Towards the Automation of Grading Textual Student
Submissions to Open-ended Questions

Jan Philip Bernius
Department of Informatics
Technical University of Munich
Munich, Germany
janphilip.bernius@tum.de

Stephan Krusche
Department of Informatics
Technical University of Munich
Munich, Germany
krusche@in.tum.de

ABSTRACT

Growing student numbers at universities worldwide pose new chal-
lenges for instructors. Providing feedback to textual exercises is
a challenge in large courses while being important for student’s
learning success. Exercise submissions and their grading are a pri-
mary and individual communication channel between instructors
and students. The pure amount of submissions makes it impossible
for a single instructor to provide regular feedback to large student
bodies. Employing tutors in the process introduces new challenges.
Feedback should be consistent and fair for all students. Addition-
ally, interactive teaching models strive for real-time feedback and
multiple submissions.

We propose a support system for grading textual exercises us-
ing an automatic segment-based assessment concept. The system
aims at providing suggestions to instructors by reusing previous
comments as well as scores. The goal is to reduce the workload for
instructors, while at the same time creating timely and consistent
feedback to the students. We present the design and a prototypical
implementation of an algorithm using topic modeling for segment-
ing the submissions into smaller blocks. Thereby, the system derives
smaller units for assessment and allowing the creation of reusable
and structured feedback.

We have evaluated the algorithm qualitatively by comparing au-
tomatically produced segments with manually produced segments
created by humans. The results show that the system can produce
topically coherent segments. The segmentation algorithm based on
topic modeling is superior to approaches purely based on syntax
and punctuation.

CCS CONCEPTS

« Social and professional topics — Software engineering ed-
ucation; « Computing methodologies — Natural language pro-
cessing.

ECSEE °20, June 1819, 2020, Seeon/Bavaria, Germany

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in European Confer-
ence on Software Engineering Education (ECSEE ’20), June 18-19, 2020, Seeon/Bavaria,
Germany, https://doi.org/10.1145/3396802.3396805.

Anna Kovaleva
Department of Informatics
Technical University of Munich
Munich, Germany
anna.kovaleva@tum.de

Bernd Bruegge
Department of Informatics
Technical University of Munich
Munich, Germany
bruegge@in.tum.de

KEYWORDS

Software Engineering Education, Automatic Assessment, Textual
Exercise, Assessment Support Systems

ACM Reference Format:

Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge.
2020. Towards the Automation of Grading Textual Student Submissions
to Open-ended Questions. In European Conference on Software Engineering
Education (ECSEE ’20), June 18-19, 2020, Seeon/Bavaria, Germany. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3396802.3396805

1 INTRODUCTION

In the past, there has been a growing number of students enrolled at
universities worldwide'. Large courses have thousands of students
participating, especially when using virtual classrooms. Figure 1
shows a typical mixed classroom setup for 1.700 software engi-
neering students used in the summer semester 2019 at Technical
University of Munich (TUM).

In introductory computer science and software engineering
courses, classroom sizes with up to 1.700 students are no longer an
exception, with growth by factor five in the last ten years. The free
Stanford Massive Open Online Course (MOOC) "Intro to Artificial
Intelligence,' started in 2011, quickly reaching 160,000 students
[42]. Large lectures pose a problem for instructors when grading
textual exercises. This is partially solved in MOOCs by peer reviews
[19]. The main problem is the asynchronous assessment, which
usually requires a week, or even longer. A major disadvantage of
MOOC:s is the delay between giving the exercise and grading. To
reduce this delay, we teach interactive lectures where we include
exercises live during the lectures, grade them immediately, and
provide quick feedback to students [24]. This increases student
comprehension and deepens understanding [19, 24], "significantly
by up to 87 %" in the domain of modeling [25].

Technology to foster interaction and discussion within large
lectures does exist [19, 29], as well as a scalable exercise system for
programming and modeling exercises with automatic assessments

1United Nations, "UN Global Assessment on Higher Education Reveals Broad
Socio-Economic, Gender Disparities," https://news.un.org/en/story/2017/04/555642-
un-global-assessment-higher-education-reveals-broad- socio-economic-gender, 2017.
ZPeter Norvig and Sebastian Thrun, "Intro to Artificial Intelligence, https://www.
udacity.com/course/intro- to-artificial-intelligence--cs271, 2011.

https://doi.org/10.1145/3396802.3396805
https://doi.org/10.1145/3396802.3396805
https://news.un.org/en/story/2017/04/555642-un-global-assessment-higher-education-reveals-broad-socio-economic-gender
https://news.un.org/en/story/2017/04/555642-un-global-assessment-higher-education-reveals-broad-socio-economic-gender
https://www.udacity.com/course/intro-to-artificial-intelligence--cs271
https://www.udacity.com/course/intro-to-artificial-intelligence--cs271

ECSEE 20, June 18-19, 2020, Seeon/Bavaria, Germany

Lecture Hall 1

Lecture Recording

500 Students

Lecturer

Lecture Hall 2

N

Video Transmission
(Local Area Network)

250 Students

Lecture Hall 3

N

Video Transmission
(Local Area Network)

250 Students

Livestream

Video Transmission
(Internet)

700 Students

Figure 1: Mixed on-campus and virtual classroom setup em-
ployed in the summer semester 2019 at TUM for the "Intro-
duction to Software Engineering" course.

[22, 23]. Textual exercises are commonly used in the examination,
but no automatic assessment solution is available to instructors.

Conducting open answer questions requires time-consuming
activities from instructors, including designing exercises and man-
ual assessment, due to the high variability in student answers. To
reduce efforts, instructors tend to reuse exercises from previous
years. Grading is a repeatable process, instructors look for common
mistakes or predefined solution patterns. The students learning
success benefits from detailed and personalized feedback [37]. To
enable large scale courses, the need to reuse feedback comments
arises. Individual feedback can still rely on the domain expertise of
the teacher. A single instructor cannot provide regular individual
feedback due to large student bodies with more than 1.000 students.
Ofter, tutors are employed to distribute the workload. Multiple
graders require means to create consistent feedback for learners.
This holds especially if the assessments are relevant for the final
grade, e.g. as part of a grade bonus system.

This paper focuses on the segmentation of submissions into
topically coherent parts, to enable reuse of feedback. Section 2
describes foundations on assessment systems and Section 3 summa-
rizes related work on text segmentation. We present an algorithm
in Section 4 that learns the topics of the submissions and then
splits up the answers accordingly. The Evaluation in Section 5 ana-
lyzes the quality of the algorithm’s performance, in a study with 10
participants. Section 6 summarizes the paper and outlines future
work.

2 ASSESSMENT SYSTEMS

Assessment systems are a common tool used in universities. Soft-
ware systems available to instructors vary from simple submission
of work, over grade review, towards automated systems. We first
explore interactive learning, a teaching methodology that can be
supported by assessment systems. Second, we inspect Artemis as an
example of an assessment system geared towards automatic assess-
ment. Last, we look at an approach to apply automatic assessments
on textual exercises.

Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge

2.1 Interactive Learning

A traditional university approach based on real-time communica-
tion demands students to be present in the lecture hall to participate.
With growing numbers of enrollments in universities, the inter-
action in classes is getting more difficult as more staff is needed,
and new ways for communication in large audiences are required
[19]. One of the first approaches to incorporate technology into the
classroom was the introduction of clickers for answering questions
[29]. Mayer et al. describe a method for forcing interaction with the
help of "response systems". The proposed system allows students
to "click" an answer to a multiple-choice question. The instructor
can evaluate the answers and a discussion on the topic can follow.
Bonwell and Eison analyze the impact of in-class discussions and
questions during lectures and exercises [6]. They found out that
through constantly applying knowledge, students gain a deeper
understanding of the content. The interactive learning approach
combines theory, typically presented in lectures, with practical
exercises [23]. Reflections based on feedback help to comprehend
knowledge. In an iterative process, frequent feedback enables stu-
dents to resubmit and learn from their mistakes [24].

2.2 Artemis

Artemis® is an automatic assessment management system devel-

oped at TUM [22]. It was built specifically to enable interactive
lectures, following the idea of interactive learning. The aim of this
system was primarily to allow students that are enrolled in soft-
ware engineering classes to participate in interactive programming
exercises. The system provides quick automatic feedback, thereby
helping the students to acquire knowledge better and, as a result,
achieve better grades in the final exam [24, 25]. During the past
years, the system constantly evolved and is now also used at other
educational institutions and in MOOCs. Programming exercises
can be submitted and assessed with the help of unit tests. Addi-
tionally, modeling exercises are supported by a UML editor and
a semi-automatized assessment component. The system provides
full support of multiple-choice quizzes, including creating, con-
ducting, and correcting them. For a deeper understanding of a
lecture’s theoretical basis, open-ended questions are more suitable
than multiple-choice questions [13]. Artemis allows us to conduct
textual exercises and submit answers, but instructors need to grade
student answers manually. This is a time-consuming process that
can lead to longer feedback loops, which decrease the students’
motivation. With a growing number of students, the number of
assessments increases, too. This results in bigger workloads for in-
structors and usually requires hiring more people. In this case, the
consistency of the assessment may decrease. While there is usually
only one sample solution, an unbound variety of students’ answers
exists. In mathematical problems or multiple-choice questions, the
correct solution is mostly unique, whereas, for open questions,
multiple interpretations are possible.

3"Artemis: Interactive Learning with Individual Feedback,' https:/github.com/
Islintum/Artemis, 2020.

https://github.com/ls1intum/Artemis
https://github.com/ls1intum/Artemis

Towards the Automation of Grading Textual Student Submissions to Open-ended Questions

ECSEE 20, June 18-19, 2020, Seeon/Bavaria, Germany

Artemis Instructor

Automatic assessment
possible?

Student §
\ » \
. Submit A .| Preprocess
nswer

answer i Answers
Refine i
answer
no, i
Satisfied? !
yes !

Review Calculate

Assessment 4

assessment « | Total Score

Assess
manually
| —

no

Assess
automatically

; «affects»
Automatic Assessment Manual
Feedback Model Feedback

Train Assessment
Model

v
'
'
]
]
'
'
'
]
'
'
'
]
]
'
'
'
]
]
'
'
'
]
]
'
'
'
]
]
'
'
'
]
]
'
'
'
1
'

'

Figure 2: Workflow of the automatic assessment system for textual exercises. The "Preprocessing Answers" activity (Figure 4)
includes the algorithm presented in this paper. UML activity diagram based on Bernius and Bruegge [2].

2.3 Automatic Assessment of Textual Exercises

Bernius and Bruegge describe a feedback concept built to produce
reusable and consistent feedback targeted for automatic assess-
ments of textual exercises [2]. Feedback is provided to topically
coherent text blocks, resulting in uniform and consistent feedback
across all assessments from multiple instructors. The concept aims
at reducing work for instructors and increasing consistency, reduc-
ing complaints from a peer-to-peer comparison between students.
In this approach, text blocks are manually highlightable by the
instructor, but this is not applicable to automated computations.
Splitting student answers based on delimiter characters? is not a
reliable solution, because of missing punctuation, abbreviations, the
use of bullet point answers, or long sentences. Also, a single feed-
back item is sometimes more suitable for a whole paragraph or a
single clause or bullet point, which is not covered by the syntactical
separator approach and requires manual adjustments.

Based on this concept, we developed a system to reuse instructor
feedback across students by analyzing the similarity of text blocks
[2]. The system simplifies the grading process by providing grad-
ing suggestions to instructors. Feedback suggestions are based on
similarity between answers, allowing the training of an assessment
model used to automatically assess answers as depicted in Figure 2.
Training and using this system relies on topically coherent text
blocks so that feedback is well scoped and can be shared between
many submissions.

3 TEXT SEGMENTATION

Text segmentation is considered to be one of the tasks of Natural
Language Processing (NLP). The term is used differently in litera-
ture and is not clearly defined. For example, document processing to
extract typed or handwritten text by distinguishing it from graphics
and blank spaces is referred to as text segmentation [17]. In other
cases, text segmentation is the process of extracting text from video
in order to index the recordings in a database [26]. Pak and Teh
conducted an analysis of literature on text segmentation published

4Delimiter characters such as . :;? !

between 2007 and 2017 [34] and categorize different approaches
found in literature as depicted in Figure 3. The authors additionally
categorize the papers according to used documents, language, and
the goal of applying text segmentation. They identify the following
application domains for text segmentation: "emotion extraction,
sentiment mining, opinion mining, topic identification, language
detection and information retrieval” [34].

Text segmentation
Segmentation result

A\

‘ Char‘acter ‘ ‘ Wo‘rd H

A\

‘ ‘ Sentence ‘ ‘ Text E)Iock ‘ ‘

Li;-le Tobic ‘ ‘ Oﬂ‘1er ‘

Figure 3: Taxonomy for text segmentation adapted from Pak
and Teh [34]. Text segmentation types relevant for this pa-
per are highlighted in blue color.

Information retrieval has many different applications, for ex-
ample, reducing large documents to relevant fragments based on
desired subtopics. The different desired results of text segmenta-
tion, the segment, is another interesting aspect Pak and Teh point
out. According to their analysis, a word is considered a segment
most often in literature, slightly less frequent are characters, topics,
sentences, lines. In other cases, phrases, paragraphs, or tags can be
used. We define the term "text block" in this paper as either clause,
bullet point, sentence, or paragraph.

Text segmentation can be additionally divided into linear, text
split into non-overlapping linear segments, and hierarchical, where
segments also have hierarchical relationships [9, 44]. The latter is
sometimes used for discourse retrieval. Along with most literature
on text segmentation, we only focus on linear text segmentation.

There also exists a differentiation based on the supervision of the
algorithm. Unsupervised approaches do not require any external
information to be trained, whereas supervised algorithms learn
from big datasets, such as Wikipedia, for example [21].

ECSEE 20, June 18-19, 2020, Seeon/Bavaria, Germany

3.1 Topic Modeling

Latent Dirichlet Allocation (LDA) was introduced by Blei et al. in
2003 [5]. LDA is used by many authors [7, 9, 32, 33] and proven to
be suitable when training data is from the same domain as test data
[32].

TopicTiling is an extension of Hearst’s TextTiling algorithm that
uses LDA to assign topic IDs to text blocks [15, 41]. Each block is
represented by a T-dimensional vector, where T is the number of
topics in the dataset. A coherence score is then calculated between
neighboring blocks inside of a "window” with cosine similarity.
Depth scores of the smallest coherence scores are then calculated
depending on the highest coherence score to the left and the right.
The highest depth scores indicate sub-topic boundaries.

Chen et al. use LDA and a K-nearest neighbor algorithm to clas-
sify short texts which gives evidence that LDA can also be applied
to text consisting of only several words [7].

Tu et al. use LDA and word-embeddings to segment educational
texts for online learning with a domain-independent algorithm [43].
They train their model on a small dataset and state that LDA can
be used with a comparatively small number of topics. They also
compare different similarity measures, such as cosine similarity,
depth score, spectrum. They additionally analyze the impact of
different values of input parameters of LDA. A similar analysis is
done by Riedl and Biemann [40].

3.2 Keyword Extraction

Ramos uses Term Frequency Inverse Document Frequency (TF-IDF)
to determine whether of a word is significant to a user’s query when
searching documents [38]. Intuitively, a word’s frequency is linked
to its importance. TF-IDF proposes that not only the absolute fre-
quency is relevant, but also the number of occurrences in different
documents. If a word occurs often across many documents, it is
most probably not significant. In the previous section, the concept
of stop words, which deals with the same problem, is described. The
application of TF-IDF is rather straightforward: every document is
run through and the two relevant frequencies are computed. The
significance of a word is proportional to the frequency inside of the
document but decreases if the word is found across different texts.

Another way to extract keywords is by using a thesaurus [30].
This can be especially helpful when there is only one document,
thus, the TF-IDF approach is not suitable. A thesaurus also pro-
vides external knowledge which, on one hand, allows extracting
keywords without any training but, on the other hand, requires
additional maintenance and fails if there is no match available.

An ontology, a relational representation between concepts, can
also be used to extract topics from text [11]. Embley et al. take
unstructured documents and application ontology as input. Then
they use a "keyword recognizer" to spot keywords with the help of
regular expressions, afterward, restructuring the extracted infor-
mation with the help of the ontology. They use this approach, for
example, to extract information from car advertisements. This can
be a suitable solution if the domain is known, keeping in mind that
creating an ontology requires time. However, it is not applicable if
the algorithm is to be applied to many different domains, and the
main concepts are not known in advance.

Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge

Matsuo and Ishizuka propose another method for keyword ex-
traction that bases on the y?-measure [28]. They first count co-
occurrences of words and word sequences. "If a term appears fre-
quently with a particular subset of terms, the term is likely to
have an important meaning" [28]. Then a co-occurrence matrix is
calculated. To improve the y?-computation "variety of sentence
length and robustness of the y?-value" are considered. To improve
the quality of the y%-measure two types of clustering are applied.
Similarity-based clustering gathers words with similar roles in a
sentence, pairwise clustering picks words from the same domain.
The words with the largest y?-value are given as the result.

Most of the previous approaches only focus on the frequencies
but cannot detect synonyms, even different forms of a verb can
decrease the quality of the algorithms. Hulth adjusts the previ-
ous approaches by introducing syntactical information, such as
part-of-speech (PoS) tagging, and data preprocessing, for exam-
ple, stemming, stop words removal [16]. They introduce a pattern
approach: based on the training set, there is evidence that most
keywords have nouns and follow a particular pattern, for example,
"adjective noun" uncountable or in the singular [16]. To calculate
the relevance of a phrase four features are used: frequency within a
single document, frequency in the whole set of documents, the po-
sition where the term appears first in a document, and the PoS-tag.
The machine learning model is then based on a set of inductive rules
that are derived with the help of "recursive partitioning (or divide-
and-conquer), which has as the goal to maximize the separation
between the classes for each rule" [16].

3.3 Dataset

Most authors use labeled and segmented, often artificially gener-
ated datasets, such as Choi’s labeled dataset for evaluating their
algorithms [8]. Often news articles or news broadcast transcripts
are used as there are clear topic boundaries that can be then com-
pared [1, 7, 20, 35, 45]. The evaluation algorithm is often based on
the approach by Beeferman et al. [1, 12, 39].

In this paper, as part of a text grading application for a university
environment, we focus on data collected from the lecture "Patterns
in Software Engineering" (PSE) at TUM in 2018/19. The dataset
consists of two exercises with 121 and 124 student submissions.
The exercises were conducted in-class and were announced as a
mock exam.

4 SEGMENTING STUDENT ANSWERS

Based on the literature, several existing approaches were applied to
the proposed problem. For testing the approaches we used a set of
students’ answers from our dataset. The exercise on the difference
between patterns and anti-patterns received answers with an aver-
age length of 3.6 sentences. Tested approaches were, TopicTiling
[41] and Bayes-seg developed by Eisenstein and Barzilay [10]. The
first is based on topic modeling with LDA. The latter uses Bayesian
probabilities and entropy to segment the texts. However, these
algorithms could deliver no or only poor results on our dataset,
most probably because of the short length and specific vocabulary
distribution, which they are not fitted for.

We abstracted the topic modeling approach and preserve the
idea that every answer is a collection of topics, and many topics

Towards the Automation of Grading Textual Student Submissions to Open-ended Questions

Language
[TextBlock I’__> Embgddi%gs Vector

Segment
Answers

=N

ECSEE 20, June 18-19, 2020, Seeon/Bavaria, Germany

Text Cluster | @

Clustering

Figure 4: A detailed view into the "Preprocess Answers" activity (Figure 2) performed by the assessment system before the

grading, depicted using a UML activity diagram.

are distributed among different answers [5]. However, instead of
calculating a topic model, we claim that a topic can be reduced to a
keyword. This way, the scarcity of the words in the answers can
be compensated for. Another strategy adapted from other works is
the "vocabulary introduction" [15]. As soon as new keywords are
introduced, a new segment begins. The presented approach differs
from thesaurus or ontology in a way that we do not know what
the keywords are going to be, and they are calculated for every
problem separately.

In the assessment system, the algorithm is one step in a prepro-
cessing phase, depicted in Figure 4. Answers are segmented into
text blocks before language embeddings and clusters are computed.

The algorithm can be separated into three phases: Text Prepro-
cessing, Keyword Extraction, and Segmentation. Figure 5 depicts
the algorithm’s flow of events, which is described in detail in the
following sections.

4.1 Text Preprocessing

Most algorithms for NLP are applied to preprocessed text-data. In
the assessment context, data is of rather low quality and cannot be
preprocessed manually. The available data contains lots of typing
mistakes, poor formatting, missing punctuation, and misspelled
words. Student submissions must not be modified, formatting be-
ing the only exception. Applying existing algorithms to our data
showed that bullet points, wrong punctuation, such as using new-
lines instead of points, can quickly reduce the quality of the out-
come. Hence, we try to cover the most common irregularities and
transform them into a format suitable for further calculations.

4.1.1 Stop Words. Removing stop words from text is a very com-
mon way to clean textual data for NLP [15, 16, 41]. We use the set
of stop words provided as part of the Natural Language Toolkit for
Python (NLTK) [4]. The English collection consists of 179 words,
like "I", "the", "what", "did", that do not contain much lexical con-
tent and can, therefore, be removed from the corpus. Although
this implementation only supports students’ submissions written
in English, the German set of 232 words is also included because
occasionally students hand in answers in the German language.
This cannot provide full support of submissions in German but can
reduce their negative effect on further processing.

4.1.2 Lemmatization. Lemmatization is the process of reducing
a word to its meaningful root. Keeping in mind, that we want to
extract keywords from a text and that the stop words are already
removed, we now have a set of words where the most significant
terms need to be found. Naturally, we use different forms of a word:
either the plural or the singular, different tenses for verbs, degrees of
comparison for adjectives, etc. Without preprocessing, the system
would consider the words "view" and "views" as two different ones.
With the help of WordNet, which is provided as part of the NLTK,
the algorithm reduces the second word to "view" [4, 31].

The result of the text preprocessing is thereby a set of lemmatized
lower-case words without any punctuation or stop words.

4.2 Keyword Extraction

The chosen approach for segmenting the students’ answers into
text blocks is partially based on keyword extraction. We generalize
the idea of topic modeling that claims that every document is a dis-
tribution over topics, and every topic is distributed over words. We
claim that every student’s submission is a collection of topics, and
statements, that are common among different answers. However,
we do not calculate a topic model. As already described, existing
approaches based on topic modeling are not suitable for our kind of
data because of rather short answers (3.6 sentences long on average)
and very different vocabulary used among different submissions.
That is why we reduce a topic to a keyword, thereby, compensating
for the data scarcity.

For keyword calculation, we adopt an approach based on word
frequency®. We tested the frequently used TF-IDF approach [38],
which proved to be inefficient in our case. The reason for it is the
specific character of the data. The TF-IDF method assumes that
words, frequent among different documents, are not significant for
keyword extraction, as they are too common. In the considered
context, the important words, definitions, for example, are present
in most of the answers. Another examined approach was an exten-
sion of the word frequency measure [16, 39]. Instead of searching
for significant words, they consider n-grams. This method did not
suit the data either. We tested the algorithm with bi- and tri-grams,
the resulting segmentation was worse than with single words. The
resulting keywords are the 10 most frequently used words in the
texts. The number was chosen empirically based on our data. Dy-
namically determining the optimal number of keywords could be
researched in the future to improve the algorithm.

4.3 Segmentation

The segmentation of the texts is split up into two steps. First, the
answers are split up into initial text blocks. Then, adjacent text
blocks are considered and merged if there are no new keywords
introduced. The result of this is a set of segments for each answer
that can be used by the rest of the system.

4.3.1 Sentence Tokenization. For identifying sentences we use a
pre-trained model of "punkt tokenizer" from the NLTK [4, 18]. How-
ever, it cannot handle bulleted lists, that is why we need to addition-
ally split the text on new lines. We also want to work with clauses
if a sentence is long. We decided not to use any algorithm for that
but search for conjunctions. We use subordinating conjunctions
and assume that they indicate a new clause. This approach is not

SSowmya Vivek, "Automated Keyword Extraction from Articles using NLP",
https://medium.com/analytics-vidhya/automated-keyword-extraction-from-
articles-using-nlp-bfd864f41b34, 2018.

https://medium.com/analytics-vidhya/automated-keyword-extraction-from-articles-using-nlp-bfd864f41b34
https://medium.com/analytics-vidhya/automated-keyword-extraction-from-articles-using-nlp-bfd864f41b34

ECSEE 20, June 18-19, 2020, Seeon/Bavaria, Germany

Text Preprocessing

Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge

punctuation lower-case words

Lemmatize all

words keywords

l

Merge text
blocks between
topic shifts

TextBlock

TopicShift

(
[
[
[
[
!
|
!
[
[
[
|
[
.

[new keyword found]

[}
[}
[}
1
]—) Keyword > Stem keywords
[}
[}

Sentence

Search for Segment
stemmed answers into
keywords text blocks

Atomic Text
Segment

Figure 5: The segmentation algorithms flow of events depicted using a UML activity diagram based on Bernius et al. [3].

complete and cannot be considered proper clause identification,
however, for this use case, we assume, it is enough. To minimize
false positives when identifying clauses, we only consider sentences
that are longer than 20 words.

4.3.2 Finding Segments. Before searching for keywords in the text
blocks, we use a stemmer from the NLTK [4], called PorterStemmer
[36]. Similarly to lemmatization, stemming is applied to avoid dif-
ferent forms of a word in a text. The latter, however, reduces a term
to a part, that in some cases may not be a correct word. An example
of this is "similarit", as the result of stemming the word "similarity".
Hence, it can be very helpful when searching for words, as you can
then find both "similarities" and "similarity".

For the definition of segments, we use the lexical cohesion ap-
proach and the vocabulary introduction method [14, 15]. The algo-
rithm iterates over all text blocks defined in a submission. We use
the original texts at this stage, not the preprocessed versions. In
every segment, stemmed keywords are sought. If two adjacent seg-
ments have the same keywords or the second text block has none,
they are merged into one block and the algorithm proceeds. As
soon as new keywords are introduced, the algorithm puts a segment
boundary before the current text block. This way the whole process
can be defined as a "divide & conquer" approach, because we first
divide the answer into initial text blocks, as small as possible, and
then merge them according to the defined boundaries.

5 EVALUATION

In order to evaluate the segmentation quality of the algorithm, we
conducted a qualitative study with 10 participants. We compare
the segmentation of the new algorithm with the existing approach
and the segmentation generated by the participants. We present
anecdotal evidence on the performance of the new algorithm.

5.1 Design

The evaluation is designed as a 15-minute interview. Participants
first get an introduction to semi-automatic text assessment, the
assessment concept [2] and segmentation. However, for reasons of
internal validity, no details of the segmentation algorithm or fur-
ther processing are given. The questionnaire consists of two parts:
segmentation tasks and questions about the subjective impressions
of the approach.

The first part requires five segmentation tasks. Participants are
given five student submissions from our dataset and asked to find

and mark topic shifts. The same task is performed by two systems,
one based on the syntactical separator approach and a second one
based on our topic modeling algorithm.

Each participant performs the task of finding and marking topic
shifts, as the system would do. These results are then quantitatively
analyzed and compared to the segmentation results of the existing
solution and the proposed algorithm. The performance measure
consists of the two criteria recall and precision [1]:

recall =

number of estimated topic shifts that are actual topic shifts

number of true topic shifts
precision =

number of estimated topic shifts that are actual topic shifts

number of estimated topic shifts

The submissions are taken from the PSE dataset and are of var-
ious format that is common among students’ answers. There are
bulleted and numbered lists, as well as text mixed with bulleted
lists, also two submissions that consist of multiple sentences and
paragraphs are included. The submissions are taken with original
grammar and punctuation.

The third part addresses the impressions of the surveyed. They
are asked to state their personal opinion on the approach and give
their judgment whether this solution can improve the instructors’
and students’ experience with textual exercises. The possible an-
swers are on a five-point scale based on Likert [27].

The study was conducted with ten students from the Department
of Informatics at TUM, who previously passed software engineer-
ing courses from our chair four of which have previous experience
working as a tutor. These students have reasonable domain knowl-
edge to determine segments. Also, they are potential tutors for
future editions of the courses.

5.2 Objectives
We define the following hypotheses for the evaluation:

H1 The designed segmentation algorithm performs better than
the syntactical separator approach measured using the per-
formance criterion recall and precision.

H2 Students understand the approach and find it intuitive.

H3 Students consider the approach an improvement of their un-
derstanding of feedback and the comprehension of a lecture’s
content.

Towards the Automation of Grading Textual Student Submissions to Open-ended Questions

H4 The segmentation algorithm produces the same segmenta-
tion as humans.

5.3 Results

Based on the computed segmentations depicted in Figure 6, we
conducted a performance evaluation using recall and precision. A
topic shift position was considered if more than 50% of the students
marked the position. Results in Table 1 show an increased recall
and precision values for the topic modeling based algorithm.

Table 1: Performance analysis of the new topic modeling
based algorithm and the previous approach based on syntac-
tical separators measured according to precision and recall

[1].

. Topic Modeling Syntactical Separators
Submission
Recall, % Precision, % Recall, % Precision, %
S1 100 100 100 50
S2 75 60 100 67
S3 75 100 50 50
S4 100 100 100 100
S5 67 100 30 100
Average 83.4 92 76 73.4

We analyze the number of detected topic shifts in Figure 7. We
compare the number of topic shifts found by the proposed algorithm
and the current solution to the number of topic shifts marked by the
participants. We also depict statistics for the most frequent topic
shifts, meaning positions that were present in six or more answer
sheets.

In the questionnaire, nine out of ten students agreed that the pre-
sented approach of segmenting answers is intuitive (see Figure 8),
supporting our hypothesis H2. Students also claimed that finding
topic shifts’ positions was not very easy which can probably be
linked to the unambiguity of the task. The results also depend on
the style of the assessment of a participant. Therefore, we com-
pared the average number and the number of the most frequent
segments, where one can see that these two numbers sometimes
vary. Especially, for submission S2, where the proposed system
failed to improve the result of the current system, the difference
between the two numbers is big. This can also be justified with the
fact, that some participants tended to mark more positions than
other students for most of the submissions. The data shows that
the topic modeling-based algorithm resembles human perception
better than the syntactical separation approach.

Since most of the students stated to value the assessment of tex-
tual exercises as helpful, there were downsides like general or short
feedback, as well as long correction periods. Participants agree
that the assessment process can be accelerated by applying our
approach. All of our participants considered structured feedback to
be an improvement for the students’ comprehension, eight partici-
pants agree strongly. The responses support the third hypothesis
(H3).

The topic modeling algorithm found 14 topic shifts in our sample
of five submissions. The participants derived 15 topic shifts. As
visible in Figure 6, 13 topic shifts (92%) are equally detected by the

ECSEE 20, June 18-19, 2020, Seeon/Bavaria, Germany

(A
S1

Differences: [S]

Antipatterns: [S]

-Have one problem [8] and two solutions [8] (one problematic [8] and one
refactored) [1-4, 7-10, S, T]

-Antipatterns are a sign of bad architecture [8] and bad coding [1-10, S, T]
Pattern: [S]

-Have one problem and one solution [1-5, 7, 9, 10, S, T]

\-Patterns are a sign of elaborated architecutre and coding

(A
S2

The main difference between patterns and antipatterns is, [8] that [6, 7]
patterns show you a good way to do something [8, 7] and antipatterns
show a bad way to do something. [1, 2, 4-10, S] Nevertheless [7] patterns
may become antipatterns in the course of changing understanding of how
good software engineering looks like. [1, 2, 5-10, S, T] One example for
that is functional decomposition, [5] which used to be a pattern and "good
practice". [1, 2, 5, 8, S, T] Over the time it turned out that it is not a goog
way to solve problems, so it became a antipattern. [1-10, S, T]

A pattern itsself is a proposed solution to a problem that occurs often and
in different situations. [1-3, 5-10, S, T]

In contrast to that a antipattern shows commonly made mistakes when
dealing with a certain problem. [2, 7-9, S, T] Nevertheless a refactored

\solution is aswell proposed.

s N
S3

1.Patterns can evolve into Antipatterns when change occurs [1-8, 10, S, T]
2. [S] Pattern has one solution, [2, 5-8, 10, T] whereas anti pattern can

have subtypes of solution [1, 3, 4, 6, 8, 10, S, T]

3. [S] Antipattern has negative consequences [8] and symptom, [2, 6-8, 10]

&where as patterns looks only into benefits [8] and consequences

J
s N
S4
Patterns: A way to Model code in differents ways [1-10, S, T]
\Antipattern: A way of how Not to Model code)
s N

S5

Antipatterns are used when there are common mistakes in software
management [5] and development to find these, [1-10, T] while patterns by
themselves are used to build software systems [8] in the context of frequent
change [8] by reducing complexity and isolating the change. [1-10, S, T]
Another difference is that the antipatterns have problematic solution [5, 8]
and then refactored solution, [2, 5, 6, 8-10] while patterns only have a

\solunon.)

Figure 6: Submissions S1-S5 from our PSE data set. The sub-
missions were segmented by two algorithms, as well as ten
participants. The detected segment borders are marked in-
line with the text in square brackets: Topic Modeling Algo-
rithm [T], Syntactical Separator Approach [S], and Partici-
pants [1-10].

ECSEE 20, June 18-19, 2020, Seeon/Bavaria, Germany

Number of topic shifts detected by the algorithm

Average number of topic shifts detected by the participants of the survey
W Number of most frequent topic shifts (contained in 6 and more answers)
Il Number of topic shifts detected with current solution

6

5
4
2 II II
| ll
0
L 1 Submi 2 13 i 14 Submi 5

Figure 7: Comparison of the number of detected topic shifts
by the current and proposed systems as well as the partici-
pants.

Number of topic shifts
@

newly proposed algorithm and a majority of the participants. Only
two topic shifts are not detected by the algorithm (false negative),
and one topic shifts detected by the algorithm in S2 has no majority
with the participants (false positive). This analysis does support the
fourth hypothesis (H4).

5.4 Discussion

We could test the performance of the proposed system and compare
it to the current solution based on the topic shifts’ positions marked
by students. Two interesting details could be discovered.

First, submission S2 was the only case where the proposed solu-
tion performed slightly worse than the existing approach. We can
explain this with the character of this submission. The student sub-
mitted a rather long answer. It consists of seven sentences whereas
the average number in our dataset is 3.6. In general, submissions
with a lot of sentences where the same information is repeated
multiple times can become a challenge. The student also gives an
example of an anti-pattern. Answers with examples can become a
problem for the proposed solution since there is an unbound set
of examples that can be provided and thus it is difficult to judge if
the keyword approach suits this case. A solution to this could be
dynamically determining the number of keywords.

Second, when reviewing the students’ segmentation, there were
several answer sheets with significantly more topic shifts than
found in other responses. This is usually because the participant
saw an "and" in a sentence and decided that there are two different
objects or verbs, hence, two different statements. One such case was
the following part of an answer: "Antipatterns are used when there
are common mistakes in software management and development
to find these". Some participants put a boundary between the words
"management” and "and". However, this kind of segmentation can
lead to problems for further processing and assigning feedback to
the text blocks. Though this part of the sentence does have two
objects and they could, for example, be correct and incorrect or the
other way around, the two resulting text blocks are both incomplete.
The first text block misses the "find these" part, the second one —
the subject of the sentence. This proves that it is possible to get
text blocks that do not make any sense without context. A possible
solution could be augmenting the parts of the sentence with the

Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge

subject or the object from the other part. This, however, demands a
deeper analysis of the sentence structure.

During the evaluation, we could make some interesting obser-
vations. There are two different types of text blocks that could be
treated in another way. First, phrases that express the student’s
personal opinion about the question or the lecture, like "I do not
understand this" or "oh, that’s easy", do not need to be assessed. A
possibility could be to discover them and exclude them from the
corpus to improve the quality of the data for further processing.
Incomplete sentences and clauses can also be treated differently.
Compound sentences with several clauses often contain multiple
different statements. Currently, we do not want to split them up.
A sentence like "I like apples and bananas" does have two objects,
but a text block "and bananas" does not make any sense without
context, the subject and the verb in this case. So a possible solution
could be augmenting incomplete text blocks with the correspond-
ing missing context. This could be addressed by implementing PoS

tagging.

5.5 Threats to Validity

One of the problems of the evaluation is the small size of the pop-
ulation. The validity could be improved by either increasing the
population to include more tutors with different experience levels
or by choosing a more experienced population of instructors. In ad-
dition, selected submissions for the segmentation task are a threat
to external validity since they are from a single lecture. Third, sub-
missions are chosen according to the formatting of the answer, as
we allowed different answering formats such as bullet points or full
sentences. The study therefore only provides anecdotal evidence
on the performance of the assessment algorithm.

6 SUMMARY

In this paper, we have formalized a new algorithm based on topic
modeling and text segmentation to segment student answers into
topically coherent text blocks. A prototypical implementation has
been integrated as part of the open-source Athene project® into the
automatic assessment management system Artemis. A performance
evaluation with ten students has shown that the new algorithm
performs better than an algorithm using syntactical separators such
as delimiters.

6.1 Conclusion

The presented algorithm is a small building block towards a semi-
automated assessment support system for textual exercises, as well
as the vision of fully automated assessments of textual exercises.
Producing coherent text blocks from student submissions improves
the experience for instructors, tutors, and students:

For instructors, a structured form of feedback makes it easier to
compare against grading criteria. The increasing degree of automa-
tion reduces the workload necessary to conduct textual exercises.

For tutors, the algorithm allows to automate the first step of the
grading process and removes some of the overhead related to the
segment-based assessment concept. Generated feedback sugges-
tions improve the value of each feedback element, as it can be easily

®"Athene: A library to support (semi-Jautomated assessment of textual exercises,"
https://github.com/Is1lintum/Athene, 2020.

https://github.com/ls1intum/Athene

Towards the Automation of Grading Textual Student Submissions to Open-ended Questions

| found the task intuitive.

| could easily find sensible boundaries.

The presented approach can make the assessment process faster for
tutors.

Structured feedback contributes more to a student's comprehension.
40%

m Strongly disagree = Disagree

Neither agree or disagree

ECSEE 20, June 18-19, 2020, Seeon/Bavaria, Germany

g =

20% 0% 20% 40% 60% 80% 100%

Agree = Strongly agree

Figure 8: Participants response on their subjective impression of the approach ranked on a five-point scale based on Likert

[27]. (n = 10)

reused for multiple students, even by other tutors. Suggestions re-
duce the workload, as a partial assessment is already pre-filled. A
semi-automated system should encourage tutors to create extensive
and high-quality explanations.

For students, feedback will be more concise. A direct link be-
tween a segment of their submission and feedback helps students
to understand the feedback and their mistakes. They profit from
improvements for tutors, which we envision to lead to quicker and
more extensive feedback.

6.2 Future Work

The result of the algorithm’s application can be improved in two
areas: keywords and text blocks using statistical models, topic mod-
els, or decision trees. Additionally, a thesaurus could be used to
recognize synonyms.

The effect of the algorithm on the assessment system can be
evaluated in two aspects: The usability for tutors when grading
text blocks and the impact of the segmentation on the quality of
feedback suggestions.

REFERENCES

[1] Doug Beeferman, Adam L. Berger, and John D. Lafferty. 1997. Text Segmentation
Using Exponential Models. CoRR (1997). http://arxiv.org/abs/cmp-1g/9706016

[2] Jan Philip Bernius and Bernd Bruegge. 2019. Toward the Automatic Assessment
of Text Exercises. In 2nd Workshop on Innovative Software Engineering Education
(ISEE). Stuttgart, Germany, 19-22.

[3] Jan Philip Bernius, Anna Kovaleva, and Bernd Bruegge. 2020. Segmenting Stu-
dent Answers to Textual Exercises Based on Topic Modeling. In 17th Workshop
Software Engineering im Unterricht der Hochschulen (SEUH). Innsbruck, Austria,
72-73.

[4] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural Language Processing
with Python (1st ed.). O'Reilly Media, Inc.

[5] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet
Allocation. The Journal of Machine Learning Research 3 (2003), 993-1022.

[6] Charles C.Bonwell and James A. Eison. 1991. Active Learning: Creating Excitement
in the Classroom. ERIC Clearinghouse on Higher Education.

[7] Qiuxing Chen, Lixiu Yao, and Jie Yang. 2016. Short text classification based on
LDA topic model. In 2016 International Conference on Audio, Language and Image
Processing (ICALIP). IEEE, 749-753. https://doi.org/10.1109/icalip.2016.7846525

[8] Freddy Y. Y. Choi. 2000. Advances in Domain Independent Linear Text Seg-
mentation. In Proceedings of the 1st North American Chapter of the Association
for Computational Linguistics Conference (Seattle, Washington) (NAACL 2000).
Association for Computational Linguistics, USA, 26-33.

[9] Jacob Eisenstein. 2009. Hierarchical Text Segmentation from Multi-Scale Lexical
Cohesion. In Proceedings of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics. Association for Computational Linguistics, Boulder, Colorado, 353—
361. https://www.aclweb.org/anthology/N09-1040

[10] Jacob Eisenstein and Regina Barzilay. 2008. Bayesian Unsupervised Topic Seg-
mentation. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (Honolulu, Hawaii) (EMNLP "08). Association for Computa-
tional Linguistics, USA, 334-343.
David W. Embley, Douglas M. Campbell, Randy D. Smith, and Stephen W. Liddle.
1998. Ontology-based Extraction and Structuring of Information from Data-rich
Unstructured Documents. In Proceedings of the seventh international conference
on Information and knowledge management - CIKM '98. ACM Press, 52-59. https:
//doi.org/10.1145/288627.288641
Pavlina Fragkou, Vassilios Petridis, and Athanasios Kehagias. 2004. A Dy-
namic Programming Algorithm for Linear Text Segmentation. Journal of In-
telligent Information Systems 23, 2 (2004), 179-197. https://doi.org/10.1023/b:
jiis.0000039534.65423.00
Arthur C. Graesser, Peter Wiemer-Hastings, Katja Wiemer-Hastings, Derek Har-
ter, Tutoring Research Group Tutoring Research Group, and Natalie Person.
2000. Using Latent Semantic Analysis to Evaluate the Contributions of Stu-
dents in AutoTutor. Interactive Learning Environments 8, 2 (2000), 129-147.
https://doi.org/10.1076/1049-4820(200008)8:2;1-b;ft129
[14] Michael A. K. Halliday and Ruqaiya Hasan. 1976. Cohesion in English. Longman,
London.
[15] Marti A. Hearst. 1997. TextTiling: Segmenting Text into Multi-Paragraph Subtopic
Passages. Computational Linguistics 23, 1 (1997), 33-64.
[16] Anette Hulth. 2003. Improved Automatic Keyword Extraction Given More Lin-
guistic Knowledge. In Proceedings of the 2003 conference on Empirical methods in
natural language processing -. Association for Computational Linguistics, 216-223.
https://doi.org/10.3115/1119355.1119383
Anil K. Jain and Sushil Bhattacharjee. 1992. Text segmentation using gabor filters
for automatic document processing. Machine Vision and Applications 5, 3 (1992),
169-184. https://doi.org/10.1007/bf02626996
Tibor Kiss and Jan Strunk. 2006. Unsupervised Multilingual Sentence Boundary
Detection. Computational Linguistics 32, 4 (2006), 485-525. https://doi.org/10.
1162/c0li.2006.32.4.485
Jan Knobloch and Enrico Gigantiello. 2017. AMATI: Another Massive Audience
Teaching Instrument. In 15th Workshop Software Engineering im Unterricht der
Hochschulen (SEUH). Hannover, Germany, 63-68.
Takafumi Koshinaka, Ken ichi Iso, and Akitoshi Okumura. 2005. An HMM-based
text segmentation method using variational Bayes approach and its application
to LVCSR for broadcast news. In Proceedings. (ICASSP '05). IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2005., Vol. 1. IEEE, 485-488.
https://doi.org/10.1109/icassp.2005.1415156
Omri Koshorek, Adir Cohen, Noam Mor, Michael Rotman, and Jonathan Berant.
2018. Text Segmentation as a Supervised Learning Task. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 2 (Short Papers), Vol. 2. Association
for Computational Linguistics, 469-473. https://doi.org/10.18653/v1/n18-2075
Stephan Krusche and Andreas Seitz. 2018. ArTEMiS: An Automatic Assessment
Management System for Interactive Learning. In 49th ACM Technical Symposium
on Computer Science Education. ACM, 284-289. https://doi.org/10.1145/3159450.
3159602
Stephan Krusche and Andreas Seitz. 2019. Increasing the Interactivity in Software
Engineering MOOCs - A Case Study. In 31th Conference on Software Engineering
Education and Training (CSEE&T).
Stephan Krusche, Andreas Seitz, Jirgen Borstler, and Bernd Bruegge. 2017.
Interactive Learning: Increasing Student Participation Through Shorter Exer-
cise Cycles. In 19th Australasian Computing Education Conference. ACM, 17-26.
https://doi.org/10.1145/3013499.3013513

[11

[12

[13

[17

[18

[19

IS
=

[21

[22

&
&

[24

http://arxiv.org/abs/cmp-lg/9706016
https://doi.org/10.1109/icalip.2016.7846525
https://www.aclweb.org/anthology/N09-1040
https://doi.org/10.1145/288627.288641
https://doi.org/10.1145/288627.288641
https://doi.org/10.1023/b:jiis.0000039534.65423.00
https://doi.org/10.1023/b:jiis.0000039534.65423.00
https://doi.org/10.1076/1049-4820(200008)8:2;1-b;ft129
https://doi.org/10.3115/1119355.1119383
https://doi.org/10.1007/bf02626996
https://doi.org/10.1162/coli.2006.32.4.485
https://doi.org/10.1162/coli.2006.32.4.485
https://doi.org/10.1109/icassp.2005.1415156
https://doi.org/10.18653/v1/n18-2075
https://doi.org/10.1145/3159450.3159602
https://doi.org/10.1145/3159450.3159602
https://doi.org/10.1145/3013499.3013513

ECSEE 20, June 18-19, 2020, Seeon/Bavaria, Germany

[25] Stephan Krusche, Nadine von Frankenberg, Lara Marie Reimer, and Bernd
Bruegge. 2020. An Interactive Learning Method to Engage Students in Modeling.
In Proceedings of the 42nd International Conference on Software Engineering -
Software Engineering Education and Training (ICSE-SEET’20). Seoul, South Korea.
Rainer Lienhart and Wolfgang Effelsberg. 2000. Automatic text segmentation
and text recognition for video indexing. Multimedia Systems 8, 1 (2000), 69-81.
https://doi.org/10.1007/s005300050006
Rensis Likert. 1932. A Technique for the Measurement of Attitudes. Archives of
Psychology 22, 140 (1932), 1-55.
[28] Yutaka Matsuo and Mitsuru Ishizuka. 2003. Keyword Extraction from a Single
Document using Word Co-occurrence Statistical Information. International
Journal on Artificial Intelligence Tools 13, 01 (2003), 157-169. https://doi.org/10.
1142/50218213004001466
Richard E. Mayer, Andrew Stull, Krista DeLeeuw, Kevin Almeroth, Bruce Bimber,
Dorothy Chun, Monica Bulger, Julie Campbell, Allan Knight, and Hangjin Zhang.
2009. Clickers in college classrooms: Fostering learning with questioning methods
in large lecture classes. Contemporary Educational Psychology 34, 1 (2009), 51-57.
https://doi.org/10.1016/j.cedpsych.2008.04.002
Olena Medelyan and Ian H. Witten. 2006. Thesaurus Based Automatic Keyphrase
Indexing. In Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital Li-
braries (Chapel Hill, NC, USA) (JCDL *06). Association for Computing Machinery,
New York, NY, USA, 296-297. https://doi.org/10.1145/1141753.1141819
George A. Miller. 1995. WordNet: A Lexical Database for English. Commun. ACM
38, 11 (1995), 39-41. https://doi.org/10.1145/219717.219748
[32] Hemant Misra, Frangois Yvon, Olivier Cappé, and Joemon Jose. 2011. Text seg-
mentation: A topic modeling perspective. Information Processing & Management
47, 4 (2011), 528-544. https://doi.org/10.1016/j.ipm.2010.11.008
Hemant Misra, Francois Yvon, Joemon M. Jose, and Olivier Cappe. 2009. Text
Segmentation via Topic Modeling: An Analytical Study. In Proceeding of the 18th
ACM conference on Information and knowledge management - CIKM '09 (Hong
Kong, China). ACM Press, 1553-1556. https://doi.org/10.1145/1645953.1646170
[34] Irina Pak and Phoey Lee Teh. 2017. Text Segmentation Techniques: A Critical
Review. In Innovative Computing, Optimization and Its Applications: Modelling
and Simulations. Springer International Publishing, 167-181. https://doi.org/10.
1007/978-3-319-66984-7_10

[26

[27

[29

[30

[31

[33

Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge

[35] Jay M. Ponte and W. Bruce Croft. 1997. Text segmentation by topic. In Research

and Advanced Technology for Digital Libraries. Springer Berlin Heidelberg, 113-
125.

Martin F. Porter. 1980. An algorithm for suffix stripping. Program: electronic
library and information systems 14, 3 (1980), 130-137.

Ann Poulos and Mary Jane Mahony. 2008. Effectiveness of feedback: the students’
perspective. Assessment & Evaluation in Higher Education 33, 2 (2008), 143-154.
https://doi.org/10.1080/02602930601127869

[38] Juan Enrique Ramos. 2003. Using TF-IDF to Determine Word Relevance in

Document Queries. In Ist instructional Conference on Machine Learning.

Jeffrey C. Reynar. 1999. Statistical Models for Topic Segmentation. In Proceedings

of the 37th annual meeting of the Association for Computational Linguistics on
Computational Linguistics -. Association for Computational Linguistics, 357-364.
https://doi.org/10.3115/1034678.1034735

Martin Riedl and Chris Biemann. 2012. Sweeping through the Topic Space: Bad
Luck? Roll Again!. In Proceedings of the Joint Workshop on Unsupervised and Semi-
Supervised Learning in NLP (Avignon, France) (ROBUS-UNSUP ’12). Association
for Computational Linguistics, USA, 19-27.

Martin Riedl and Chris Biemann. 2012. TopicTiling: A Text Segmentation Algo-
rithm Based on LDA. In Proceedings of ACL 2012 Student Research Workshop (Jeju
Island, Korea) (ACL ’12). Association for Computational Linguistics, USA, 37-42.
C. Osvaldo Rodriguez. 2012. MOOCs and the AI-Stanford like Courses: Two Suc-
cessful and Distinct Course Formats for Massive Open Online Courses. European
Journal of Open, Distance and E-Learning (2012).

Yuwei Tu, Ying Xiong, Weiyu Chen, and Christopher Brinton. 2018. A Domain-
Independent Text Segmentation Method for Educational Course Content. IEEE
International Conference on Data Mining Workshops (2018). https://doi.org/10.
1109/icdmw.2018.00053

Yaakov Yaari. 1997. Segmentation of Expository Texts by Hierarchical Agglomer-
ative Clustering. CoRR (1997). arXiv:9709015 [cmp-lg]

[45] Jon P. Yamron, Ira Carp, Larry Gillick, Steve Lowe, and Paul van Mulbregt. 1998.

A hidden Markov model approach to text segmentation and event tracking. In
Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP '98 (Cat. No.98CH36181), Vol. 1. IEEE, IEEE, 333-336.
https://doi.org/10.1109/icassp.1998.674435

https://doi.org/10.1007/s005300050006
https://doi.org/10.1142/s0218213004001466
https://doi.org/10.1142/s0218213004001466
https://doi.org/10.1016/j.cedpsych.2008.04.002
https://doi.org/10.1145/1141753.1141819
https://doi.org/10.1145/219717.219748
https://doi.org/10.1016/j.ipm.2010.11.008
https://doi.org/10.1145/1645953.1646170
https://doi.org/10.1007/978-3-319-66984-7_10
https://doi.org/10.1007/978-3-319-66984-7_10
https://doi.org/10.1080/02602930601127869
https://doi.org/10.3115/1034678.1034735
https://doi.org/10.1109/icdmw.2018.00053
https://doi.org/10.1109/icdmw.2018.00053
https://doi.org/10.1109/icassp.1998.674435

	Abstract
	1 Introduction
	2 Assessment Systems
	2.1 Interactive Learning
	2.2 Artemis
	2.3 Automatic Assessment of Textual Exercises

	3 Text Segmentation
	3.1 Topic Modeling
	3.2 Keyword Extraction
	3.3 Dataset

	4 Segmenting Student Answers
	4.1 Text Preprocessing
	4.2 Keyword Extraction
	4.3 Segmentation

	5 Evaluation
	5.1 Design
	5.2 Objectives
	5.3 Results
	5.4 Discussion
	5.5 Threats to Validity

	6 Summary
	6.1 Conclusion
	6.2 Future Work

	References

