactions to annotate messages was dominant
for all rationale elements in this study which demonstrates the
importance of the collaborative capturing of rationale.

1 fully support it for documenting important
knowledge without any reservations.

I, 5 o

1 have some concerns about my privacy, but I
fully support it if the data is anonymized.

I prefer if none of my discussions in chat
messages are documented.

I s
other [111%

Fig. 6: Privacy analysis.

VII. QUESTIONNAIRE

After the completion of the two studies, an online ques-
tionnaire was distributed to the study participants to obtain
developers’ opinion after using REACT*.

Of the two studies participants, 27 subjects—21 from
Study 1 and 6 from Study 2—completed the questionnaire.
From Study 1, 50% of the respondents agreed that REACT
annotations are easy to learn, while 17% disagreed and
33% were neutral. From Study 2, 86% agreed that REACT
annotations are easy to learn, while 5% disagreed and 9%
were neutral. In both studies, respondents agreed that rationale
annotations are simple to apply (62% and 67%, respectively).
However, when asked whether they enjoy using rationale
annotations, 33% from Study 1 respondents agreed and 67%
were neutral. In Study 2, 29% agreed, 24% were neutral and
47% disagreed. A possible interpretation of this result is the
lack of motivation for developers to capture rationale, as one
developer explained: “I think the idea is great, but I don’t feel
like it generates an immediate value and therefore we often
forget to use it.”

Over one-third of the questionnaire respondents agreed that
rationale annotations help in documenting the rationale in their
team chat messages (37%), whereas 33% disagreed and 30%
were neutral. One developer commented that “Slack messages
are highly context dependent”, which confirms our earlier
finding [2] in that developers’ chat messages are not to be
used as the only source for rationale but rather augmented
with other development artifacts to capture a more complete
rationale. When the subjects were asked whether rationale
annotations encourage all team members to participate in the
ongoing discussion, 15% agreed, 44% disagreed and 41%
were neutral. An interesting observation is that while the
majority of participants agreed that the proposed annotations
are easy to learn and apply, the cognitive load of identifying
rationale in messages is still perceived by developers as a
burden and disruption to development activities; as illustrated
by one respondent: “Using rationale emoji makes you have
to reconsider how you phrase messages, in such a way that it
becomes a burden to continuously categories each message”.

Figure 6 presents participants responses when asked if
they have any privacy concerns about annotating their chat

“https://cloudbruegge.in.tum.de/index.php/s/1JdQX7a82pILzgs

Definitive version available at https://doi.org/10.1109/ESEM.2017.26

Accepted: ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM 2017), Copyright IEEE

messages. Remarkably, over half of the respondents (51%)
fully supported the annotations without any reservations. Over
18% of the respondent preferred anonymizing their messages
before analysis, and an equal percentage of respondent (18%)
preferred that none of their messages are documented. This
interesting observation might support the analysis of developers’
chat messages as a source of valuable rationale knowledge.
However, this calls for further investigation in other industrial
settings in which privacy could be considered more pivotal.

VIII. DISCUSSION

Implications: Developers’ chat messages contain valuable
knowledge about development rationale. REACT represents a
step towards a more effective rationale capturing in developers’
chat messages. The results of our preliminary evaluation show
that rationale annotations are easy to learn and simple to apply.
Furthermore, REACT can be easily integrated into modern
messaging platforms and encourages collaborative capturing
of rationale. However, the effectiveness of REACT is highly
dependent on providing immediate benefit for developers to
justify the efforts of capturing rationale. Additionally, catego-
rizing rationale in chat messages to apply REACT annotations
still presents additional cognitive load for developers.

Future Work: In our future work, we plan to link conversa-
tions annotated as containing rationale to issue trackers and to
development artifacts that were attached to chat messages. To
reduce the cognitive load of categorizing messages, we plan to
implement a hybrid approach that employs machine learning
for the automatic detection of messages containing rationale.
A machine learning component could prompt developers—the
“domain experts”’—to approve the suggested categorization of
the chat message if rationale is detected. Another direction
for future work is studying how REACT annotations support
effective team communication, e.g., promptness of response to
an annotated message from other developers.

Threats to Validity: We relied on an error-prone human
judgment for categorizing rationale in chat messages. To
mitigate this risk, messages were peer-coded by two coders
and a coding guide was created. During our evaluation, we
used chat messages exchanged during a university course in
which students worked closely with industrial clients in settings
similar to industrial settings. Moreover, they used Slack which
is a common communication tool in industrial projects. We
believe that this evaluation gives insights for further replications
of the study in practice. However, further studies should be
conducted to analyze if our findings hold in industry settings,
as well as in longer lasting projects.

IX. CONCLUSION

We present REACT, a lightweight approach for capturing
rationale in developers’ chat messages through manual anno-
tations. We evaluated REACT in two studies, a short- and a
medium-term study. Our preliminary evaluation results show
that REACT is easy to learn and simple to apply by developers.
Furthermore, developers applied it collaboratively to capture
rationale in their messages. REACT is a first step towards

supporting developers in capturing the rationale behind their
development decisions.

ACKNOWLEDGMENTS

This work was partially supported by a PhD scholarship
provided by King Saud University for Rana Alkadhi and by
the DFG (German Research Foundation) under the Priority
Programme SPP1593: Design For Future — Managed Software
Evolution (CURES project) for Jan Ole Johanssen.

REFERENCES

[1] H. Ajjan, R. Hartshorne, Y. Cao, and M. Rodriguez. Continuance Use
Intention of Enterprise Instant Messaging: a Knowledge Management
Perspective. Behav. Inf. Technol., 33(7):678 — 692, 2014.

[2] R. Alkadhi, T. Lata, E. Guzman, and B. Bruegge. Rationale in
Development Chat Messages: An Exploratory Study. In Proc. of the
14th Work. Conf. on Min. Softw. Repos., MSR’17, pages 436-446, 2017.

[3] B. Bruegge, S. Krusche, and L. Alperowitz. Software Engineering
Project Courses with Industrial Clients. ACM Transactions on Computing
Education, 15(4):17:1-17:31, 2015.

[4] J. E. Burge and D. C. Brown. Software Engineering Using RATionale.

Journal of Systems and Software, 81(3):395-413, 2008.

H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, N. Aswani,

I. Roberts, G. Gorrell, A. Funk, A. Roberts, D. Damljanovic, T. Heitz,

M. A. Greenwood, H. Saggion, J. Petrak, Y. Li, and W. Peters. Text

Processing with GATE (Version 6). 2011.

H. Cunningham, V. Tablan, A. Roberts, and K. Bontcheva. Getting More

Out of Biomedical Documents with GATE’s Full Lifecycle Open Source

Text Analytics. PLoS Comput Biol, 9(2):¢1002854, 2013.

[7] S. Dennerlein, R. Gutounig, E. Goldgruber, and S. Schweiger. Web
2.0 Messaging Tools for Knowledge Management? Exploring the
Potentials of Slack. In Proc. of the European Conference on Knowledge
Management, page 225, 2016.

[8] A. H. Dutoit, R. McCall, I. Mistrik, and B. Paech. Rationale Management
in Software Engineering. Springer-Verlag, 2006.

[9] B. Eisner, T. Rocktischel, I. Augenstein, M. Bosnjak, and S. Riedel.

emoji2vec: Learning Emoji Representations from their Description. In

Proc. of the 4th International Workshop on Natural Language Processing

for Social Media, SociaNLP’16, 2016.

T.-M. Hesse, A. Kuehlwein, B. Paech, T. Roehm, and B. Bruegge.

Documenting Implementation Decisions with Code Annotations. In

Proc. of the 27th International Conference on Software Engineering and

Knowledge Engineering, SEKE’15, pages 152-157, 2015.

T. M. Hesse, A. Kuehlwein, and T. Roehm. DecDoc: A Tool for

Documenting Design Decisions Collaboratively and Incrementally. In

Proc. of the 1st International Workshop on Decision Making in Software

ARCHitecture, MARCH’ 16, pages 30-37, 2016.

P. Kruchten, R. Capilla, and J. C. Duefias. The Decision View’s Role in

Software Architecture Practice. IEEE Software, 26(2):36-42, 2009.

W. Kunz and H. Rittel. Issues as Elements of Information Systems.

Working Paper 131, Institute of Urban and Regional Development,

University of California, Berkeley, California, 1970.

P. Layzell, O. P. Brereton, and A. French. Supporting Collaboration in

Distributed Software Engineering Teams. In Proc. Seventh Asia-Pacific

Software Engineering Conference, APSEC 2000, pages 38—45, 2000.

J. Lee. Design Rationale Systems: Understanding the Issues. /EEE

Expert, 12(3):78-85, 1997.

B. Lin, A. Zagalsky, M.-A. Storey, and A. Serebrenik. Why Developers

Are Slacking Off : Understanding How Software Teams Use Slack. In

Proc. of the 19th ACM Conference on Computer Supported Cooperative

Work and Social Computing Companion, CSCW ’16 Companion, pages

333-336, 2016.

C. Lopez, V. Codocedo, H. Astudillo, and L. M. Cysneiros. Bridging the

Gap Between Software Architecture Rationale Formalisms and Actual

Architecture Documents: An Ontology-driven Approach. Science of

Computer Programming, 77(1):66-80, 2012.

R. Lougher and T. Rodden. Supporting Long-term Collaboration in

Software Maintenance. In Proc. of the Conference on Organizational

Computing Systems, COCS 93, pages 228-238, 1993.

K. A. Neuendorf. The Content Analysis Guidebook. SAGE Publ., 2002.

[5

=

[6

=

[10]

(11]

[12]

[13]

(14

[15]

[16]

(17]

(18]

[19]

Definitive version available at https://doi.org/10.1109/ESEM.2017.26

