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ABSTRACT

Due to globalization, many software projects have become large-
scale and distributed tasks that require software engineers to learn
and apply techniques for distributed requirements analysis, model-
ing, development, and deployment. Globally-distributed projects
require special skills in communication across different locations
and time zones in all stages of the project. There has been advance-
ment in teaching these concepts at universities, but adapting global
software engineering in a curriculum is still in infancy.

The main reasons are the effort and coordination required by
teachers to set up the project, manage distributed development and
enable distributed delivery. It becomes even more difficult when
teaching distributed software engineering involving Internet of
Things (IoT) applications. The situation has changed with recent
advances in continuous deployment and cloud platform services
that make globally-distributed projects more feasible, teachable,
and learnable, even for short-term projects. However, no experience
report in education research describes a truly distributed global
setup in continuous software engineering for IoT applications.

This paper describes a ten-day project involving three univer-
sities in different countries with 21 students located across the
world to substantiate this claim. It provides teachers with recom-
mendations for conducting a global software engineering course
in a global setting. Recommendations include access for all stu-
dents to (remote) hardware, stable network infrastructure in all
locations, the use of a central development platform for continuous
integration and deployment, and the application of distributed pair
deployment.
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1 INTRODUCTION

Globally-distributed projects have become the norm for large soft-
ware systems in industry [4, 13]. Teams are often spread across
offices and countries. Particularly in light of the COVID-19 pan-
demic, remote work has become common [30]. Advances in digital
communications technology continue to make collaboration eas-
ier even when workers are not colocated. Remote-first work has
continued following the pandemic. As a result, global software
engineering is likely to remain long-term.

The software engineering education community recognizes the
need to provide instruction that prepares graduates to work in the
software industry [7, 40]. In order to teach relevant and practical
skills, teachers need to deliver students with experiences that mirror
what happens in the “real world” [7, 8, 10]. Nevertheless, creating
a course featuring an authentic global software engineering expe-
rience is a significant challenge [7, 9, 22, 23, 37]. The university
experience has traditionally centered on bringing students together
(often internationally) in one place to study and work together.
However, the conditions that we want the students to experience
while working on a global software engineering project are differ-
ent.
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Instructors are faced with determining how to make students
with little or no experience aware of global software engineering
challenges and equip them with skills to deal with them. There
are two main options. Teachers can simulate a global software
project, e.g., in a classroom setting, as reported by Li et al., main-
taining the organizational effort relatively low by avoiding the
problems of proper distribution [23]. The alternative is to arrange
genuine global software engineering projects ranging from dis-
tributed requirements engineering to software delivery, including
all the organizational challenges of a distributed organization and
infrastructure [9].

Recent advances in Software as a Service (SaaS) products have
made it possible to set up distributed development infrastructures
with minimal overhead and cost in a reasonable amount of time [5,
28]. Combining this with online, collaborative tools supporting con-
tinuous software engineering methods for development, delivery,
and deployment provide the foundation to organize and execute
truly distributed project courses, producing nontrivial software
applications in a short time frame [15].

In particular, continuous software engineering methods have
become common among companies delivering SaaS, using tech-
niques such as continuous integration, automated testing, and the
application of deployment pipelines to ensure that system updat-
ing is a rigorous, reliable and repeatable process [5]. They have
also appeared in the curriculum of many software engineering
courses [17-19, 21]. In fact, continuous software engineering has
become an essential practice for software engineers and everyone
developing software-enabled products of all types such as smart-
home technology, embedded devices, automotive technology, or
smart cities [25].

An additional challenge is offering a globally-distributed project
that includes software and hardware components. Developing soft-
ware to control or interact in a global setting with the Internet of
Things (IoT) devices in a distributed setting requires students to
develop software for and test it on physically distributed hardware.

We believe that these kinds of applications can be taught in a
global classroom. Therefore, we offered a ten-day project involving
three universities in different countries, Imperial College London
(Imperial), the Technical University Munich (TUM), and St. Peters-
burg Electrotechnical University (LETI). There was a group of 21
students from these institutions, located across the world in five
different time zones. The system under development consisted of
three subsystems, each with software and hardware components:

(1) Urban infrastructure for autonomous cars
(2) A fleet of drones to support aviation-based transportation
(3) A traffic lights manager based on smart light bulbs

The paper is organized as follows. Section 2 describes related
work in the fields of teaching global software engineering, continu-
ous software engineering, IoT applications, Platform as a Service
(PaaS) and Software as a Service (SaaS). Section 3 defines our teach-
ing concept, particularly team constitution, creating communities,
agile methods, and the infrastructure setup for a global project in
an academic setting. Section 4 describes the details of the course
instantiation, including teaching the course during the COVID-19
pandemic. Section 5 concludes with a set of recommendations for
conducting a global IoT-based software engineering course.
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2 RELATED WORK

Globally-distributed software projects and the complexity of coor-
dinating communication global software projects are decades-old
research fields [13, 16]. Similarly, teaching global software engineer-
ing in a university context is a well documented teaching format
incorporating several challenges [4, 6, 9, 12, 22, 23, 26, 34, 37].

Beecham et al. inspire the need for global software engineering
education and summarize 19 global software engineering education-
related challenges and proposed solutions [4]. Bruegge et al. de-
scribe the experience of organizing three courses on distributed
software engineering with students from Carnegie Mellon Univer-
sity (CMU) in Pittsburgh, USA, and the Technical University Munich
(TUM) for real clients located at a third site; they also express the
challenges and advantages of distributed software projects includ-
ing video communication [6]. Stroulia et al. [37] and Sievi-Korte et
al. [34] describe distributed courses across universities, including
open-source projects and agile project management [34, 37]. Simi-
larly, Matthes et al. provide insights into teaching global software
engineering across five different universities in France, Mexico,
Germany (2x), and Chile [26]. Gloor et al. reported on six years of
teaching distributed courses, highlighting lessons learned like bal-
anced teams, team commitment, frequent deadlines, clear informa-
tion flows, and the need for global trust and cultural understanding
in distributed teams [12]. Damian et al. highlight the challenges of
teaching distributed software engineering between the University
of Victoria in Canada and Aalto University in Finland, underlining
several challenges, including the difference in time zones [9].

Research by Lescher et al. and Li et al. emphasizes possibilities of
using exercises in classroom and seminar settings to simulate global
software engineering projects and how students obtain informa-
tion about global software engineering using classroom exercises
showcasing communication overhead, impediments, and delay in
global software projects [22, 23]. Anderson and Ramalingam high-
light how similar principles can also be applied to other domains
such as construction management, providing similar insights like
comparative research about global software engineering [2].

Krusche et al. focus on a similar teaching approach to that pro-
posed in this paper, where creativity is fostered by allowing op-
portunities and mistakes [20]. They base their teaching approach
on chaordic learning theory using cha-ord, a mixture between
chaos and order [14]. The teaching concept described in this paper
also relies on related work about pair programming [42] and en-
semble programming (originally called mob programming, a term
avoided for its negative connotations) [44], facilitating communica-
tion and active knowledge exchange between students and within
teams [42, 44].

Several publications are concerned with a subset of topics dis-
cussed in the course defined in this paper about continuous software
engineering for IoT applications. Kuusinen and Albertsen depict a
course that focuses on continuous software engineering, including
setting up a CI pipeline and interacting with well-known source
control standards such as git [21]. Mdenpaa et al., and research by
Silvis-Cividjian, draw attention to courses teaching development
with IoT devices and related hardware technologies while aiming
for self-learning and development-focused approaches [29, 35].
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GitHub is used as a platform to teach contributions about open
source projects, contribute to open source projects, and potentially
create new projects, which is described in research by Tan et al. and
Feliciano et. al [11, 39]. The research lists practical benefits such
as gaining industry-relevant experience and encouraging student
collaboration as well as challenges associated with the platform
and working on projects in public [11]. Li proposes to use free
PaaS$ offerings for education projects which is part of the teaching
concept described in this paper [24]. It enables students to work
on a project with a setup as close as possible to real projects. Re-
search by Stray et al. demonstrates the application of SaaS-based
asynchronous communication tools used in the case study in sec-
tion 4, representing the applicability of these tools to global team
collaboration [36]. The course defined in this paper applies different
lessons learned and insights from teaching continuous software
engineering, IoT applications, and using Paa$ or SaaS offerings to
create a new teaching format.

Similar to many other courses and industry projects, the course
design described in this paper is also affected by the COVID-19
pandemic. Ipek Ozkaya highlights the COVID-19-related challenges
and opportunities for software engineering, including the flexibility
of hybrid work and the problem of retaining organizational mem-
ory [30]. Lessons learned from other courses being reworked due
to COVID-19, such as the work by Schmiedmayer et al., explaining
how to conduct online sessions, remote supervision, and real-time
feedback for students in the setting of an ongoing pandemic [32].

3 TEACHING CONCEPT

Software engineering research comprises a global community with
an increasing number of students studying the topic and more and
more professionals finding jobs in the technology sector result-
ing in an increased need for high-quality software engineering
education [27]. As universities aiming to provide a high-quality
educational experience, we want to provide opportunities for our
students to work with other members of this international com-
munity, exchange ideas, and complete collaborative projects to
develop their engineering skills, possibly resulting in new research
opportunities.

Bringing students from different universities together is essential:
the idea of joint student schools or summer schools has existed for
along time, and many have been completed with great success [20].
However, the ways of working in the world of software engineer-
ing are changing. Our work was initiated during the COVID-19
pandemic, which in many cases pushed companies and universities
toward remote work. Due to regulations and travel restrictions, a
remote setting was the only possible way for conducting a global
course.

Therefore, our aim in developing a new teaching format was to
update our notion of summer school and bring students together
as part of an international virtual community to work on common
themes, share their experience and skills and to contribute to a
common goal. Although running an inter-university collaborative
course in a virtual setting might be seen as a compromise, we
believe that this mirrors the interaction patterns of modern software
engineering in many ways. Hence, running a collaborative course
in a distributed and virtual style reflects the environment that
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many software engineers work in today. As a result, such a course
helps develop critical skills related to effective communication and
collaboration in a virtual setting using digital tools.

3.1 Team Constitution

It is vital to construct teams with diverse members to implement
a successful distributed project, particularly with students from
different institutions and a uniform spread of demographics and
home institutions. Additionally, we observe that it is often natural
for students to group with others from the same institution, country,
or who are “like them”, even in a colocated course. There may also be
differences in prior knowledge, skills, or experience with students
from different universities based on what they have covered in their
home university curriculum.

There is value in creating mixed and balanced teams [41]; for
this reason, our recommendation is to preallocate groups rather
than allow self-organization when forming teams. At the same
time, it is essential for the overall success of the course that the
students are engaged and excited about the topic they work on,
when preallocating. Therefore, we suggest giving students options
regarding the technical focus of the work and allocating teams
around these themes, taking the students’ preferences into account
as much as possible while reserving the right to give second choices
where it makes for a better split across teams.

3.2 Creating Community

Gloor et al. noted that one of the keys to teaching a successful
global project course is creating global trust [12]. However, this
does not always happen organically and is even harder to build
when participants have never met in person. Our aim is to allow
students to develop the skills to communicate and build trust as
part of the learning experience. Thus, we need to create conditions
and structures conducive to collaboration and making sense of a
new community. We recommend three various types of structured
activities to foster collaboration in different ways at different times:

First contact: There is a long tradition of using “ice breakers” -
short, fun, collaborative activities - to encourage participants to
introduce themselves to one another and to break down the initial
social friction of not having worked together before. In a colocated
setting, popular icebreakers often involve collaborating to complete
a fun challenge together, e.g., the Marshmallow Challenge [38],
where teams have to build the tallest free-standing structure in a
limited time. In a virtual world, it is helpful to recreate the dynam-
ics of an icebreaker exercise. If any physical items are involved,
participants may try and solve the problem on their own, without
collaborating, as there is no physical interaction with shared objects.
As a result, we recommend an interaction around a shared digital
artifact, where one person’s actions affect the experience of the
others. We endorse keeping such activities short and ensuring they
are accessible. Not everyone may have access to the same resources;
therefore, activities completed via a web browser are better than
those involving dedicated hardware.

Broadband collaboration: Actively working together on a
single problem as a pair or group and constantly verbalizing and
exchanging ideas is ideal for broadband collaboration. This has
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long been realized in software development through pair program-
ming [42] or ensemble programming [44]. Pair and ensemble pro-
gramming sessions can be conducted effectively online using sup-
porting technology and provide a valuable way for teammates to
solve a particular problem together and share knowledge. This is
particularly the case when one teammate has a specific skill or
competency and can pair program together with a less experienced
member to pass on their knowledge. It is especially advantageous
when the “junior” member of the pair has control of the screen and
keyboard.

Structures for Regular Synchronization: In a virtual setting,
it is easy for participants to disengage from the rest of the group,
and it is difficult for organizers to notice when this occurs. When
we are all together in a room, it is easy to see someone sitting
on their own, struggling, or going off in an unuseful direction.
Facilitators can pick up these signals organically in a physical space
with a relatively small number of people. It is best to introduce more
structure in a virtual setting with regular synchronization points to
ensure that everyone is on track, knows what they are doing, and
has the support they need. As a software engineering community,
regular ceremonies associated with practices like Scrum effectively
support synchronization.

3.3 Agile Methods

Agile methods are a natural fit in an environment where we want
to balance self-organization and freedom to explore a technical area
with structures that encourage collaboration, shared learning, and
cross-team synchronization toward a common goal. While we do
not recommend following any particular agile method dogmatically,
we endorse adopting the general principles of lightweight structures
and ceremonies that foster collaboration and help keep everyone
on track while allowing changes of direction and priorities to make
the best use of limited time and resources.

In the context of an intensive course carried out over a small
number of consecutive days, we would recommend at least daily
synchronization points. Agile methods such as Scrum [33], or XP [3]
advocate using short “standup” meetings to report on what ad-
vances have been made since the last synchronization, what if
anything is blocking further progress, and planning what to do
next to have the best possible day. Although in virtual meetings, it
may not be natural to physically stand up - traditionally a measure
to help to keep such meetings from dragging on too long - all the
other parts of a standup meeting can be recreated online. There
are also advantages in software projects, such as the ease of shar-
ing a screen to demonstrate new work, which can sometimes be
challenging to do seamlessly in a physical meeting.

Agile methods emphasize rapid iteration, focusing on learning
and demonstrating results. This fits well with a course that does
not extend over a long period and is exploratory, investigating
problems in a given research area rather than following a tutorial
to teach a tried and tested method.

3.4 Infrastructure Setup

Conducting a distributed course on project-based software engi-
neering requires an infrastructure arrangement to fulfill several
requirements.
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First, asynchronous and synchronous communication tools are
essential for all participants to communicate in a distributed set-
ting. Students and instructors need to collaborate on source code
using widely adopted distributed version control tools, e.g., git!.
Automatic testing and deployment of the source code using contin-
uous integration and continuous deployment provide participants
valuable feedback and enables automated workflows for collaborat-
ing. Providing a platform to integrate software components into
subsystems, run integration tests, and automatically deploy the
system is crucial in reducing the manual overhead of conducting
such a course. Exploring IoT devices or continuous deployment se-
tups involving multiple hardware components requires participants
to access hardware that cannot be distributed to all participants.
Accessing these components in a distributed course requires tools
to remotely access, control, and observe hardware components. A
reliable way to access and control remote hardware is essential if a
deployment or code execution fails in the target environment. In
addition, the infrastructure needs to provide tools and means to
enable participants to share their status in a distributed meeting
and encourage the sharing of rapidly changing knowledge. Syn-
chronous meeting setups should also enable pair programming
or meeting in smaller groups to discuss problems like exploring
failures in the continuous deployment pipelines.

University-specific services are often limited to its students and
instructors or require time-consuming registration processes for
students from other universities. This is not feasible in a short-
duration project course. Therefore, we recommend using PaaS and
Saa$ solutions that do not require access to enrolment information
or local resources at a specific university. PaaS or SaaS solutions
such as AWS, Google Cloud, Microsoft Azure, and GitHub offer low
entry costs while allowing the design of a scalable architecture and
tailoring the courses to varying sizes [28]. These providers often
make limited free tiers available, particularly for open-source de-
velopment projects. Developing the course as a set of open-source
projects enables better visibility of the results for all participants,
permits reuse across different courses and research projects, and
allows the infrastructure setup to take advantage of the added ben-
efits offered by PaaS or SaaS providers. Showcasing advantages and
possibilities of open source development to participants educates
them about a mindset which encourages the reuse and sharing of
the course results.

Using Paa$ or SaaS products enables instructors to reuse knowl-
edge about widely used tools as a part of the course setup to provide
the students with a superior onboarding experience. Infrastructure
access needs to be tested by the instructors before the course starts
to ensure students have access and can navigate the platforms. Shar-
ing tasks before the course enables participants to become familiar
with the course content, facilitating a shallow learning curve.

4 CASE STUDY: JASS 2021

This section describes the Joined Advanced Student School 2021
(JASS 2021) as a distributed course on project-based software engi-
neering. JASS 2021 shows how the teaching concept and infrastruc-
ture setup mentioned above are instantiated in a cross-university
course conducted by Imperial, TUM, and LETI. JASS courses have

Uhttps://git-scm.com
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been conducted for over a decade, initially funded as an industry-
university collaboration and transformed into a collaboration be-
tween TUM and LETI since 2006. These collaborations were con-
ducted in-person, requiring one group of researchers and students
to travel to the respective city of the collaborating university. As a
result of the COVID-19 pandemic, we developed the global teaching
concept described in section 3, allowing us to add a third university
while adhering to the COVID-19 restrictions in March and April
2021.

4.1 Topics and Themes

The core theme of the JASS 2021 instance was Continuous Software
Engineering in combination with IoT smart devices. The goal was
to provide students with projects that empower them to create a
collaborating IoT system developed as an open-source project and
deployed to the distributed IoT environments using continuous
software engineering. We provided students insights into open-
source research projects conducted at the participating universities,
such as the Apodini? framework to develop evolvable web services,
a research project at TUM [31].

We identified three sub-projects within this project scope using
different hardware types that can be easily applied in a university
course setting. The first type of devices were education-focused
Tello drones produced by DJI and Ryzen? that provide a software
SDK to control the drones using mobile devices to simulate air-based
traffic in a smart city. The second type was DuckieBots*, Raspberry
Pi-based model cars initially developed by the Massachusetts Insti-
tute of Technology, representing autonomous vehicles in the smart
city environment. The third group was smart lights®, taking the
place of traffic lights that can be controlled in a local WiFi network.
The project goal was to develop a smart city scenario with the three
device types interacting in an intelligent infrastructure setup. The
deployment of this scenario should be automated using continuous
software engineering, enabling the students to learn about the vari-
ous device groups, how these groups can interact, and how to set
up and maintain a continuous delivery setup for smart IoT devices.
Setting up this continuous software engineering pipeline enabled
students to work collaboratively together on a project involving
hardware distributed across three sites.

After establishing a continuous software engineering workflow,
one of the main challenges was demonstrating the interoperability
of the IoT-based heterogeneous software subsystems. As often the
case in global software projects, these subsystems were hetero-
geneous in structure, designed by separate sub-teams, and used
different operating systems and communication protocols. Thus,
the project illustrated the need for combined cross-platform in-
teroperability of these subsystems, forming a smart infrastructure
setup. In the case of a smart environment, interoperability refers
to the ability of systems, applications, and services to exchange
information and work reliably and predictably together [1, 43]. As

2The Apodini framework can be found on GitHub at https://github.com/Apodini/
Apodini

3More information about Tello drones can be found at https://www.ryzerobotics.com/
tello-edu

“4Information about the Duckietown project can be found at https://www.duckietown.
org

5We have been using smart lights manufactured by LIFX as they offer an easy-to-
implement UDP-based communication protocol https://lan.developer.lifx.com/docs
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part of the course, students had the task of addressing two scenarios
concerning the interoperability problem.

The first task was defining the interaction between various
agents and subsystems including the DuckieBot notifying the traffic
lights about its position and updating the autonomous model cars
with traffic light states in the smart environment. Drones should
examine the traffic situation and communicate this to the other
subsystems, and the traffic lights provide interaction points for the
drones to control the traffic in the smart environment based on
their observations.

The second task was to ensure that continuous code deployment
in the IoT environment did not break any running operations in
the different subsystems. A mechanism was implemented to notify
and ensure that each agent’s software was safely updated allowing
them to switch to an update process in a safe state.

4.2 Team Distribution

Twenty-one students from three universities participated in JASS
2021. Almost all students partook in computer science-related study
programs and already participated in introductory courses in their
bachelor’s or master’s curriculum. Instructors preselected the stu-
dents from their respective universities to guarantee familiarity
with foundational concepts of the course. Due to COVID travel
restrictions, we began gathering team preferences from all partici-
pants in February 2021 after students With students from different
universities and in different time zones were selected to participate
in the course. Based on the initial preferences, we distributed the
teams at the beginning of March, two weeks before the start of the
course. This allowed the participants to get to know each other
and become familiar with the course tools, as mentioned in the
Infrastructure Setup subsection.

The team distribution was made after imposing several con-
straints aimed at producing well-balanced and diverse teams. The
first criterion was that the students from each university should
be spread equally across the different sub-teams to enable cross-
university collaboration. We ensured that the self-identified gender
distribution was similar in each team. Each group consisted of stu-
dents already familiar with a topic and students who could learn
from their peers. Based on these criteria, we formed three teams
containing seven students, with at least two students from each
university and one student who self-identified as female. We could
distribute 16 students based on their first choices. Three students
were allocated their second choice, and only two students were
assigned to their last choice Before finalizing the team distribution,
we reached out to these students to ask if they were comfortable
joining their third choice.

Each team was supervised by at least two doctoral candidates of
multiple participating universities responsible for providing input
and helping organize the teams’ internal task distributions and pair
programming arrangements. Professors from all three participating
universities oversaw the complete project, delegating tasks to the
doctoral candidates and the teams and shepherding the project’s
general direction.
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4.3 Case Study Setup

The course infrastructure setup began in February when we created
a Slack® workspace for the course organizers to communicate with
and invite students once they were selected for the course. The
Slack workspace provided a university-independent and free cloud-
hosted solution to communicate asynchronously with all course
participants. Synchronized meetings were conducted using a Zoom’
license from one of the participating universities, allowing the
organizers to invite all participants to join virtual meetings.

In addition to synchronous and asynchronous communication
using cloud-hosted Saa$S solutions, we decided to use GitHub as
the central source code and knowledge-sharing platform. GitHub
provided us with a free way to host source code and made it easy
to invite students and reuse their existing knowledge, e.g., open-
source contributions. GitHub wikis, README files, or dedicated
GitHub repositories were used to share information with partici-
pants and document the setup of the individual components. Issues
and pull requests were used to structure the development effort.
We used GitHub Actions as an integrated and free CI/CD service
which is usually billed per minute if you exceed a specific quota®.
Developing the components as open-source components or mak-
ing them public during the course enabled us to use the unlimited
free GitHub Actions minutes to build and deploy software to the
hardware devices. Each subteam was working in their separate
repositories and created a specialized CI/CD workflow allowing
them to customize the deployments to the needs of the hardware
components.

We followed two approaches concerning the hardware IoT de-
vices. Firstly we sent some IoT hardware such as smart light bulbs
and small indoor drones to the students’ homes. Therefore, individ-
ual students could access a single IoT device at home for testing
purposes. We used the postal service or allowed students to pick
up and drop off the device per COVID-19 regulations.

In addition to providing a subset of students with single IoT
devices to develop and test at home, we also had larger setups at two
of the three universities. We prepared a room at each university that
included a complete setup of the smart city simulation. The Munich
setup included roads, two DuckieBots, places to start and land a
Tello drone, and six traffic lights. Two Raspberry Pis controlled
traffic lights simulating intersections, permitting communication
in the smart city setup. The Saint Petersburg setup included a
more sophisticated road map and six DuckieBots. The site featured
several cameras mounted to the ceiling; Figure 1 displays the setup
from different angles. Each site had a student or instructor present
to supervise the hardware and help in case of deployment issues.
All participants could observe the setup using live video streams
(Figure 2) showing the situation from different angles and Zoom
conferences with the student or instructor present at the sites.

4.4 Course Schedule

The JASS 2021 course was a five-day course spread over eight
calendar days. The course was scheduled around Easter, which

Chttps://slack.com

"https://zoom.us

8More information about GitHub Action billing limits can be found at
https://docs.github.com/en/actions/learn-github-actions/usage-limits-billing-
and-administration

Schmiedmayer, et al.

[\

Figure 1: Cameras positioned above the model smart town
enable participants to observe the situation from different
angles. The smart town setup uses DuckieBot project-based
roads and markers, that help DuckieBots navigate the road
network.

(oo Joystick of autobotos x

Available keys:

0B to move the duciebot forward
down - to move the duckiebot back

TeFE -to move the du

e the duckibot to th right

plot
ot

[

Figure 2: The video streams from the Saint Petersburg lab-
oratory can be observed on a website. The website offers
different camera angles to observe all are areas of the smart
city environment. Students can manually control a Duck-
ieBot using controls available on the web page.

meant a four-day weekend due to public holidays on Friday and
Monday in several participating countries with no requirement to
be present during these days. We had students joining from UTC+0
in the United Kingdom to UTC+7 in China and Indonesia. Therefore,
we created a schedule that allowed for reasonable working hours
and active collaboration across different time zones.

The first day of the course started with an introductory presen-
tation by the course instructors, an ice-breaker, and tutorials about
drones, smart lights, autonomous driving, as well as web service
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development using Swift and Apodini. The first three lectures were
thirty-minute introductory lectures about the topics, followed by
three one-hour lectures. The in-depth lecture included code exam-
ples and exercises to apply the learned content and use them as
starting points for the challenges. The ice-breaker consisted of an
interactive online quiz enabling participants to get to know each
other despite the physical distance.

The project was conducted as a single sprint aiming to create
a first product increment as a shippable project increment at the
end of the course. We used agile methodologies to organize the
teams’ daily schedule and development organization, as discussed
in section 3. Every day started with a global meeting involving
everyone in a video call for 20 minutes, beginning at 09:00 am UK
time. This meeting provided a forum for daily synchronization in
terms of status, impediments, and promises. After this meeting,
subsystem-teams moved on with another meeting to discuss issues
in-depth as part of the team standup meetings. While we did not
define a fixed end of the working day, the formal meetings and most
discussions in Zoom rooms and Slack channels ended at around
6:00 pm UK time. Nevertheless, several students and instructors
continued developing and discussing course-related work in the
evening or conducting virtual get-togethers.

We used pair programming and encouraged the paring of stu-
dents from different universities, taking advantage of the screen
sharing and remote control features in Zoom meetings. Moreover,
we encouraged students to get to know each other across univer-
sities by pairing them up with regular rotations. We extended the
pair programming concept to pair deployment. In pair deployment,
the driver at one site modifies the software and starts a deployment.
The navigator at the other site observes the automatic deployment
using continuous integration and delivery and is the observer at
the other site. In traditional pair programming, the navigator is in
the observer position while the driver is typing. The navigator is in
the observer position in pair deployment while the driver executes
remote commands.

We used pair deployment for testing and for distributed demon-
strations. The presentation on the last day of the course featured
multiple demonstrations involving pair deployments. Figure 3 shows
the pair deployment navigators in a demo of the traffic light subsys-
tem in city A. The navigators use Zoom on a laptop and an external
webcam to stream the results of the pair deployment to the remote
pair programming drivers in city B.

4.5 Outcome

This setup and the usage of the concepts of continuous software
engineering were the key enablers to conduct a global software
engineering course involving IoT devices. Altogether the students
developed three subsystems using CI/CD pipelines for deployment
to the target environments.

The drone team implemented a GitHub Action-based CI/CD
pipeline to deploy a service monitoring intersections of the smart
city using drones. However, updates were not allowed to be installed
while the drone was flying to ensure flight safety. The drone flight is
controlled from a Raspberry Pi, which connects to the Tello Drone
via WiFi. The drone lifts off, flies above the city, and locates the
intersection based on a request. After taking a picture of the traffic
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Figure 3: A world view of the traffic light demo involving pair
deployment at the Munich-based smart city setup involving
LIFX-based traffic lights and DuckieBots.

situation, the drone flies back to the takeoff point and lands. A web
service is offered over an HTTP and JSON-based API. Clients can
request the picture, and the request is successfully answered with
a picture captured by the drone.

The traffic light team built a system to manage intersections in
a smart city and implemented different traffic control strategies to
manage the traffic flow in a smart city. The system manages the
states of traffic lights in a city represented via a digital street map.
An HTTP and JSON-based API can be used to select different traffic
control strategies. The team developed a continuous deployment
process to allow new releases of the traffic light controller, allowing
modification and extension of the switching strategies.

The autonomous driving team implemented a continuous de-
ployment process for the DuckieBot software based on ROS. The
remote setup, especially regarding Duckietown at LETI, created a
necessity for an automated deployment process. Students cannot
flash their software onto the target environment without physical
access. Additionally, the CI pipeline uses GitHub Actions tests and
integrates student code increments pushed into the project’s git
repository. The CD process deploys new code increments pushed
into git using actions aimed at the execution environments at the
different universities. Changes to the autonomous-driving software
were also managed using GitHub Actions and SSH access. However,
starting the cars required a manual command.

5 CONCLUSION & RECOMMENDATIONS

We conducted a one-week global software engineering course using
ToT applications in a global and truly distributed setting. The goal
was to understand the feasibility of global projects using contin-
uous software engineering and IoT applications in an academic
environment and provide recommendations and lessons learned
for other instructors. The artifacts of this project, in particular the
definitions of the CI/CD pipelines, can be found in the JASS-20217
GitHub organization.

“https://github.com/JASS-2021
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At first glance, the infrastructure setup and preparation seem
similar to the challenges of preparing an ordinary project course.
However, the distribution and usage of hardware components are
fundamentally different from in-person teaching. General comput-
ing hardware can be virtualized using commercial PaaS platforms
or virtual machines installed at university sites. However, IoT hard-
ware is distinct and cannot easily be virtualized. Instructors cannot
rely on participants meeting in person and sharing a centralized
hardware setup.

Recommendation 1: Ensure all students have (remote) ac-
cess to hardware.

Instructors must ensure that students either have hardware at
their working location or remote access to enable concepts such as
pair deployment. They need to send IoT devices to the participants
or create custom build remote access for those devices located at
the university sites. If they decide to send hardware to the partic-
ipants, it needs to be shipped, or a pickup needs to be arranged
weeks before the course. The remote setup must include ways for
participants to observe the deployments at the sites.

Recommendation 2: Provide stable network infrastructure
in all locations.

Sophisticated network infrastructure has to be set up to allow
the usage of continuous software engineering technologies to de-
ploy software from outside of the university network safely. We
recommend VPN-based access to infrastructure that should not be
exposed directly for access from the internet. We also recommend
testing the remote and parallel access to remote machines and video
streams, providing access to remote locations as shown in Figure 1
and Figure 2.

Recommendation 3: Use a central development platform
that supports an easy setup of continuous integration and
continuous deployment.

GitHub, Bitbucket and Gitlab are central platforms that enable
discussions, decision knowledge, and code in distributed version
control. Such platforms are the central location to look up infor-
mation, in addition to chat and video conferences. GitHub Actions,
Bitbucket Pipelines and GitLab CI/CD provide the foundation to
teach continuous delivery and continuous deployment, particularly
for globally-distributed projects.

In the case study, the students reported that GitHub Actions is
easy to learn and allows for customizing pipelines to their needs.
Many resources and examples available from the developer com-
munity helped the students find a suitable solution for their project.
The free-tier for education usage gives a reasonable build time
quota for teaching tasks for conducting a project that cannot be
open-sourced. If the free quota is insufficient, converting to public
repositories and open-sourcing the code could be a solution.

Recommendation 4: Use PaaS and SaaS$ solutions to reduce
the infrastructure setup effort for short-term courses.

Schmiedmayer, et al.

Using existing PaaS and SaaS software solutions enables easy
collaboration across different universities and reduces the infras-
tructure setup effort. It does not require compatibility between
university systems. Many PaaS and SaaS solutions offer free tiers
for limited usage, making them practical for short-term courses.

Nevertheless, free PaaS and SaaS solutions can lead to imprac-
tical storage and computation limits. Slack’s free message limit to
view and search 10.000 messages and pricing model makes this solu-
tion impractical for communication-intensive courses, particularly
for long-term data analysis. It is also important to note that these
platforms must fulfill data-privacy and security standards accepted
at the participating universities. Instructors must ensure that stu-
dents are not mandated to participate in the course and usage of
these platforms. They must ensure that as little personal data as
possible should be kept on these platforms. All participants must
be able to delete any personal data following local data protection
and privacy regulations.

I Recommendation 5: Apply distributed pair deployment.

Distributed pair deployment is a useful technique for testing
and demonstrations involving multiple sites, particularly in the
development of IoT devices. In pair deployment, the driver at one
site modifies the software and starts a deployment. The navigator at
the other site observes the automatic deployment using continuous
integration and delivery and is the observer at the other site. In tra-
ditional pair programming, the navigator is in the observer position
while the driver is typing. In pair deployment, the navigator is in the
observer position while the driver executes remote commands. In
order to enable successful pair deployment, there has to be on-site
expertise at the laboratories in each of the participating universities
throughout the course. At least one student or staff member was
located at the laboratories to fulfill the role of the navigator at the
local site per COVID-19 regulations. Pair deployment can be used
to test non-IoT-based software outside the development environ-
ment. Future work can apply the pair deployment methodology to
continuous software engineering to test and debug CI/CD setups.

In summary, we conclude that teaching continuous software
engineering in a global project with IoT applications is teachable
and can quickly be learned and applied by students.
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