
A

Software Engineering Project Courses with Industrial Clients1

Bernd Bruegge, Technische Universität München
Stephan Krusche, Technische Universität München
Lukas Alperowitz, Technische Universität München

There is an acknowledged need for teaching realistic software development in project courses. The design
space for such courses is wide, ranging from single semester to two semesters courses, from single client
to multi-customer courses, from local to globally distributed courses, and from toy projects to projects with
real clients. The challenge for a non-trivial project course is how to make the project complex enough to
enrich the students’ software engineering experience, yet realistic enough to have a teaching environment
that does not unduly burden students or the instructor. We describe a methodology for project courses that
is realizable for instructors, improves the students’ skills and leads to viable results for industry partners.

In particular recent advances in release management and collaboration workflows reduce the effort of
students and instructors during delivery and increase the quality of the deliverables. To enable release and
feedback management, we introduce Rugby, an agile process model based on Scrum that allows reacting
to changing requirements. To improve early communication, we use Tornado, a scenario-based design ap-
proach that emphasizes the use of informal models for the interaction between clients and students. The
combination of Rugby and Tornado allows students to deal with changing requirements, to produce multiple
releases and to obtain client feedback throughout the entire duration of the course.

We describe our experience with more than 300 students working in 40 projects with external clients over
the duration of four years. In the latest instance of our course, the students have produced more than 7000
builds with 600 releases for eleven clients. In an evaluation of the courses, we found that the introduction
of Rugby and Tornado significantly increased the students’ technical skills, in particular with respect to
software engineering, usability engineering and configuration management as well as their non-technical
skills such as communication with the client, team work, presentation and demo management. Finally we
discuss how other instructors can adapt the course concept.

Categories and Subject Descriptors: K.6.3 [Management Of Computing And Information Systems]:
Software Management—Software development, Software process; D.2.9 [Software Engineering]: Manage-
ment—Life cycle, Programming teams, Software configuration management, Software process models

General Terms: Management

Additional Key Words and Phrases: Agile Methods, Release Management, Continuous Delivery, Continu-
ous Integration, Version Control System, Feedback, Executable Prototypes, Communication Models, User
Involvement, Scenario-Based Design, Informal Modeling, Scrum, Prototyping, Unified Process

1This paper is based on previously published papers [Bruegge et al. 2012], [Krusche and Alperowitz 2014]
and [Krusche et al. 2014b] and on a tutorial [Bruegge et al. 2014] that provides more details about our
course.

A:2 B. Bruegge, S. Krusche and L. Alperowitz

1. INTRODUCTION
Educating software engineering students for real-world jobs in industry is a challeng-
ing task. A fundamental question concerns the mix of theory and practice [Hilburn and
Humphrey 2002]. Shortly after the term Software Engineering was coined in 1968, the
Curriculum 68 report already mentioned that students gain programming competence
by participating in a “true-to-life” programming project [Atchison et al. 1968]. But
nothing happened. At least we are not aware of any software engineering project as
a result of Curriculum 68. Academia was still dominated by mathematicians who be-
lieved that software could be produced by formal reasoning based on mathematics and
logic alone. When an early project course was offered at MIT in 1968, project man-
agement was considered soft and not scientific [Ross 1989]. Only a few daring souls
ventured into offering and conducting software engineering courses in the 1970s.2

Horning and Wortman introduced the idea of running a software engineering course
as game using rotation based on the availability of artifacts among team members
[Horning and Wortman 1977]. Freeman also introduced rotation in his early project
courses, but instead of rotating after the delivery of an artifact, the teams rotated at
phase boundaries. One team had to turn a requirements description into a specifica-
tion, another one produced a product based on the specification, a third one imple-
mented the specification, and rotated to define the acceptance tests [Freeman et al.
1976]. Börstler also used rotation in his early courses [Börstler 2001]. Tomayko cre-
ated a course in 1987 at the University of Wichita and wrote “A first course in software
engineering is a daunting experience for both student and teacher. The students must
work in cooperation with one another on a project that uses almost all their computer
science skills and illustrates the techniques taught in the class portion of the course.
Since this is often the most interesting single course they take, students tend to throw
themselves into it at the expense of other courses”. [Tomayko 1987, p. 43]

These early project courses had impact on curriculum design. In 2004, an ACM/IEEE
joint task force on computing curricula finally recommended to include software engi-
neering projects in the undergraduate curriculum. Students can demonstrate “an un-
derstanding of and apply current theories, models, and techniques that provide a basis
for problem identification and analysis, software design, development, implementa-
tion, verification, and documentation.” [LeBlanc et al. 2006, p. 15] Many educators
teach their project course at the end of the computing curriculum, often referred to as
capstone course. The underlying assumption is that students have to use the knowl-
edge accumulated throughout their studies to develop a complex system; students can-
not be expected to develop large systems without this accumulated knowledge.

A capstone project “offers students the opportunity to tackle a major project and
demonstrate their ability to bring together topics from a variety of courses and ap-
ply them effectively” [LeBlanc et al. 2006, p. 15]. In 2009, the Curriculum Guidelines
for Graduate Degree Programs in Software Engineering (GSwE2009) were published
[Pyster 2009]. GSwE2009 expects students to demonstrate their accumulated skills
and knowledge in a more significant capstone experience than does SE2004 [LeBlanc
et al. 2006]. Graduate capstone courses are generally more demanding compared with
the SE2004 undergraduate curriculum. The history of GSwE2009 and the evolution of
software engineering education until 2011 is well summarized by [Ardis et al. 2011].

The main goal of any software engineering project course is to have students appre-
ciate the complexity of software development and to teach them how to work in a team
[Lingard and Barkataki 2011]. However, instructors cannot expect to teach students
how to deal with complexity and change if the students have to simultaneously play

2Tomayko provides an overview of the early project courses from 1968-1980 [Tomayko 1998].

Software Engineering Project Courses with Industrial Clients A:3

the role of the client, the project manager and - at the end of the course - manage
the acceptance of the system. Tomayko describes the situation concisely: “Despite the
expected positive outcomes, the beginning teacher of this course has a thousand ques-
tions and fears: How do you find a reasonable project? Should you use a ‘real’ customer
or make something up? How do you organize students into teams? What do they do?
How do you keep the class meetings closely related to the project work? How should
the project documents look? How do you grade teams? Will you see your spouse and
children again before the semester ends?” [Tomayko 1987, p. 1]

Even today there is little agreement as to what a software engineering project course
should cover. Most academic programs have at least one such course and a few offer
several courses on the subject. Some project courses cover detailed aspects, e.g. pro-
gramming, usability and security issues, analysis, architecture, design or work prod-
ucts [Börstler 2001]. One approach to simplify the project for instructors as well as for
students is to work in a problem domain that the students are already familiar with,
or one they are motivated to learn more about, e.g., computer game development, or
enhancing tools oriented toward program development itself. A problem with this ap-
proach is that students often have extensive knowledge of the game or tool interface
but are blissfully unaware of what goes into modeling, implementation, testing and
delivery. However, Salamah and his colleagues suggest to use the Digital Home Case
Study, which provides a set of development artifacts and exercises, as well as guidance
for instructors on how to use the case modules [Salamah et al. 2011]. Other univer-
sities offer curricula with several software engineering courses. Bernhart provides a
good categorization of the different types of project courses [Bernhart et al. 2006].

In 1998, Tomayko wrote: “The most common form of software engineering education,
even today, is the one-semester survey course, usually with a toy project built by groups
of three students. Even though such courses are now 30 years old, the Software Engi-
neering Institute and IEEEs Annual Conference on Software Engineering Education
and Training still get one or two papers every year from some isolated academics who
think that they have innovated the idea of a group project course”. [Tomayko 1998,
p. 7]. Bavota et al. describe two courses on Software Engineering and Project Man-
agement simultaneously taught in the same semester, thus allowing to build mixed
project teams composed of five to eight Bachelor’s students with development roles
and one or two Master’s students with management roles [Bavota et al. 2012]. Johns-
Boast and Flint run a combined course with two cohorts of students: students learning
how to work as team members in their third year and students learning how to work
as team leaders in their fourth (final) year [Johns-Boast and Flint 2013]. For two con-
secutive semesters, small teams of five or six students, with fourth year team leaders
and third year team members work with industry partners to develop solutions to
real-world problems. The Embry-Riddle Aeronautical University offers a sequence of
project courses: In the first year, the students learn Humphrey’s Personal Software
Process (PSP), followed by courses using TSPi, an academic version of the Team Soft-
ware Process, in their second and third years [Hilburn and Humphrey 2002].

Judith and her colleagues examine several approaches to deal with situations when
real clients are brought into the classroom at various sized institutions in different
countries [Judith et al. 2003]. Broman, Sandahl and Baker describe an approach,
where the students are organized in simulated companies, each consisting of approx-
imately 30 students and employees. The organization of the simulated companies can
be a traditional line organization with several departments or an agile organization
containing self-organized cross-functional teams [Broman et al. 2012]. A more ambi-
tious instance of such a project course is not to simulate the company, but to have the
students interact with a real client, i.e. an external client from industry.

A:4 B. Bruegge, S. Krusche and L. Alperowitz

Our own software engineering project courses with real clients were influenced by
the ideas of James Tomayko, in particular with respect to single-project courses with
a real client [Bruegge et al. 1991], [Bruegge 1994]. Since then we have been exper-
imenting with many different setups and parameters, replacing structured analysis
with object-oriented modeling [Bruegge et al. 1992], introducing iterative and collab-
orative design [Bruegge and Coyne 1994], adding technical writers [Bruegge et al.
1995], adding use case modeling [Coyne et al. 1995], introducing rationale manage-
ment and issue-based modeling [Dutoit et al. 1995], and venturing into globally dis-
tributed projects [Bruegge et al. 2000], but always with one or more real clients.

Getting a real client, especially an external one from industry, is a problem for many
instructors. Even today, project courses with simulated clients such as colleagues from
the university are not unusual. We strongly believe in real clients in project courses.
Some parameters have therefore stayed constant in all our courses throughout the
time. We call them the 6Rs: We always look for a real external client who has a real
problem to be solved with real data. We ask students to work together as a real team in
a real project to solve the problem by a real deadline, usually the end of the semester.
Even with these constraints, there is still a wide spectrum of possibilities. Our early
courses have dealt mostly with modeling desktop-oriented information systems, where
we focused on system modeling, in particular object modeling, functional modeling
and dynamic modeling [Bruegge and Dutoit 2009]. The courses we have taught can
be placed into four different categories: Single-Project, Global SE, Multi-Project and
Multi-Customer. Table I shows an example of our courses for each category. With these
course types we cover most of the alternatives proposed by Saiedian [Saiedian 1996].

Table I. Examples of our project courses

Course Example Course Type #
TA

s3

#
St

ud
en

ts

#
Te

am
s

#
L

oc
at

io
ns

#
C

li
en

ts

#
P

ro
bl

em
s

IP Single-Project 3 30 5 1 1 1
JAMES Global SE 5 110 8 2 1 1

DOLLI 5 Multi-Project 5 47 6 1 1 2
iOS Praktikum Multi-Customer 11 100 11 1 11 11

A single-project course has one client stating one problem to be solved by all students
working together in teams. The course covers the complete development process from
vague requirements to product delivery. In 1991, we taught Interactive Pittsburgh (IP),
an object-oriented single-project course with the Pittsburgh City Planning Department
and 30 students [Bruegge et al. 1992]. Other single-project courses with real clients are
described by [Rosiene and Rosiene 2006] and [Cicirello et al. 2013]. [Wikstrand and
Börstler 2006] describe the factors that influence how students select their projects.

A global software engineering course consists of one or more clients distributed
across multiple locations. From 1997 to 1998, Daimler in Stuttgart and Chrysler in
Detroit were our external clients in a project with 110 students working in teams at
two universities, Carnegie Mellon University and Technische Universitaet Muenchen
[Bruegge et al. 2000]. Experiences with global software engineering courses are also
described by [Deiters et al. 2011], [Matthes et al. 2011], [Damian et al. 2012] and [Fil-
ipovikj et al. 2013]. A multi-project course has a single client who requests more than

3Teaching assistants are graduate students with at least one year of project management experience.

Software Engineering Project Courses with Industrial Clients A:5

one problem to be solved by the students. Over a period of six years we worked with
the Munich Airport as the client in several multi-project courses [Bruegge et al. 2008].

The most ambitious instance is the multi-customer course with multiple external
clients from industry, each with a different problem to be solved. We have been teach-
ing multi-customer courses since 2008, when we started to offer the iOS Praktikum,
a project course where up to 100 students develop mobile applications for real clients.
With the emergence of smartphones as a new exciting platform, we focus more and
more on the development of mobile interactive systems and cyber-physical systems.
This requires additional modeling activities, in particular, we now include user model-
ing, user interface modeling and usability testing and stress informal modeling in its
various forms based on UML [Bruegge and Dutoit 2009].

The usual reaction of many instructors we have talked to is that multi-customer
courses are not possible, especially if they involve real clients. The purpose of this
paper is to show that it is indeed possible, in particular with the recent advances
in continuous integration and the emergence of release management tools that can be
used effectively in the class room. We also demonstrate that project courses do not have
to be capstone courses offered as the final culmination in the software engineering
curriculum. In fact, our strong belief is that the earlier we can involve students in
a software engineering project course, the earlier they appreciate the technical and
managerial complexities of a project. We have started to offer our project course to
second year students (sophomores) and in some occasions even admit first semester
students (freshmen). The challenge is to make such a course still manageable by the
instructor and provide a meaningful software engineering education experience.

In this paper we present our teaching methodology for project courses with up to 100
students working on problems formulated by real clients. Section 2 describes Rugby,
the ecosystem and agile process model. The “engineering” focus leaves instructors vul-
nerable to several traps, in particular if the focus is solely on technology, not addressing
the human and social dimensions of software engineering. A major challenge is to rec-
oncile the engineering dimension with the human and social dimension [Vliet 2006].
We describe the interplay between students and the environments of our infrastruc-
ture, in particular to manage releases and to receive feedback from clients.

Constructing, understanding and using models is an essential element of any soft-
ware engineering course. Kuzniarz and Börstler provide an overview of the different
ways how to introduce modeling and how students can acquire the ability to cre-
ate models [Kuzniarz and Börstler 2011]. Section 3 presents Tornado, a light-weight
scenario-based design approach that starts with informal visionary scenarios formu-
lated by the client in the problem statement funneling down to demo scenarios used
in the delivery and demonstration of the final system. Before using UML models for
analysis and design, we encourage the students to use informal models, in particular
when interacting with a client during early requirements engineering activities. Ex-
amples of informal models are film trailers to express the basic idea of the project to
external stakeholders.

Section 4 describes the impact that our courses had on students. We evaluated four
multi-customer courses taught from 2011 to 2014 and found that the participation in
our course increased the students technical skills, in particular with respect to model-
based software development, usability engineering and configuration management as
well as their non-technical skills such as communication with the client, team work,
presentation and demo management. In Section 5 we discuss implications for instruc-
tors, in particular with respect to scalability and additional overhead. To help other
instructors to incorporate our methodology into their courses, we show alternatives
how to set up the course environment and discuss their benefits and drawbacks.

A:6 B. Bruegge, S. Krusche and L. Alperowitz

2. RUGBY: THE ECO-SYSTEM AND AGILE PROCESS MODEL
Rugby4 is an agile process model which combines elements from Scrum [Schwaber
and Beedle 2002] and the Unified Process [Jacobson et al. 1999] to address the specific
needs of university projects where students, taking other courses as well, are basi-
cally part-time developers. To deal with part-time developers, one focus of Rugby is
structured meeting management using weekly team meetings instead of daily scrum
meetings. Rugby is based on the concept of continuous delivery right from the begin-
ning to obtain early feedback from the client. It emphasizes executable prototypes to
visualize progress and includes review workflows to support knowledge transfers, so
that students learn from each other to stick to architectural and coding guidelines.

In this section we discuss the environments of Rugby’s ecosystem5. Figure 1 shows
how the course participants interact with these environments. A developer, in our case
a student, interacts with the collaboration, development, integration and delivery en-
vironment. A manager, in our case a project leader or a coach, interacts with the man-
agement and the collaboration environment. A user, in our case the client, a test user
or the end user, interacts with the target, collaboration and delivery environment.

model,
implement

commit,
build

give
feedbackrelease

Integration Environment

Version
Control

Continuous
Integration

Development Environment

IDEInformal
Modeling

Collaboration Environment

Meeting
Management

Issue
Management

Delivery Environment

Continuous
Delivery

Feedback
Management

prioritize

use
Target Environment

Usage
Context

Executable
Prototype

Developer User

Manager

communicate

Management Environment

Program
Management

Course
Organization

Instructor

Key: Interacts with

Fig. 1. Roles interacting with Rugby’s course environments (adapted from [Bruegge et al. 2012])

Section 2.1 covers the Management Environment, which defines organizational as-
pects like the roles and responsibilities of all stakeholders. It also defines the life cycle
model used in our project courses. The Collaboration Environment, discussed in Sec-
tion 2.2, describes our meeting management workflow and our approach to issue track-
ing in agile projects. The instructor sets up these environments before the beginning of
the course and uses them to communicate with project leaders, coaches and students
throughout the entire course. The Integration Environment described in Section 2.3
defines development specific workflows for version control, continuous integration and
code reviews. Workflows which require user interaction, such as the delivery of prod-
uct increments and the collection of feedback, are defined in Section 2.4. The Delivery
Environment allows developers to deliver executable prototypes to the Target Environ-
ment in which context information about the usage can be tracked. The collaboration,
integration and delivery environments include workflows that help the students to
work together as a team and to bridge the communication gap between developers

4The term rugby was first used by Takeuchi and Nonaka [Takeuchi and Nonaka 1986].
5Highsmith defines an ecosystem as “a holistic environment” that includes several interwoven components:
chaordic perspective, collaborative values and principles, and a barely sufficient methodology [Highsmith
2002]. We describe Rugby as an ecosystem of environments and workflows.

Software Engineering Project Courses with Industrial Clients A:7

and users. The Development Environment contains the actual development tools and
workflows and is not further described in this section.

2.1. Management Environment
The management environment includes the organization, the life cycle model and
a description of the responsibilities for each of the stakeholders in the course. Be-
fore the course starts the instructor advertises the course, talks to potential clients,
brainstorms with them about possible ideas and their involvement. The clients in our
courses come from large companies, small companies with only a few employees, and
even include startups. Figure 2 illustrates the workflows of the life cycle model allow-
ing the students to work in parallel. The average effort of each workflow (Requirements
Elicitation, Analysis, Design, etc.) is shown for each phase of the project. Important
milestones are shown as black diamonds such as the Kickoff to present the projects,
the Team Allocation to map the students to a specific client, the Design Review to
present the requirements analysis and system design for the multiple projects and the
Client Acceptance Test (CAT) to present the results at the end of the semester.

Top Level
Design

Elaboration

Problem
Statement

Inception

Analysis

Design

Implementation

Project
Management

Release
Management

Sprint 0 Sprint 1 Sprint n

Test

Requirements
Elicitation

Schedule Design
Review

R0 R1

Kickoff CAT
Team
Allocation

 … …

R2 R3 Rn

Event Event based releaseTime based release

Construction

Document

Feedback
Management

Fig. 2. Rugby’s life cycle model (adapted from [Bruegge et al. 2012])

The first phase can be mapped to the inception phase of the Unified Process and
lasts until the Kickoff. The instructor provides a template for the Problem Statement
to the clients who write at least one visionary scenario (see Section 3). The clients are
also encouraged to specify an initial Top Level Design of the application to be developed
so that the students already know whether it is a reengineering project, a greenfield
project or an interface engineering project. The Kickoff is the official start of the course.
The clients give short presentation (10 min.) where they try to convince the students of

A:8 B. Bruegge, S. Krusche and L. Alperowitz

their project idea. After the kickoff event, the students fill out an online questionnaire
where they state their preferences for the presented projects as well as their experi-
ences in software development. On the day after the kickoff, we use the results from
the questionnaire to assign the students to the teams. This is a semi-automated phase
that still requires about half a day. We try to address the preferences of the students.
If all students get their first choice, we know that they stay motivated.

However, there are several constraints to produce balanced teams. For example, we
try to balance the teams with respect to diversity and gender. On average, about one
third of our students have a good background knowledge in software development.
Furthermore, about 15% - 20% female students apply to our courses. Overall we have
about 50% international students. During the team assignment, we attempt to staff
each team with experienced as well as inexperienced students and with a good gender
balance. However, often not all these constraints can be applied simultaneously. There
have been kickoff events, where one client attracted all the first choice votes. In other
cases we had to give students their fifth or sixth choice. In such situations it is impor-
tant that the instructor meets face-to-face with the affected students. It usually helps
to tell them that their learning experience is independent from a particular project.

After the team assignment, the instructor sets up the team spaces in the collabora-
tion and integration environment and provides meeting agenda templates for the first
team meetings. The project leaders invite their team members to the first meeting to
explain the basic meeting management concepts and discuss the problem statement.
Then, each team starts the first sprint which we have coined Sprint 0. The focus of
Sprint 0 is not on development, but on team building exercises. It can be mapped to
the elaboration phase of the Unified Process. For example, we use icebreakers that fo-
cus on teamwork, in particular team-based problem solving, and provide a lot of fun.
Example of icebreakers are tricks where the students learn how to rip a phone book in
half or the marshmallow challenge [Wujec 2010]. In addition, each team has to produce
a trailer, a short 60 second movie describing the basic idea or vision of the system to be
built. The trailer is marketing oriented and helps to bring the client and the team to-
gether. In many cases our clients have used these trailers to market the project within
their own organization.

Other team building activities included kart races, paintball games and dinner
groups. Such activities help to overcome cultural differences in the team formation
phase. Sprint 0 also covers short tutorials about Rugby’s workflows to bring all team
members up to a shared knowledge level. Our tutorials are based on experiential learn-
ing, to establish a culture of continuous improvement and continuous learning within
the course [Kolb 1984]. Another activity in Sprint 0, often in the middle as shown in
Figure 2, is the creation of a first release. Because it is early in the project, students
only have to build an “empty release” but the students become already familiar with
release management techniques, in particular version control, continuous integration
and continuous delivery, as well as with feedback management.

After Sprint 0, the teams move on to development sprints which can be mapped
to the construction phase of the Unified Process. Each of these sprints usually last
between two and four weeks6, depending on the innovation of the project. With stu-
dents working on different schedules, daily meetings are hard to schedule, therefore
the teams conduct weekly meetings (in contrast to Scrum). We consider our students as
part-timers, because they are taking other classes and exams throughout the course.
Part-time developers are becoming common in agile industry projects [Fowler 2001]. In

6Explorative projects have shorter sprints as requirements change more often and more feedback is re-
quired. Projects with mature requirements usually have longer sprints.

Software Engineering Project Courses with Industrial Clients A:9

addition to the weekly face-to-face meeting, the students can use asynchronous com-
munication mechanisms such as chat as well as audio and video conferences.

In the design review event after two thirds of the course, all teams present their
understanding of the problem, show the trailer, the requirements and one or two vi-
sionary scenarios usually in form of a demo, as well as the status of the project. The
demo can still include workarounds and mocks. However, we require from the stu-
dents to report which parts of the demo are already implemented, which of them are
only unit-tested and which of them are bridged by a “narrator”. The work load in-
creases significantly before the design review. The course-wide presentation motivates
the students because they have to present their work to all other teams in the presence
of all clients. After the presentations, the teams get feedback from their client, as well
as from other teams and the instructor.

At the end of the course (after three months) the students present the requirements
and the architecture of the system combined with another demo in the course-wide
client acceptance test (CAT). The demo is based on the demo scenario, a refined ver-
sion of one or more of the visionary scenarios from the problem statement. It should
not include workarounds and mocks any more. The CAT is filmed and we also provide
a live stream into the internet so parents, friends, and others can watch the event on-
line. This also allows clients, who cannot be physically present, to see the presentations
from a remote location. The transition phase starts after the client acceptance test and
depends on the intentions of the client. Possibilities include a project extension imme-
diately afterwards, usually with some of the students of the team and a productization
project where the prototype produced by the students is turned into a product. Often
the results of the project are used for another project course in the following semester.

Cross-Project
Activities

Project 2Project 1 Project n

Management

Development

Release
Coordinator

Project
Leader

Customer

Release
Manager

Developer

...

...

...

Management

Development

Project
Leader

Customer

Release
Manager

Developer

...

Management

Development

Project
Leader

Customer

Release
Manager

Developer

...

Program
Managers

Program Management Program
Manager

Program
Manager

CoachCoachCoachProgram
Managers

Code Quality
Coordinator

Code Quality
Manager

Code Quality
Manager

Code Quality
Manager

Fig. 3. Rugby’s organization (adapted from [Bruegge et al. 2012])

Figure 3 shows the project-based organization of Rugby. Each development team is
shown as vertical column, consisting of up to eight developers, a coach and a project
leader. Each team is self-organizing and therefore responsible for all aspects of de-
velopment and delivery of their software. The project leader and the coach fulfill a
role similar to the Scrum master, but in a master-apprentice relationship. While the
project leader is already experienced with project management, the coach is a student
who took a project course in a previous year (similar to the organization described

A:10 B. Bruegge, S. Krusche and L. Alperowitz

by [Johns-Boast and Flint 2013]). This ensures the coach is familiar with the infras-
tructure and the organizational aspects of our ecosystem. One task of the coach is to
organize the first team meeting and to ensure that the team organizes all following
team meetings in a structured way. In the first team meeting, the coach takes the
role of the primary facilitator and introduces the other two important roles in a meet-
ing, the minute taker and the timekeeper [Bruegge and Dutoit 2009]. In the following
meetings, we require that these roles are rotated between the students in each team,
so that everybody learns how to delegate and how to fulfill responsibilities. Börstler
also used rotation in his early courses, but in a different way [Börstler 2001].

During the project, the coaches learn essential management skills by observing the
behavior and actions taken by the project leader. Another task of the coach is the com-
munication of problems to the project leader and to the program management (see
Figure 3). The client has a similar role as the product owner. If the client is not avail-
able due to time reasons or a large physical distance, the project leader takes the role
of a proxy client [Bruegge and Dutoit 2009]. Several multiple cross-project teams are
set up to bring software engineering expertise into the development teams (they are
represented as horizontal rows in Figure 3). The release management team consists
of one student from each development team. It is responsible for release and feedback
management issues with respect to version control, continuous integration and contin-
uous delivery. Depending on the project, we also set up cross-project teams to address
architecture issues and ensure code quality. Membership in the cross-project teams
is voluntary, because it requires the members to be part of two teams, their develop-
ment team and the cross-project team. Usually we ask the most ambitious students to
participate in one of these cross-project teams. The cross-project teams meet regularly
to build up and share their knowledge and understanding of tools and workflows. In
addition, they often help to resolve conflicts among teams.

Disagreements within team members are taught to be normal, especially during sys-
tem design, when architectural alternatives are discussed and need to be reviewed. We
teach the students that they provide valuable opportunities to develop better team-
work skills and better end products [Johnson et al. 1991]. To help students handle
disagreements and tensions in a productive manner, we provide them with syntactical
phrases they can use to keep a meeting on time, voice objections constructively, express
preferences for certain proposals and reinforce listening skills. Most of the examples
are taken from Doyle’s book [Doyle and Straus 1976]. We teach them about the Har-
ward conflict resolution model to resolve conflicts by depersonalization [Fisher et al.
2011]. Actual examples from the team meetings that caused tension (e.g. a domineer-
ing personality, a slacker, cultural differences in communication style, heated discus-
sions about alternative proposals) are used by the instructor to demonstrate, which
techniques the students could have used to get consensus and arrive at a resolution.
This is usually done during the meeting critique at the end of each weekly meeting.

2.2. Collaboration Environment
The collaboration environment support synchronous as well as asynchronous commu-
nication, in particular it includes meeting management and issue management. We
use a defined structure for meeting agendas and protocols, adapted from [Bruegge and
Dutoit 2009]. The main purpose of our meetings is to have everyone taking away action
items and meeting minutes. Meeting skills are required for all software engineers in
order to meet efficiently and to avoid information loss. However, meeting procedures
and meeting skills are usually not included in standard software engineering curric-
ula. How to make meetings work [Doyle and Straus 1976] and Mining Group Gold
[Kayser 1990] (from which we derived the agenda and protocol templates) describe
many useful procedures and heuristics for conducting efficient meetings.

Software Engineering Project Courses with Industrial Clients A:11

We use a defined structure for meeting agendas and protocols, adapted from
[Bruegge and Dutoit 2009]. During the weekly face-to-face meetings the students com-
municate their status, identify impediments and conflicts. Conflicts and open issues
are resolved in the discussion part of the meeting, leading to action items where the
students promise to finish identified tasks until the next meeting. In addition to the
planned weekly meeting with a fixed time slot, the teams also agree on working meet-
ings where they solve tasks in smaller groups. To further synchronize their work, they
use chat rooms and mailing lists as well as tools like Skype to setup virtual meetings.

To allow students to structure their work we use an agile issue tracker where they
can store product backlog items as well as other tasks. In Scrum, task management
is usually done on a physical taskboard, e.g. a whiteboard, because developers work
full-time in the same room. In Rugby we use a digital taskboard that is integrated
into the issue tracker to synchronize the communication between developers and man-
agers and to allow everyone to know who is currently working on which task. The issue
tracker supports sprint planning and task estimation. During spring planning, devel-
oper assume the responsibility for a specific sprint backlog item, e.g. a user story, and
assign it to themselves. Then they create sub-tasks that involve other developers of
the teams in the realization of the backlog item. With the help of the digital taskboard,
the coach and the project leader can check that each developer has enough tasks to
work on in order to balance the task allocation in the team; often the more motivated
students assign themselves too many tasks.

During development sprints, project leader and coach track the progress with dig-
ital burn down charts. For task estimation we teach the students techniques such as
planning poker [Haugen 2006] or the team estimation game [Johnson 2012]. Because
planning can take a lot of time, we limit the time for planning, especially in the initial
sprints, when the students are not yet experienced with these techniques. Our meet-
ing templates provide the capability for linking issues from the issue tracker directly
into our knowledge management system, so that tasks and promises from the current
meeting can be tracked and included in the agenda for the next meeting.

2.3. Integration Environment
The integration environment consists of a version control system and a build system
supporting continuous integration. Our branching model is based on [Driessen 2010],
but we use a simplified version, shown in Figure 4, to not overly burden the students
who have usually not used git in a large team before our course. Students can share the
same codebase, but can separate their work into branches to avoid too many merges.
They use feature branches for their actual development work, a development branch
for the integration of the feature branches and a master branch for time-based releases
to the client (e.g. at the end of the sprint).

If a sprint backlog item involves the implementation of a feature, the students create
a new feature branch from the development branch. Then they realize the sub-tasks of
the backlog item and commit their changes to this feature branch. Other team mem-
bers may have finished their work and already integrated their changes back into the
development branch. The students can retrieve these changes and update their feature
branch. When the new feature branch is finished, the students request a merge into
the development branch to integrate their changes. This merge request, also called
pull request, is supported by several development platforms such as GitHub [GitHub
2015] and Atlassian Stash [Stash 2015]. Pull requests are an important social aspect of
coding, because they improve the transparency and collaboration. This has been shown
by Dabbish and her colleagues in projects involving open-source software repositories
[Dabbish et al. 2012].

A:12 B. Bruegge, S. Krusche and L. Alperowitz

Release  
Manager

Developer

Sprint
Planning Review

Code Quality
Manager Create

Branch
Merge
Branch

Release

Merge
Branch

Update
Branch

Development
Branch

Master
Branch

Feature
Branches

Pull Request

Commits

Key

Fig. 4. Rugby’s branching model using pull requests (adapted from [Driessen 2010])

Pull requests allow the instructor to introduce a dedicated code review workflow
shown in Figure 5. This workflow prevents poor code quality or poor architecture de-
cisions in the development branch because an experienced member of the code quality
team reviews the request before executing the merge. During the review, the code qual-
ity manager checks the conformance to the overall architectural style, design guide-
lines, coding guidelines, and also checks whether the changes are reasonable. Any
problems or misunderstandings are formulated as comments directly attached to the
changes. The student who had requested the merge, has to read these comments and
improve the code in another commit. New commits automatically update the pull re-
quest. When all comments are addressed, and no new comments are produced by the
code quality manager, the merge request is finally approved.

Commit source
code in feature

branch

Request merge
into development

branch

Review
changes

Approve

Request
improvements

Merge changes to
development branch

Commits in
feature branch

Comments
& Tasks

Improve source
code according to

feedback

Yes

No

Quality
ok?

Developer
Code Quality

Manager
Check changes for,
understandability,
conformance to

architecture, code
guidelines, etc.

Pull
Request

Pull
Request

Comments
& Tasks

Fig. 5. Rugby’s code review workflow

2.4. Delivery Environment
The delivery environment contains the build and delivery infrastructure to deploy the
software into the target environment and provides the capability to gather client and
end user feedback in various ways. Using the workflows provided in the integration
and the delivery environment the students are able to deliver an application to the
client with only a few interactions. The feedback tracker automatically collects feed-
back of the client within the delivered application and crash reports. The collected data
is then synchronized with the issue tracker in the collaboration environment, creating
a feedback backlog that is accessible by the whole developer team.

Software Engineering Project Courses with Industrial Clients A:13

Rugby’s release management workflow is based on the deployment process described
by Humble [Humble and Farley 2010]. A build is called releasable when it successfully
went through all testing stages. A releasable build can be deployed to the target envi-
ronment of the client with just a few interactions. Continuous delivery bridges not only
the gap between developers and operations as described in [Humble 2011] and [Hum-
ble and Molesky 2011], but also the gap between developers and users. It enables the
idea of continuous user involvement proposed by [Maalej et al. 2009] and [Pagano and
Bruegge 2013] and fits nicely into the ideas behind the agile manifesto where working
software and client collaboration are more important than comprehensive documenta-
tion and contract negotiation. [Beck et al. 2001]

The Issue Tracker in the collaboration environment manages the product back-
log. The Version Control Server in the integration environment provides support for
branches and stores source code and configuration data. To check out, build, test and
package the application there is a central Continuous Integration Server in the inte-
gration environment. The Delivery Server delivers the build to the target environment
and provides an easy to use solution for team members to make a release available,
for clients to install the release in the target environment, and for users to provide
feedback for this specific release.

Figure 6 shows Rugby’s release management workflow. The workflow starts each
time a Developer pushes source code to the Version Control Server (labeled 1 in Figure
6). This leads to a new build on the Continuous Integration Server (2). The Developer is
then notified about the build status, e.g. via email or chat (3). If the build was success-
ful and after it passed all test stages, the Release Manager can release the build on the
Continuous Integration Server (4). This uploads the build to the Continuous Delivery
Server (5) which then notifies the User about the availability of the new release (6).
The User downloads the release (7) onto the Device. User feedback within the applica-
tion is uploaded in a structured way (8), collected by the Continuous Delivery Server
(9) and forwarded to the Issue Tracker (10) which notifies the Developer (11).

Version
Control
Server

Developer

1

notify

upload!
build 5

download

6

Issue
Tracker

notify

store feedback as issues

10

release4

Release  
Manager

checkout, compile!
and test build

2

upload feedback

give feedback

9

Continuous
Integration

Server

Continuous
Delivery
Server

7

Device

8

User
inform about!
build status

commit

311

Fig. 6. Rugby’s release management workflow (adapted from [Krusche and Alperowitz 2014])

The described workflow is easy to use by our students, because branches are auto-
matically built and (regression) tested. Continuous delivery combined with the branch-
ing model shown in Figure 4 helps the students to automatically check if a new feature
passes all tests and whether they can deliver it as executable prototype to the user. In
addition, the workflow allows them to use executable prototypes as communication
basis between developers and users throughout the whole project course. The Rugby
process model allows the students to create releases from any branch. Especially in

A:14 B. Bruegge, S. Krusche and L. Alperowitz

projects where user interface modeling is an important aspect of the project, the stu-
dents can discuss difficult UI design issues with the client by sending an executable
prototype that can be executed by the client on the target platform. Similar to Scrum,
Rugby expects each team to deliver at least one release at the end of each sprint. How-
ever, Rugby allows the teams to release their applications also during the sprints, that
is, whenever they need to obtain feedback or when a client requests it.

Figure 7 illustrates four different types of release situations supported by Rugby.
Students can use a feature branch release in a meeting to demonstrate the develop-
ment status to their team members (labeled 1 in fig 7). This improves the quality of the
communication in the team meetings, in particular, it often shortens the time required
to explain specific implementation details. Students can also use feature branch re-
leases to perform usability tests with users (2). Releases from the development branch
are good candidates in status meetings (3), in particular management meetings, when
all project leaders meet with the instructor and report about the status of their team.

Sprint 
End

Master
Branch

Feature
Branches

Development
Branch

Sprint 
Start

Developer CustomerUser Manager

4

321

Non-releasable build
Releasable build
Release

Key

Fig. 7. Examples for Rugby’s event-based delivery (adapted from [Krusche et al. 2014b])

The team can automatically produce time-based releases from the master branch
(4), similar to Scrum’s product increments at the end of a sprint used in sprint review
meetings. For each of these release situations, a developer or manager can select a
successfully tested, i.e. releasable, build and deliver it to his own device for demon-
stration. The ability to use branches increases the flexibility of our students because
they now have the possibility to create internal releases to test the software on their
own devices and external releases just for specific features. Additionally, the instruc-
tor can use the same automatic release process to discuss progress and current issues
with the project leaders. This saves a lot of time and provides many opportunities that
have not been available for instructors in earlier project courses.

In addition to branching, Rugby also supports a semi-automated feedback manage-
ment workflow that allows developers to obtain feedback early and continuously [Kr-
usche and Bruegge 2014]. Figure 8 shows different usage scenarios to deal with user
feedback7. The students can categorize each feedback according to its type and handle
the feedback in different workflows: feature requests in the analysis workflow, design
requests in the design workflow and bug reports in the implementation workflow. For
example, during Sprint 0 the client receives the empty release, labeled R0 in Figure
8. This ensures early in the project that the release management workflow functions

7Issues in the backlog have multiple sources, in particular requirements elicited early in the development
process. Figure 8 focuses only on user feedback and how it is processed in Rugby.

Software Engineering Project Courses with Industrial Clients A:15

properly. The empty release contains a feedback button that allows the user to send an
empty feedback, labeled F0, within the application back to the developers.

Developer

User

Feedback
Management

Feedback
Provision

Development

Issue
Tracker

R1 R2

F1
F2 F3

F1: Feature F2: Bug F3: Design
Change

Release

Feedback

R0

F0

Key

X
X

Fig. 8. Rugby’s feedback management workflow (adapted from [Krusche et al. 2014b])

The release R1 in Figure 8 leads to two feedback items F1 and F2. In our example, F1
is a feature request and the team decides to put this feature request into the product
backlog for one of the following sprints. F2 is a bug report and the developers decide to
fix this bug in the current sprint, so they put it on the sprint backlog, correct the bug,
commit their changes and release R2 that includes the bugfix. If the release happens
during the sprint and not at the end, we call it an event-based release in Rugby. R2
includes release notes about the resolved bug, so the user can directly see what the
team was able to resolve. While using this release R2, the user detects a usability
issue in the user interface of the application and produces another feedback request.
This is categorized by the students as a design request. The team decides to put it on
the product backlog to review it with the client at the next sprint planning meeting.

3. TORNADO: FROM VISIONARY TO DEMO SCENARIOS
Tornado is a light-weight scenario-based design approach that emphasizes the use
of informal models for the interaction between clients and students. Examples of in-
formal models are video-based requirements visualizations and film trailers for ex-
pressing the main idea of the project and communicating it to stakeholders outside of
the project. Tornado focuses on innovation projects where problem statements are for-
mulated as visionary scenarios and where requirements and technologies can change
during the project. In innovative projects, clients typically want developers to explore
multiple ideas before they decide how their vague requirements should be realized.
The Tornado process starts with visionary scenarios funneling down to demo scenarios
with the help of screenplays and software theater scripts and relies on the early and
regular delivery of prototypes. Whenever an executable prototype is ready for release,
it can be delivered to the client using the continuous delivery workflow described in
Rugby. In this section we explain how the Tornado Model helps to create executable
prototypes to gather feedback from the client. We also explain how prototypes and
feedback help to transition a visionary scenario into a demo scenario.

3.1. Scenario based design
Scenario-based design [Carroll 1995] is our preferred way of modeling requirements.
At the beginning of the course, the clients present their visionary scenarios to the stu-
dents in the Kickoff Meeting (see Figure 2). A visionary scenario describes a future

A:16 B. Bruegge, S. Krusche and L. Alperowitz

system and is used both as a point in the modeling space by developers when they re-
fine their ideas of the future system and as a communication medium to elicit require-
ments. Visionary scenarios transport the main ideas for the system to be developed.
Depending on the type of project, they can lead to a couple of requirements elicitation
sessions with the client in a greenfield or interface project or an inventory analysis
in the case of a re-engineering project. They usually include aspects that cannot be
demonstrated. A demo scenario is the part of a visionary scenario that can be demon-
strated with an executable prototype of the system. The students produce their first
prototypes, usually a user interface mockup as well as a cinema style trailer, in which
the mockup is used to communicate their understanding of the scenarios to the client.
Prototypes and trailers are presented during the weekly face-to-face team meeting if
the client is co-located, or sent to the client using the release management workflow.

Release

Feedback

V i s i onary scenario

Demo  
scenario

Key

Fig. 9. Tornado model: wide in analysis, narrow in implementation (adapted from [Bruegge et al. 2012])

We use the tornado metaphor to explain our students the transition from a visionary
to a demo scenario (see Figure 9). A tornado is wide in the clouds, but only a part
of it funnels down and hits the ground at its touchpoint. The demo scenario is the
touchpoint demonstrating the most important requirements of the system. A tornado
also contains air streams going upwards. We use these updrafts as a metaphor for the
feedback collected from the client after the team demonstrated a touchpoint in form of
an executable prototype. Based on the updraft the students refine their scenarios in
the following iterations.

Our approach to scenario based design emphasizes informal modeling techniques
right from the beginning of the project. Informal models are the nightmare of any
software engineer who insists on completeness, consistency and realizability: Infor-
mal models can be incomplete, they can be ambiguous, they can even be unrealizable.
Many instructors focus on the quality of the specification, but consistent and unam-
biguous models are hard to achieve, especially when the client does not yet completely
know the requirements, which is usually the case in the problems we select for our
course projects. Another problem of specification models is that they lead to analysis
paralysis [Brown et al. 1998] if the developers try to formalize all the requirements at
the beginning of the project. We emphasize the use of informal models with a focus on
communication with clients. We call our informal models therefore also communica-
tion models. We assume that our clients are not trained in formal modeling, so using
a modeling language such as UML or SysML as a communication mechanism is not
appropriate. The main purpose of a communication model is to enable and improve
the exchange of complex concepts between all stakeholders of the project. Small errors
in models are allowed, we do not correct them right away, because students need to
change them anyway.

Software Engineering Project Courses with Industrial Clients A:17

Informal modeling is a creative process (e.g. during brainstorming) that helps to
overcome the gap between different mental models. Developers understand concepts of
a system differently than users. This has been well described by Norman and Draper
[Norman and Draper 1986]. Developers implement the requirements in the system
model which focuses on the functionality, the structure and the behavior of the sys-
tem. The interface model describes how the system is presented to other developers in
terms of APIs, and to the user in terms of the user interface. The goal of the interface
model is to hide complex details of the system model. The user interface is influenced
by the design model which reflects the developer’s understanding of the users, in par-
ticular how they interact with the system. The user model describes the user’s under-
standing how the system should work, which can be quite different from the design
model. The purpose of informal modeling is to quickly get a common understanding of
the system by closing the gap between the design model and the user model. We teach
different techniques that help to reduce this gap. While we prefer UML for creating
the system model, we use other techniques to create the interface model. In our course
we teach the following informal models to the students: Napkin designs, whiteboard or
paper sketches, low fidelity user interfaces, storyboards, narrative texts, cinema style
Trailers and user stories.

While we use informal models throughout the course, we emphasize them particu-
larly in the first phase of the project. In Sprint 0 (see Section 2.1) each team creates a
trailer. Trailers are used extensively in the movie industry to advertise the launch of
a movie or important events. A trailer is usually released long in advance of the film.
Similarly we ask the students to produce a short trailer (45-60 seconds) to advertise
their upcoming system. The students can choose among two types of trailers: A product
trailer which focuses on the emotional message of the new system, or a scenario trailer
which visualizes the event flow of one ore more of the visionary scenarios from the
problem statement. A trailer is a great team-building exercise, it bonds the individual
members of the team, creates a team spirit and leads to a first common understanding
of the requirements.

To get an early grasp of the user model, we ask our students to focus in particu-
lar on low-fidelity prototypes. Low fidelity prototypes focus on getting user feedback
about the user interface as early as possible in the design process. Researchers (e.g.
[Rudd et al. 1996] and [Mayhew 1999]) have shown that unpolished user interfaces
receive more feedback than polished ones. They are cheap to produce, easy to change
and allow the rapid production of alternatives enabling the client to explore possible
design alternatives and possibly reformulating the initial requirements. We encourage
our students to deliver executable prototypes with low-fidelity user interfaces to end
users so they can perform usability tests [Nielsen 1994] early in the design process.
The low-fidelity prototypes are usually clickable PDF files that can be used directly on
the mobile device. Gradually, after the client agrees with the user interface, the stu-
dents switch to high-fidelity user interfaces. An example of the transition from rough
sketches over low-fidelity prototypes to applications with high-fidelity user interfaces
is shown in Figure 10. [Dzvonyar et al. 2014]

We encourage the students to produce low-fidelity system models to communicate
with their fellow developers. They e.g. sketch UML models on a whiteboard or on pa-
per, instead of using a CASE tool. Requiring a CASE tool encourages the students to
spend hours in the cosmetic details of a model which is most probably going to change
anyway. Using informal models they might even be able to include the client to receive
feedback on the model. We believe that multiple iterations of informal models lead to
faster results because less time is spent on cosmetic engineering, changes are easier
to make and the informality helps in understanding and communicating the system
structure.

A:18 B. Bruegge, S. Krusche and L. Alperowitz

Fig. 10. Evolution of the user interface, from rough sketch (left) to low-fidelity prototype (middle) to final
application (right) [Dzvonyar et al. 2014]

3.2. Agile Demo Management
After introducing the idea of informal models, in particular trailers and low-fidelity
prototypes in the first two weeks of the course, we proceed to teach the students the
basics of release management. We ask the students to create a first release and send
it to the client. The release is called “Hello Dolly” in reference to the “Hello World”
program, which many programming courses require students to write as their first
exercise. The students create this release on the basis of the initial subsystem decom-
position, labeled R0 in Figure 2. Each subsystem has a class with an initialization
method and each subsystem provides a façade to this method. After all initialization
methods have been called, a song from the Hello Dolly musical is played. R0 introduces
the students to the release management workflow and helps them to become familiar
with the usage of the release management workflows. After R0 is delivered, the team
is able to release a new prototype whenever they want with only a few interactions
with the delivery environment.

The teams now start with regular sprints. With the help of the client, the students
decompose the visionary scenarios into manageable backlog items and create the ini-
tial product backlog, which is prioritized by the client. In the first sprint planning
meeting they select a subset from the product backlog items based on the client’s prior-
ities. Because Rugby supports event-based releases the student can produce releases
- using the release process they learned in the beginning - at any time during the
sprint. Event-based releases help the team to demonstrate the current realization of
a requirement and to obtain feedback whether the team is on the right track. The
team does not have to wait until the end of a sprint. This saves time and increases the
quality of the product increment delivered at the end of the sprint.

The teams perform sprint reviews and planning meetings as in Scrum. At the end of
each sprint, the students meet with the client for the sprint review meeting to refine
the visionary scenarios, to collect additional feedback, to update the product backlog
and proceed with a sprint planning meeting for the next sprint. As we introduce the
concept of continuous delivery right at the beginning of the course, the students get
used to the pattern of keeping the application releasable all the time [Humble and
Farley 2010]. This facilitates the regular delivery of prototypes to the clients. Two
major milestones are the design review and the client acceptance test. For these two
events all the project teams as well as the clients are required to be physically present.
Every student must be involved in at least one presentation, either at the design re-
view or client acceptance test. We perform dry runs with the students of each team
to review their presentations. After the dry run, each team receives detailed feedback

Software Engineering Project Courses with Industrial Clients A:19

and we also give them the film of the dry run, so that they can actually see how they
behaved in their presentation and improve upon it. We found that these dry runs keep
the presentation quality high and improve the soft skills of the students.

In the design review, the students present the status of their analysis, usually in
terms of the user interface and an initial object model, the proposed software architec-
ture and an executable prototype which demonstrates parts of the visionary scenarios.
The desired outcome is to obtain feedback from the client with respect to user interface
and system design. The demos are orchestrated as a sequence of unit and integration
tests, with workarounds and mock objects. An example would be the demonstration of
a push notification system for a mobile application, where the notifications are not sent
by the real back-end system, but a mock version of the back-end or even by a student
sitting in the audience. One of the team members acts as a narrator, describing the
event flow of the scenario, which is acted out by other members of the team.

In the client acceptance test, the students demonstrate the requirements of the sys-
tem with one or more demo scenarios8. Each demo scenario in the final presentation
is the result of an iteratively refined visionary scenario. Figure 11 shows an example
for the presentation of a demo scenario. We call this software theater, because it uses
techniques borrowed from theater and film. The students have to prepare a Hollywood
style script that describes the event flow of the demo, the cast (the participating ac-
tors), and the props needed for the demo. A demo lasts about 5 minutes and focuses on
the core functionalities of the application while using an executable for the demonstra-
tion. Especially the preparation of the screenplay for the demo motivates the students
to revisit the features implemented in the last months and present them with a user
perspective.

iOS Praktikum - CAT - 19.07.2012

Fig. 11. Software theater examples from 2012 and 2013

Shortly before the design review and the client acceptance test, our students be-
come extremely ambitious, implementing additional features, producing a multitude
of releases. In the past, this created a conflict of interest between adding additional
functionality late in the project and the stability of the selected demo scenarios. With
our release management workflow, we are now able to allow late additions, we actually
encourage them, because each release is saved, including release notes and feedback.
If the new and more ambitious release is stable and closer to the visionary scenarios,
it can be selected for the presentation. If the new release fails, the earlier releases are
still available in the continuous delivery server and can easily be selected instead.

8We show the client acceptance via live stream on the internet. Typical viewers are friends and parents
from the students as well as future clients. In the past we had up to 500 external viewers watching the live
stream of our client acceptance test. Videos from the last four courses can be found on [Krusche et al. 2011],
[Krusche et al. 2012], [Krusche et al. 2013] and [Krusche et al. 2014a].

A:20 B. Bruegge, S. Krusche and L. Alperowitz

4. EVALUATION
In this section we describe three formative assessments of our multi-customer course
over the last four years, two evaluations and one quasi experiment. The number of
participants in our multi-customer project courses is shown in Table II.

Table II. Participants in our multi-customer project courses

Year # Projects # Students # Project Leaders
2011 8 54 8
2012 11 80 11
2013 10 90 10
2014 11 90 11

After each course we conducted informal retrospectives with coaches and project
leaders to improve the course for the next instantiation. We describe the design of the
three assessments, show the most important findings and discuss threats to validity.

4.1. Study Design
In 2012 we introduced the first version of the release management workflow (see Fig-
ure 6). In the 2013 course, we taught an improved version of the release and feedback
management workflows and evaluated their use with an online questionnaire where
we invited 90 students and received 41 responses. We also introduced the first version
of the branching model in 2013. In the 2014 course, we introduced an improved version
of the branching model (see Figure 4) and a code review workflow (see Figure 5). We
evaluated both using another online questionnaire where we invited 90 students and
received 81 responses.

In addition we investigated whether our course improved the students’ technical
and soft skills. We performed a quasi experiment to analyze the introduction of re-
lease management in 2013 and the introduction of code review workflows in 2014 as
interventions. We used a five point Likert scale with the answers strongly disagree,
disagree, neutral, agree, strongly agree to measure either negative, neutral or positive
responses. We invited 301 students to participate in an online questionnaire. The over-
all response rate was 59% (2011: 33%, 2012: 56%, 2013: 57%, 2014: 71%). We combined
the responses of the results into a three point Likert scale with positive responses
(strongly agree and agree), neutral and negative ones (strongly disagree and disagree)
to minimize positive and negative outliers. Table III provides an overview about the
three assessments, their main focus and their response rates.

Table III. Overview about the formative assessments

#
Evaluated
Course(s)

Main focus # Invites # Responses
Response
Rate

1 2013
Release Management
Feedback Management

90 41 46 %

2 2014
Branching Model
Code Review Workflow

90 81 90 %

3 2011 - 2014
Improvement of technical
and soft skills

301 178 59 %

Software Engineering Project Courses with Industrial Clients A:21

4.2. Findings
In the first evaluation (2013) we investigated whether students benefit from the re-
lease management workflow using version control, continuous integration and con-
tinuous delivery. In the second evaluation (2014) we analyzed the branching model
and the code review workflow. In the following we provide a condensed version of the
findings of these evaluations. More details about the first evaluation can be found in
[Krusche and Alperowitz 2014].

The responses show that more than half of the students performed these activities
on a daily base, with version control being the most frequent activity. Figure 12 shows
that 57% see benefits in version control activities, 61 % in continuous integration and
46 % in continuous delivery. Figure 13 shows that most participants would definitely or
very likely use the branching model (83%), the code review workflow (70%), continuous
integration (63%) and continuous delivery (63%) in future projects.

Do you see benefits when using these workflows?

0%

20%

40%

60%

80%

100%

46%
61%57%

33%
26%24%

21%13%19%

no uncertain yes

Continuous
Integration

Continuous
Delivery

Version
Control

Fig. 12. Evaluation of benefits

Would you use these workflows in a future project?

0%

20%

40%

60%

80%

100%
No Maybe Likely Very Likely Definitely

56%

22% 17%
43%

27%

19%
10%
1% 22%

15%

46%41%

17%

20%

27%

7%
7%
2%

Branching
Model

Continuous
Integration

Continuous
Delivery

Code Review
Workflow

Fig. 13. Evaluation of usage in future project

Figure 14 shows that the branching model allowed the students to work with multi-
ple persons on the same codebase and to map backlog items (e.g. user stories, scenarios
or features) to branches in the version control system. The branching model also helped
41% of the students to develop multiple prototypes for a feature. Figure 15 shows that
59% of the students believe that the release management workflow leads to more re-
leases, 37% think it leads to more feedback and 44% believe it leads to better feedback
when compared to a project without a dedicated release management workflow.

The Branching Model …

0%

20%

40%

60%

80%

100%
no uncertain yes

… allows to develop with
multiple persons on the

same codebase

… helps to map
backlog items to

branches

… helps to develop
multiple prototypes

for a feature

98% 85%

41%

27%

32%10%
5%1%

1%

Fig. 14. Evaluation of branching model

The Release Management workflow leads to …

0%

20%

40%

60%

80%

100%

44%37%
59%

32%39%

27%

24%24%15%

no uncertain yes

… more
releases

… more
feedback

… better
feedback

Fig. 15. Evaluation of release management

To measure the effectiveness of continuous delivery and feedback in Rugby, we intro-
duced a set of performance indicators. In particular we defined the following metrics:
number of branches and commits in the version control system, number of overall

A:22 B. Bruegge, S. Krusche and L. Alperowitz

builds and successful builds in the continuous integration system as well as number
of delivered builds, downloads and feedback reports in the continuous delivery system.
Table IV shows the average numbers per team for these indicators. The number of
branches increased by 1200% in 2013 when we introduced the branching model. Si-
multaneously the students were able to increase the number of builds by 479% while
increasing the number of commits only by 15%. The success rate of builds increased
from 74% in 2012 to 94% in 2013. Both happened because the students used contin-
uous integration from the beginning so they received feedback immediately when the
build failed and could fix the problem so that the next build succeeded again.

Not all commits led to a build, because we used git as version control system, where
it happens that students have multiple commits on their local machine that are not
yet synchronized with the remote repository. When they pushed their changes (includ-
ing multiple commits) to the remote repository, the continuous integration server only
built once, using the latest version including all commits. The number of builds re-
leased to the delivery server increased by 227%. On average, developers, managers,
users and clients downloaded the releases 49 times in 2012 and the teams received
about 15 feedback reports via the integrated feedback mechanism in their applica-
tions. These measurements support the answers shown in Figure 15.

In 2014 we had a stronger focus on the right use of the branching model, which is
the basis of the code review workflow shown in Figure 5. To keep the code reviews
short, we asked the students to divide their requirements into small backlog items,
that they could develop in only a few days on a feature branch. Thus the amount of
branches increased by 110%. We also asked them to commit early and often to allow
a fine granular control about their changes, so that they e.g. can revert errors more
easily. Therefore the number of commits increased by 26% leading to more builds with
a success rate of 93%, a comparable number to 2013. The number of builds released
into the delivery server increased by 30 %, the number of downloads by 8 % and the
number of feedback reports via the integrated feedback mechanism by 96%.

Table IV. Measurements of the workflow usage per team from 2012 to 2014

Version Control Continuous Integration Continuous Delivery

Branches # Commits
Builds
Created

Builds
Successful

Builds
Delivered

Builds
Downloaded

Feedback
Reports

2012 2 500 75,5 56,3 14,8 n/a n/a
2013 26 575,4 439,6 413,9 49 126 13,9

Increase from
2012 to 2013

+ 1200% + 15% + 479% + 639% + 227% n/a n/a

2014 54,5 727,3 636,4 590,9 63,6 136,4 27,3
Increase from
2013 to 2014

+ 110% + 26% + 45% + 43% + 30% + 8% + 96%

In the quasi experiment we investigated whether the participants improved their
technical skills and their soft skills as a result of taking our course. We looked at four
categories software engineering, usability engineering, configuration management and
non-technical skills. First we asked the students about their skill improvements in
software engineering with respect to requirements elicitation, system design, model-
ing and programming. On average, 79% have improved their requirements engineering
skills (2011: 78%, 2012: 80%, 2013: 75%, 2014: 81%) and 72% improved their system
design skills (2011: 83%, 2012: 78%, 2013: 63%, 2014: 72%). The number of students
who improved their modeling skills decreased by 25% between 2011 and 2012 (see

Software Engineering Project Courses with Industrial Clients A:23

Figure 16), while at the same time the number of students who improved their pro-
gramming skills increased by 28% (see Figure 17). For the first time, we held an intro-
duction to iOS programming before the 2012 course started and decreased the focus
on formal modeling during the course. In 2013 the number of students who improved
their modeling skills increased again because we emphasized user interface modeling
and informal modeling techniques as described in Section 3.

Modeling (3-Likert)

0%

20%

40%

60%

80%

100%

Agree Neutral Disagree

8%

20%

72%

10%

20%

71%

4%

42%

53%

11%11%

78%

2011 2012 2013 2014

Fig. 16. Improvements in modeling

Programming (3-Likert)

0%

20%

40%

60%

80%

100%

Agree Neutral Disagree

8%

19%

73%

4%

22%

75%

9%
13%

78%

17%

33%

50%

2011 2012 2013 2014

Fig. 17. Improvements in programming

In the usability engineering category, we asked the students about their skills im-
provements in prototyping and user interface design. On average, 75% of the students
improved their prototyping skills (2011: 72%, 2012: 80%, 2013: 78%, 2014: 69%) and
65% of the students improved their user interface design skills (2011: 72%, 2012: 58%,
2013: 63%, 2014: 66%). With respect to configuration management, we evaluated the
students’ skill improvements in version control and release management. Figure 18
shows a gradual increase of students who improved their version control skills from
2011 to 2014. The reason is the introduction of the branching model and stronger em-
phasis on dedicated code review workflows. Figure 19 shows the number of students
who improved their release management skills doubling from 2012 to 2013. The reason
is the early introduction of the continuous delivery workflow in the course.

Version Control (3-Likert)

0%

20%

40%

60%

80%

100%

Agree Neutral Disagree

8%11%

81%

0%

28%

73%

18%18%

64%

17%

44%
39%

2011 2012 2013 2014

Fig. 18. Improvements in version control

Release Management (3-Likert)

0%

20%

40%

60%

80%

100%

Agree Neutral Disagree

11%11%

78%

4%

18%

78%

27%
33%

40%

28%

39%
33%

2011 2012 2013 2014

Fig. 19. Improvements in release management

In the non-technical category, we asked the students about their skill improvements
with respect to communication, team work, presentation and demo management. Fig-
ure 20 and Figure 21 show that continuously more than 80% improved their commu-
nication and team work skills in each course. For most students our course is their
first experience working in large teams overcoming cultural differences and negotiat-
ing with a client. In addition, they have to self-organize each other in their team while
the instructor makes sure that everybody contributes to the success of the project.

Figure 22 shows a gradual increase of the presentation skills from 56% in 2011
to 83% in 2014 and Figure 23 shows that the demo management improvement was
on average 70%. The possibility to watch the performance of their own presentation in

A:24 B. Bruegge, S. Krusche and L. Alperowitz
Communication (3-Likert)

0%

20%

40%

60%

80%

100%

Agree Neutral Disagree
3%

17%

80%

2%10%

88%

4%
11%

84%

0%

17%

83%

2011 2012 2013 2014

Fig. 20. Improvements in communication

Team Work (3-Likert)

0%

20%

40%

60%

80%

100%

Agree Neutral Disagree

8%8%

84%

2%4%

94%

4%9%

87%

0%

17%

83%

2011 2012 2013 2014

Fig. 21. Improvements in team work

the dry run and to get detailed feedback about technical aspects helped the students to
improve their presentation skills. Our increased focus on demo management required
more students to participate in the presentation. Up to 2011 it was normal that only
one or two students performed the presentation, while in later years the whole team
was involved. We even observed that most of the teams asked for multiple internal dry
runs to improve their presentations.

Presenting (3-Likert)

0%

20%

40%

60%

80%

100%

Agree Neutral Disagree
6%

11%

83%

4%

20%

77%

0%

24%

76%

0%

44%

56%

2011 2012 2013 2014

Fig. 22. Improvements in presentation

Demo Management (3-Likert)

0%

20%

40%

60%

80%

100%

Agree Neutral Disagree
5%

25%

70%

2%

28%

71%

9%

24%

67%

6%

17%

78%

2011 2012 2013 2014

Fig. 23. Improvements in demo management

4.3. Threats to Validity
We see several threats to the validity in our assessments. In the quasi experiment we
did not use a control group within the same course; instead we did a formative evalu-
ation where we compared the previous course without intervention with the successor
course that used the intervention. Small differences in the organization of the courses
could have influenced the results. Even though it is a quasi experiment, we think that
the results are generalizable for other capstone courses. Another threat is that we
used Likert scales which may be subject to distortion. Respondents may have avoided
using extreme response categories (central tendency bias) and they may have agreed
with statements as presented (acquiescence bias). They also may have tried to por-
tray themselves or our course in a more favorable light (social desirability bias). As we
designed the Likert scale with balanced keying (i.e. an equal number of positive and
negative statements) we obviated the problem of acquiescence bias, since acquiescence
on positively keyed items will balance acquiescence on negatively keyed items.

Our findings apply to a multi-project software engineering course that was set up
at our university. In other universities with different curricula and environments, it
might not be possible to instantiate our course format easily. The robustness of our
results is another threat. We might have the problem of selection bias in the first
questionnaire (2013) and in the responses of 2011 students in the quasi experiment, as
in both cases the response rates were below 50%. A single false positive would influence

Software Engineering Project Courses with Industrial Clients A:25

the results by 3%. We have observed that some teams used the release management
and feedback workflows more than others, because they had more client requests.

To alleviate the threat of selection we asked the students in which team they worked
and checked that we had at least three responses from each team. We analyzed the re-
sults on a team basis and did not find significant deviations. Therefore we think that
the threat of selection bias is low. Additionally we found the same results in personal
interviews. Another threat might be, that participants gave answers which do not re-
flect their real work practice, because they were afraid that this would influence their
grades. We addressed this threat by collecting the responses anonymously and pre-
venting multiple responses from the same student by tokenizing the surveys.

4.4. Improvement based on Student Feedback
Student feedback helped us to refine Rugby and improve the project course over the
years. According to the feedback we received in the retrospectives from the 2012
course, we found out that in the management meeting the project leaders were not
able to report their status in the amount of time allocated for information sharing.
Often they did not focus on crucial points and discussed unimportant issues for too
long. This problem was intensified because of the different problem statements and the
different technical challenges in each of the projects. We therefore introduced the re-
quirement in 2013 that all project leaders show the latest executable prototype of their
team as part of their status report in the meeting. This made our management meet-
ings shorter and more focused. The other project leaders were able to understand the
status of the projects much better than in the meetings without executable prototypes.
We also asked the release managers to introduce this technique in the weekly team
meetings. From personal interviews and the retrospective we conducted in 2013, we
received a lot of positive feedback about this change. Requiring meeting participants to
prepare an executable prototype in advance and demonstrate them on a device during
the team meeting, saved a lot of time and improved the communication.

5. DISCUSSION
The participants of a project course have distinct goals. Students are interested in
the takeaways for their future career and the practical applicability of the concepts
learned. In Section 4, we showed that our students see those benefits after taking the
course. Instructors want to teach software engineering concepts in an understandable
and exciting way to their students. A major concern is the amount of time they need to
prepare and execute a project course. In this section we describe how an instructor can
achieve these goals while managing the course in a reasonable amount of time. We first
present the setup of the course infrastructure and show alternatives for setting the key
workflows necessary to instantiate the course. Then we discuss the effort needed to
manage different phases of the course using an typical course schedule as an example.

The dimensions of a project course can grow over time. When instantiating the
course for the first time, an instructor can start with a single client and a small number
of projects. With the experience acquired, the instructor can move to a multi-customer
course. For many years, we offered multi-project and multi-customer courses. Our first
course was a multi-project course with 30 students, our first multi-project course in-
volved one client with four projects and about 20 students. When scaling the course
up to 100+ students in multiple projects with multiple clients, the organizational and
management issues become overwhelming. To deal with this problem, we have created
tools to automate many recurring tasks. For example, right after the Kickoff event,
we use a tool to assess the knowledge and preference of the students, assign them to
the project teams and automatically generate an organizational chart. We have also
created semi-automated workflows for the provisioning of the course infrastructure.

A:26 B. Bruegge, S. Krusche and L. Alperowitz

To minimize the effort for setting up the environments and workflows described in
Section 2, the instructor can choose to use a cloud-based solution. Many commercial
vendors now provide version control systems with web-based interfaces including con-
figurable tools for implementing workflows like branch management or code reviews.
Some vendors also offer cloud-based continuous integration services and issue track-
ing capabilities. Such solutions allow an easy and quick setup even for inexperienced
instructors. While cloud-based solutions allow configuration, the possible amount of
customization is limited. If non-disclosure agreements and privacy concerns need to
be considered, a cloud-based course infrastructure might not even be possible.

An alternative is to set up an on-premise solution in the university’s environment.
Self-hosted tools require more effort in terms of setup and maintenance when com-
pared to cloud-based solutions. However, they offer better customizability when spe-
cific university requirements and workflows, such as student registration, have to be
addressed. Several vendors offer on-premise solutions of integrated tool suites covering
version control, issue tracking, collaboration and continuous integration with a high
amount of configurability. Such a setup is still manageable for an instructor, but it re-
quires an additional full-time administrator, in particular to maximize the availability
of the tool suite, especially in the busy phases of the course. A third option would be
to use the infrastructure provided by the client. In this case the influence of the in-
structor on the configuration of the system is limited. In addition, dealing with several
client-infrastructures simultaneously would make the course much harder to manage.

Another concern of many instructors is how to manage their time during different
phases of the course. With the infrastructure in place, an instructor can focus on the
introduction of workflows and course material. We hold weekly course-wide meetings
where all students are required to attend. We use interactive tutorials to incrementally
introduce the students to the methods and workflows needed for the project. During
these tutorials, the students use the existing infrastructure and experience the work-
flows hands-on before they apply them in their own project team. Table V shows the
content and schedule of these course wide meetings in a three month project course.

Table V. Typical schedule for course-wide meetings

Week Topics
1 Kickoff
2 Icebreaker

3 Agile Methods;
Meeting Management

4 User Interface Design and Prototyping;
Trailer and Software Cinema

5 Release Management;
Continuous Delivery

6 Software Quality Management;
Configuration and Branch Management

7 Scenario-Based Design;
Software Theater

8 -
9 Design Review
10 -
11 -
12 -
13 Client Acceptance Test

Software Engineering Project Courses with Industrial Clients A:27

In the time between Kickoff and Design Review, course-wide meetings are performed
weekly. After the Design Review and before the Client Acceptance Tests we conduct no
course-wide meetings to give the teams time for the actual development. In the weeks
before the Design Review and the Client Acceptance Test, respectively, we hold dry runs
with each project team to get them ready for their presentations and demos.

An important concern is how much effort an instructor has to put into the organi-
zation and execution of a project course. In the following we provide two estimates
based on our experience from several multi-project and multi-customer courses. Table
VI shows the average effort for managing a multi-project course with three projects
in steady state, while Table VII shows the average effort of a multi-customer course
with ten projects. The effort for instructors who offer such a course for the first time
increases considerably during the pre-development phase, because it involves the ac-
quisition of industry partners as real clients, the establishment of trust, the discussion
of legal issues and the preparation of contracts and non-disclosure agreements.

Table VI. Average effort for a multi-project course with three projects (in person days)

Pre-development Kickoff Development Post-development Total
Instructor 4 2 12 1 19

Project Leader 0 1 36 0 37
Administrator 4 5 12 1 22

Table VII. Average effort in persons-days for a multi-customer course with ten projects (in person days)

Pre-development Kickoff Development Post-development Total
Instructor 8 2 12 2 24

Teaching Assistant 6 8 24 1 40
Project Leader 0 10 120 0 130
Administrator 6 8 24 4 42

We distinguish four roles. The Instructor is part of the program management and
responsible for the project acquisition and contract negotiation with the clients. He
assigns a project leader to each project and intervenes if major impediments occur. He
decides on the overall course structure and defines the topics for the interactive tuto-
rials in the course-wide meetings. Teaching Assistants are graduate students with at
least one year of project management experience. They fill the role of a program man-
ager and need soft skills in communication, delegation and leadership. They keep track
of the progress of all projects and help with the organization of the course. For single-
project and multi-project courses these tasks could also be done by the instructor alone.
Project Leaders usually need one day per week to manage their team and to interact
with the client. The Administrator, usually a support team of student assistants and
non-scientific staff, is responsible for setting up the course infrastructure and main-
taining it. Among their many tasks, they have to set up single sign-on accounts for the
course infrastructure for each student and film the course-wide meetings.

In the pre-development phase (usually between four and six weeks), the instruc-
tor and the clients agree on the project topics. They discuss initial requirements and
constraints such as non-disclosure agreements and contractual issues. The instruc-
tor and the teaching assistants then select the project leaders to discuss the problem
statement. The administrator team sets up the required infrastructure (see Section
2). After the Kickoff, the course moves to the development phase (in our case twelve
weeks). Then, instructor and teaching assistants track the progress of the projects and
hold course-wide meetings. Coaches - not shown in the tables - help to reduce the effort

A:28 B. Bruegge, S. Krusche and L. Alperowitz

of project leaders by taking over some of their responsibilities. In the post-development
phase (between one and four weeks), the instructor organizes the handover of software
and documents to the clients and starts to talk about project ideas for the next course.

6. CONCLUSION
Software engineering project courses with real clients, large teams and challenging
problems are hard to teach, but improve students’ skills in various forms. They im-
prove their technical skills as well as their non-technical skills and prepare students
with real challenges they will also face in their future careers in industry. In this pa-
per we described a teaching methodology for project courses that is complex enough
to enrich the students’ software engineering experience, yet realistic enough to have
a teaching environment that does not unduly burden students or the instructor. With
Rugby and Tornado, our methodology includes two approaches to improve the collabo-
ration as well as the quality of the results of the course.

Rugby is an agile process model based on Scrum that combines the Unified Pro-
cess with agile techniques. Rugby’s difference to Scrum is that it allows event-based
releases and part-timers. It adds two additional workflows to the life-cycle model: re-
lease management and feedback management. Rugby increases the number of releases
produced by students and the number of feedback reports produced by users. The use
of executable prototypes as communication models reduces the time spent for status
reports and discussion and helps during requirements elicitation. The inclusion of mul-
tiple feedback cycles allows developers to respond to user feedback in a structured way
with release notes to notify users about changes in updated releases. Teaching release
management in a project course takes advantage of continuous delivery and ensures
that the students always have an executable prototype.

Tornado is a lightweight scenario-based design approach starting with visionary sce-
narios narrowing down to demo scenarios. We increasingly use informal models during
this transition, especially in the design of mobile applications. A touchpoint in the Tor-
nado model is the successful delivery of an executable prototype or the final system.
Students use cinema techniques to produce marketing trailers to envision the use of
their application and theater techniques to realistically demonstrate how the end user
benefits from the application. Updrafts in the Tornado model represent user feedback
and allow developers to react to changes in the requirements or the underlying technol-
ogy. Teaching agile demo management takes advantage of the creativity of ambitious
students while still ensuring a stable demonstration at the client acceptance test.

We presented several case studies where we used these techniques in multi-
customer courses with up to 100 students. Looking at our student responses, our
course is highly appreciated. Students consider it worthwhile because they improve
their software engineering as well as non-technical skills in a real setting. They now
deliver multiple releases throughout the course and obtain feedback from the client
much earlier in the project leading to higher quality deliverables. Team assignments
after the Kickoff used to be time consuming. The delivery of the final system to the
client involved many overnighters, leading to stressed-out students and instructors.
We have shown that our teaching methodology reduces the effort for the instructor,
especially at the beginning and at the end of the course.

ACKNOWLEDGMENTS

We would like to thank all participants and industrial partners in our project courses, in particularly the
teaching assistants and the members of our department, who made these courses possible. We especially
like to thank Helma Schneider and her technical administration team for their tireless work, Monika Markl
for her organizational help, Uta Weber for managing the finances, and Ruth Demmel for filming our events.

Software Engineering Project Courses with Industrial Clients A:29

REFERENCES
Mark Ardis, Pierre Bourque, Thomas Hilburn, Kahina Lasfer, Scott Lucero, James McDonald, Art Pys-

ter, and Mary Shaw. 2011. Advancing Software Engineering Professional Education. IEEE Software 4
(2011), 58–63.

William Atchison, Samuel Conte, John Hamblen, Thomas Hull, Thomas Keenan, William Kehl, Edward
McCluskey, Silvio Navarro, Werner Rheinboldt, Earl Schweppe, William Viavant, and David Young.
1968. Curriculum 68: Recommendations for academic programs in computer science: a report of the
ACM curriculum committee on computer science. Commun. ACM 11, 3 (1968), 151–197.

Gabriele Bavota, Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Carlo Zottoli. 2012. Teaching software
engineering and software project management: An integrated and practical approach. In Proceedings
of the 34th International Conference on Software Engineering. IEEE Press, IEEE, Zurich, Switzerland,
1155–1164.

Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, and
others. 2001. Manifesto for Agile Software Development. (February 2001). Retrieved February 26, 2015
from http://www.agilemanifesto.org.

Mario Bernhart, Thomas Grechenig, Jennifer Hetzl, and Wolfgang Zuser. 2006. Dimensions of software
engineering course design. In Proceeding of the 28th international conference on Software engineering.
ACM, Shanghai, China, 667–672.

Jürgen Börstler. 2001. Experience with work-product oriented software development projects. Computer
Science Education 11, 2 (2001), 111–133.

David Broman, Kristian Sandahl, and Mohamed Abu Baker. 2012. The Company Approach to Software
Engineering Project Courses. IEEE Transactions on Education 55, 4 (2012), 445–452.

William Brown, Raphael Malveau, Hays McCormick, and Thomas Mowbray. 1998. AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis. Wiley & Sons.

Bernd Bruegge. 1994. From Toy System to Real System Development: Improvements in Software Engi-
neering Education. In Software Engineering im Unterricht der Hochschulen SEUH. Springer, Munich,
Germany, 62–72.

Bernd Bruegge, Jim Blythe, Jeffrey Jackson, and Jeff Shufelt. 1992. Object-oriented system modeling with
OMT. In SIGPLAN Notices, Vol. 27. ACM, 359–376.

Bernd Bruegge, John Cheng, and Mary Shaw. 1991. A Software Engineering Project Course with a Real
Client Part III: Project Material. Technical Report. Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA.

Bernd Bruegge and Robert Coyne. 1994. Teaching Iterative and Collaborative Design: Lessons and Direc-
tions. In Proceedings of the 7th SEI CSEE Conference on Software Engineering Education. Springer,
San Antonio, Texas, 411–427.

Bernd Bruegge and Allen Dutoit. 2009. Object Oriented Software Engineering Using UML, Patterns, and
Java (3rd ed.). Prentice Hall International.

Bernd Bruegge, Allen Dutoit, Rafael Kobylinski, and Günter Teubner. 2000. Transatlantic Project Courses
in a University Environment. In 7th Asia-Pacific Software Engineering Conference. IEEE, Singapore,
30–37.

Bernd Bruegge, Stephan Krusche, and Lukas Alperowitz. 2014. Tutorial: How to run a Multi-Customer
Software Engineering Capstone Course. In 17th International Conference on Model-Driven Engineering
Languages and Systems, Valencia, Spain. (September 2014). Retrieved February 26, 2015 from http:
//models2014.webs.upv.es/acceptedtutorials.htm#T7.

Bernd Bruegge, Stephan Krusche, and Martin Wagner. 2012. Teaching Tornado: from communication mod-
els to releases. In Proceedings of the 8th edition of the Educators’ Symposium. ACM, Innsbruck, Austria,
5–12.

Bernd Bruegge, Harald Stangl, and Maximilian Reiss. 2008. An experiment in teaching innovation in soft-
ware engineering: video presentation. In Companion to the 23rd conference on Object-oriented program-
ming systems languages and applications. ACM, Nashville, TN, 807–810.

Bernd Bruegge, Mark Werner, Jim Uzmack, and David Kaufer. 1995. Fostering co-development between
software engineers and technical writers. In Proceedings of the 8th SEI CSEE Conference on Software
Engineering Education. IEEE, New Orleans, LA, 4–11.

John Carroll. 1995. Scenario-based design: envisioning work and technology in system development. Wiley
and Sons.

Vincent Cicirello, Vera King, and Farris Drive. 2013. Experiences with a real projects for real clients course
on software engineering at a liberal arts institution. Journal of Computing Sciences in Colleges 28, 6
(2013), 50–56.

A:30 B. Bruegge, S. Krusche and L. Alperowitz

Robert Coyne, Allen Dutoit, Bernd Bruegge, and David Rothenberger. 1995. Teaching More Comprehensive
Model-Based Software Engineering: Experience With Objectory’s Use Case Approach. Springer.

Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding in GitHub: transparency
and collaboration in an open software repository. In Proceedings of the Conference on Computer Sup-
ported Cooperative Work. ACM, Seattle, WA, 1277–1286.

Daniela Damian, Casper Lassenius, Maria Paasivaara, Arber Borici, and A Schroter. 2012. Teaching a glob-
ally distributed project course using Scrum practices. In Collaborative Teaching of Globally Distributed
Software Development Workshop. IEEE, Zurich, Switzerland, 30–34.

Constanze Deiters, Christoph Herrmann, Roland Hildebrandt, Eric Knauss, Marco Kuhrmann, Andreas
Rausch, Bernhard Rumpe, and Kurt Schneider. 2011. GloSE-Lab: Teaching Global Software Engineer-
ing. In 6th International Conference on Global Software Engineering. IEEE, Helsinki, Finland, 156–160.

Michael Doyle and David Straus. 1976. How to make meetings work. Jove Books.
Vincent Driessen. 2010. A successful Git branching model. (January 2010). Retrieved February 26, 2015

from http://nvie.com/posts/a-successful-git-branching-model.
Allen Dutoit, Bernd Bruegge, and Robert Coyne. 1995. Using an issue-based model in a team-based soft-

ware engineering course. In International Conference on Software Engineering: Education and Practice,
Martin Purvis (Ed.). IEEE, Dunedin, New Zealand, 130–137.

Dora Dzvonyar, Stephan Krusche, and Lukas Alperowitz. 2014. Real Projects with Informal Models. In
Proceedings of the 10th edition of the Educators’ Symposium. Valencia, Spain.

Predrag Filipovikj, Juraj Feljan, and Ivica Crnkovic. 2013. Ten tips to succeed in global software engineer-
ing education: What do the students say?. In 3rd International Workshop on Collaborative Teaching of
Globally Distributed Software Development. IEEE, San Francisco, CA, 20–24.

Roger Fisher, William Ury, and Bruce Patton. 2011. Getting to yes: Negotiating agreement without giving in.
Penguin.

Martin Fowler. 2001. The new methodology. Journal of Natural Sciences 6, 1-2 (2001), 12–24.
Peter Freeman, Anthony Wasserman, and Richard Fairley. 1976. Essential elements of software engineer-

ing education. In Proceedings of the 2nd International Conference on Software engineering. ACM, San
Francisco, CA, 116–122.

GitHub. 2015. Using Pull Requests. (February 2015). Retrieved February 26, 2015 from https://help.github.
com/articles/using-pull-requests.

Nils Christian Haugen. 2006. An empirical study of using planning poker for user story estimation. In Agile
Conference. IEEE, Minneapolis, MN, 23–34.

Jim Highsmith. 2002. Agile Software Development Ecosystems (1st ed.). Addison-Wesley.
Thomas Hilburn and Watts Humphrey. 2002. The Impending Changes in Software Education. IEEE Soft-

ware October (2002), 22–24.
James Horning and David Wortman. 1977. Software Hut: A Computer Program Engineering Project in the

Form of a Game. IEEE Transactions on Software Engineering 3, 4 (1977), 325–330.
Jez Humble. 2011. Devops: A Software Revolution in the Making? Cutter IT Journal 24, 8 (2011).
Jez Humble and David Farley. 2010. Continuous delivery: reliable software releases through build, test, and

deployment automation. Pearson Education.
Jez Humble and Joanne Molesky. 2011. Why Enterprises Must Adopt Devops to Enable Continuous Delivery.

Cutter IT Journal 24, 8 (2011), 6.
Ivar Jacobson, Grady Booch, James Rumbaugh, James Rumbaugh, and Grady Booch. 1999. The unified

software development process (1 ed.). Addison-Wesley.
Lynette Johns-Boast and Shayne Flint. 2013. Simulating industry: An innovative software engineering cap-

stone design course. In Frontiers in Education Conference. IEEE, Oklahoma City, OK, 1782–1788.
David Johnson, Roger Johnson, and Karl Smith. 1991. Active learning: Cooperation in the college classroom.

(1991).
Hillary Louise Johnson. 2012. How to play the Team Estimation Game. (May 2012). Retrieved February 26,

2015 from http://www.agilelearninglabs.com/2012/05/how-to-play-the-team-estimation-game.
Williams Judith, Bettina Bair, Jürgen Börstler, Lethbridge Timothy, and Ken Surendran. 2003. Client spon-

sored projects in software engineering courses. ACM SIGCSE Bulletin 35, 1 (2003), 401–402.
Thomas Kayser. 1990. Mining group gold: How to cash in on the collaborative brain power of a group. Serif

Publishing.
David Kolb. 1984. Experiential learning: Experience as the source of learning and development. Vol. 1. Pren-

tice Hall.

Software Engineering Project Courses with Industrial Clients A:31

Stephan Krusche and Lukas Alperowitz. 2014. Introduction of Continuous Delivery in Multi-Customer
Project Courses. In Companion Proceedings of the 36th International Conference on Software Engineer-
ing. IEEE, Hyderabad, India, 335–343.

Stephan Krusche, Lukas Alperowitz, and Bernd Bruegge. 2014a. Results of the iOS Praktikum SS 2014.
(July 2014). Retrieved February 26, 2015 from http://www1.in.tum.de/ios14.

Stephan Krusche, Lukas Alperowitz, Bernd Bruegge, and Martin Wagner. 2014b. Rugby: An Agile Process
Model Based on Continuous Delivery. In Proceedings of the 1st International Workshop on Rapid Con-
tinuous Software Engineering. ACM, Hyderabad, India, 42–50.

Stephan Krusche and Bernd Bruegge. 2014. User Feedback in Mobile Development. In Proceedings of the
2nd International Workshop on Mobile Development Lifecycle. Portland, OR, 25–26.

Stephan Krusche, Martin Wagner, and Bernd Bruegge. 2011. Results of the iOS Praktikum SS 2011. (July
2011). Retrieved February 26, 2015 from http://www1.in.tum.de/ios11.

Stephan Krusche, Martin Wagner, and Bernd Bruegge. 2012. Results of the iOS Praktikum SS 2012. (July
2012). Retrieved February 26, 2015 from http://www1.in.tum.de/ios12.

Stephan Krusche, Martin Wagner, and Bernd Bruegge. 2013. Results of the iOS Praktikum SS 2013. (July
2013). Retrieved February 26, 2015 from http://www1.in.tum.de/ios13.

Ludwik Kuzniarz and Jürgen Börstler. 2011. Teaching Modeling - An Initial Classification of Related Is-
sues. In Electronic Communications of the EASST 7th Educator’s Symposium, Vol. 52. Wellington, New
Zealand, 1–10.

Richard LeBlanc, Ann Sobel, Jorge Diaz-Herrera, Thomas Hilburn, and others. 2006. Software Engineer-
ing 2004: Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering. IEEE
Computer Society.

Robert Lingard and Shan Barkataki. 2011. Teaching teamwork in engineering and computer science. In
Frontiers in Education Conference. IEEE, Rapid City, SD, F1C 1–5.

Walid Maalej, Hans-Jörg Happel, and Asarnusch Rashid. 2009. When users become collaborators: towards
continuous and context-aware user input. In Proceedings of the 24th conference companion on object
oriented programming systems languages and applications. ACM, Orlando, FL, 981–990.

Florian Matthes, Christian Neubert, Christopher Schulz, Christian Lescher, Jose Contreras, Robert Laurini,
Beatrice Rumpler, David Sol, and Kai Warendorf. 2011. Teaching Global Software Engineering and
International Project Management. In Proceedings of the 3rd International Conference on Computer
Supported Education. Noordwijkerhout, Netherlands, 5–15.

Deborah Mayhew. 1999. The Usability Engineering Lifecycle: A Practitioner’s Guide to User Interface Design.
Morgan Kaufmann Publishers.

Jakob Nielsen. 1994. Usability engineering (1st ed.). Elsevier.
Donald Norman and Stephen Draper. 1986. User Centered System Design: New Perspectives on Human-

computer Interaction (1st ed.). CRC Press.
Dennis Pagano and Bernd Bruegge. 2013. User involvement in software evolution practice: a case study.

In Proceedings of the 35th international conference on Software engineering. IEEE, San Francisco, CA,
953–962.

Art Pyster (Ed.). 2009. Graduate Software Engineering 2009 Curriculum Guidelines for Graduate Degree
Programs in Software Engineering. Integrated Software and Systems Engineering Curriculum series.

Carolyn Rosiene and Joel Rosiene. 2006. Experiences with a Real Software Engineering Client. In Proceed-
ings of the 36th Annual Conference on Frontiers in Education. IEEE, San Diego, CA, 12–14.

Doug Ross. 1989. The NATO Conferences from the Perspective of an Active Software Engineer. In Proceed-
ings of the 11th international conference on software engineering. IEEE, Pittsburg, PA, 101–102.

Jim Rudd, Ken Stern, and Scott Isensee. 1996. Low vs. high-fidelity prototyping debate. Interactions 3, 1
(1996), 76–85.

Hossein Saiedian. 1996. A Taxonomy of Organizational Alternatives for Project-Oriented Software Engi-
neering Courses. In Proceedings of the 3rd International Workshop on Software Engineering Education.
Berlin, Germany.

Salamah Salamah, Massood Towhidnejad, and Thomas Hilburn. 2011. Developing case modules for teaching
software engineering and computer science concepts. In Frontiers in Education Conference. IEEE, Rapid
City, SD, T1H–1.

Ken Schwaber and Mike Beedle. 2002. Agile software development with Scrum. Prentice Hall.
Atlassian Stash. 2015. Using Pull Requests in Stash. (February 2015). Retrieved February 26, 2015 from

https://confluence.atlassian.com/display/STASH/Using+pull+requests+in+Stash.
Hirotaka Takeuchi and Ikujiro Nonaka. 1986. The new new product development game. Harvard business

review 64, 1 (1986), 137–146.

A:32 B. Bruegge, S. Krusche and L. Alperowitz

James Tomayko. 1987. Teaching a project-intensive introduction to software engineering. Technical Report.
Software Engineering Institute, Carnegie Mellon University, Pittsburg, PA.

James Tomayko. 1998. Forging a discipline: An outline history of software engineering education. Annals of
Software Engineering 6, 1–4 (1998), 3–18.

Hans Van Vliet. 2006. Reflections on Software Engineering Education. IEEE Software 23, 3 (2006), 55–61.
Greger Wikstrand and Jürgen Börstler. 2006. Success Factors for Team Project Courses. In Proceedings of

the 19th Conference on Software Engineering Education and Training. IEEE, Oahu, HI, 95–102.
Tom Wujec. 2010. The Marshmallow Challenge - TED Talk. (February 2010). Retrieved February 26, 2015

from http://marshmallowchallenge.com.

