
Feature Crumbs: Adapting Usage Monitoring to
Continuous Software Engineering

Jan Ole Johanssen1, Anja Kleebaum2, Bernd Bruegge1, and Barbara Paech2

1 Technical University of Munich, Munich, Germany
{jan.johanssen,bruegge}@in.tum.de

2 Heidelberg University, Heidelberg, Germany
{anja.kleebaum,paech}@informatik.uni-heidelberg.de

Abstract. Continuous software engineering relies on explicit user feed-
back for the development and improvement of features. The frequent
release of feature increments fosters the application of usage monitoring,
which promises a broad range of insights. However, it remains a challenge
to relate monitored usage data to changes that were introduced by an
increment and thereby to a particular specific of a feature.
We introduce Feature Crumbs, a lightweight, code-based concept to spec-
ify a feature’s run-time characteristics. This enables monitored usage
data to be allocated to a feature increment. In addition, we analyze the
implications for the overall development process. We outline the reference
implementation of a platform for collecting, managing, and assessing fea-
ture crumbs. We report an evaluation of both the feature crumb concept
and the reference implementation in a university capstone course.
Feature crumbs and their changes to the development process contribute
to the product quality; they enable feature increment assessment in com-
bination with additional knowledge sources, such as decision knowledge.

Keywords: Feature Crumb · Usage Data · User · Usage Monitoring ·
Process · Agile Development · Continuous Software Engineering.

1 Introduction

User feedback is pivotal for software evolution. Continuous software engineering
(CSE) [2,7] acknowledges this by relying on early and frequent releases—even
with immature prototypes [1]—to retrieve explicit feedback, such as written re-
views, from users. This feedback is then turned into change requests for a feature
under development. However, this approach is time consuming and dependent
on humans [14], leading to a discrete, rather than continuous, source of feedback.

Frequent software releases foster implicit user feedback, namely the applica-
tion of usage monitoring, enabling a broad research field [17]. Implicit feedback
can be collected continuously, without interfering with users, and supports de-
velopers in reasoning about how to improve a feature [14]. In contrast to explicit
user feedback, which provides the ability for application feature extraction [9],
usage data maps to the entire implementation, shown as (B) in Fig. 1. Therefore,
one challenge remains in relating usage data to the feature increment specifics.

This is the author-created version of the work published at the 19th International
Conference on Product-Focused Software Process Improvement. The final authenticated

version is available online at https://doi.org/10.1007/978-3-030-03673-7_19.

https://doi.org/10.1007/978-3-030-03673-7_19

Feature
Specification

Feature
Usage Data

Usage Traceability

Feature
ImplementationA

C Usage Link
Trace Links

B Release Link

Fig. 1. Different link types: feature specifications are codified in a feature imple-
mentation while trace links (A) can be established using feature tags [18]. The imple-
mentation is frequently delivered to users who produce usage data. Usage data can
be mapped to the entire implementation based on a release link (B). Represented by
feature crumbs, a usage link (C) enables actual usage traceability, which allows to
create a relationship between usage data and implementation specifics.

We introduce the Feature Crumbs concept, which allows the allocation of
usage data to a feature increment. Similar to requirements traceability, as de-
scribed by Gotel & Finkelstein [8], feature crumbs create a usage traceability,
which links usage data to code in a backward direction, shown as (C) in Fig. 1.
Feature crumbs represent software sensors that are manually seeded into the
application source code to describe the user-centric structure of a feature. Fea-
ture crumbs facilitate a detailed evaluation of features; they form the basis for
deriving run-time information, such as whether users (a) started, (b) canceled,
or (c) finished usage of a feature. Additional information may be recorded at
run-time to enrich the assessment of a feature. For example, users’ behavioral
characteristics aligned with detected feature crumbs might precisely reveal sit-
uations in which users are confused. Likewise, decision knowledge regarding the
implementation of a feature can be related to the monitored usage data of this
feature; such a relationship can be used to assess previous decisions. Ultimately,
usage data collected using the feature crumb concept may lead to the discovery
of additional requirements or to the refinement of existing requirements.

Along with the introduction of the feature crumb concept, the adaption of
usage monitoring to CSE affects multiple parts of the software development
process. Thus, we elaborate on new developer capabilities, such as designing
run-time feature representations, considerations regarding development artifacts,
such as working with branches, and arising needs for additional tool support.

This paper is structured as follows. Section 2 describes requirements for the
adaption of usage monitoring to CSE. Section 3 introduces the feature crumb
concept and its implications for the software development process. In Section 4,
we outline a reference implementation of feature crumbs and report its initial
evaluation. We situate our concept in related work in Section 5 and conclude the
paper by providing a summary, discussion, and future work in Section 6.

2 Requirements

Similar to the integration of decision knowledge into CSE [12], we elicited the
following six requirements for the adaption of usage monitoring to CSE. These
requirements form the basis for the crumbs concept introduced in Section 3.

This is the author-created version of the work published at the 19th International
Conference on Product-Focused Software Process Improvement. The final authenticated

version is available online at https://doi.org/10.1007/978-3-030-03673-7_19.

https://doi.org/10.1007/978-3-030-03673-7_19

R1: Feature Assessment. Usage monitoring during CSE shall enable de-
velopers to assess whether a feature under development was employed by the
user. This allows them to only consider usage data produced by a user who ac-
tually used a particular feature. Furthermore, performance indicators, such as
the cancelation rate of a feature, enable the feature to be assessed.

R2: Usage Data Allocation. Feature usage usually involves multiple ele-
ments, such as a sequence of buttons that users tap to achieve a goal. A usage
monitoring approach shall allow the allocation of observed usage data to a spe-
cific step within a feature. This enables precise feature analyses, such as studying
time frames between feature steps or relationships to other knowledge sources.

R3: Feature Flexibility & Comparability. CSE promotes frequent and
rapid releases of new software increments. This requires a usage monitoring con-
cept that allows for a simple extension and flexible replacement of new functional
additions to the feature under development. Notably, the concept shall take into
consideration that usage data from consecutive feature increments are compara-
ble. This is important to enable the investigation of a feature’s evolution.

R4: Application Range. The applicability of a concept shall be indepen-
dent of the product: as CSE is often used in the domain of mobile interactive
systems, the concept shall be applicable to graphical user interfaces, but also to
computationally intensive code. At the same time, the concept shall be applica-
ble to new user interfaces, such as voice, and consider server-side operations.

R5: Environment Compatibility. Development environments are a het-
erogeneous composition of management approaches, software processes, tools,
and platforms. The concept shall be compatible with existing environments and
not impose an additional burden upon developers. For example, it should make
no difference whether a project organizes features with user stories or scenarios.

R6: Effort & Learnability. Usage monitoring shall be easy for developers
to learn and apply. In particular, the concept shall impose a minimal cognitive
load upon developers responsible for adding and maintaining the means for usage
monitoring to guarantee its seamless and continuous application.

3 Feature Crumb Concept

Following the above-mentioned requirements, we present an object model of the
feature crumb concept in Section 3.1 and describe its implications for the devel-
opment process in Section 3.2. Thereby, we highlight its lightweight character.

3.1 Object Model

The major entities and their relations are depicted in Fig. 2. A Feature has
a name and a description. A Path is uniquely defined for every feature. It
consists of a sequence of steps, which represents a sorted array of Crumbs to
specify the flow of crumbs needed to complete a feature. As a feature is extended
or updated, crumbs can be added to or removed from a path. If the introduced
changes are major, both activities increment the path version.

This is the author-created version of the work published at the 19th International
Conference on Product-Focused Software Process Improvement. The final authenticated

version is available online at https://doi.org/10.1007/978-3-030-03673-7_19.

https://doi.org/10.1007/978-3-030-03673-7_19

Idle
Started
Canceled
Finished

«enumeration»
State

Feature

+ name: String
+ description: String

- trigger ()

+ required: Boolean

Crumb
Time

Interaction

Custom
+ add (Crumb, Index)
+ remove (Crumb)

+ version: Number

Path

+ required: Boolean

Contextual Aspect 0…*

*

steps

Fig. 2. Object model representing the feature crumb concept as a UML class diagram.

If a feature is composed of optional steps, the respective crumb’s attribute
required might be set to false. We distinguish between different classes of
crumbs, which all share the capability to trigger an event, each under a cer-
tain condition: an Interaction crumb might be triggered by any interaction or
event that can occur during the run-time of an application. A Time crumb defers
its trigger call until a specified time frame is passed. Custom crumbs await any
individually-designed conditions, such as the input of a pre-defined string into
a text field, before triggering an event. A feature’s State relates to its observed
execution. Based on the recorded events triggered by crumbs and given the fea-
ture path, we distinguish the following feature states: (a) Idle, if the feature has
never been initiated by the user; (b) Started, if the first crumb of the feature
path sequence was detected; (c) Canceled, if the assessment of a path is stopped
due to a certain criterion; or (d) Finished, if all crumbs that are part of the
sequence were detected sequentially. Eventually, Contextual Aspects describe
conditions that need to be met to start the feature path observation. These may
be pre- or post-conditions, such as an external event or the availability of certain
user data. Contextual aspects can be optional. An informal representation of the
feature crumb concept is sketched in Fig. 3 to illustrate objects shown in Fig. 2.

New increment

Path Version 1

Step 1 2 3 4 5 6 7 8

Path Version 2 B2 G2 D2 H2 E2

A1 B1 C1 D1 E1

A2 F2 C2

Finished

Canceled

Feature ABC

Fig. 3. A Feature entitled ABC that was improved once. Thus, Path was updated with
a new version number. Version 1 consists of five feature Crumbs, which are depicted as
a hexagon while black corners signal either the first or last crumb of a steps sequence.
Version 2 introduces three new crumbs (dashed, green border) that occupy steps that
were previously allocated to other crumbs. The red antenna signals the call of the
trigger method; while this means for version 1 that the feature has been executed
properly (Finished), version 2 was Canceled, since C2 was triggered before B2.

This is the author-created version of the work published at the 19th International
Conference on Product-Focused Software Process Improvement. The final authenticated

version is available online at https://doi.org/10.1007/978-3-030-03673-7_19.

https://doi.org/10.1007/978-3-030-03673-7_19

Artifacts

Capabilities

Tools

Evaluate
 monitored data *

User Understanding
System *

Version Control
System

Issue & Knowledge
Management System

Integration
System

Delivery and
Distribution System

Feature Crumbs *Test Cases Crash ReportsUser Story,
Scenario *

Branches
and Commits *

Design and assess test cases,
 analyze crash reports

Elicit and implement requirements,
design run-time feature representation *

Requirements
Elicitation Implementation Testing Deploying Usage

MonitoringPhases

Fig. 4. Outline of major capabilities, artifacts, and tools across the phases of a software
development process; partially drawn and combined from [2] and [3]. Individual entries
are interweaved and may be based on their predecessor. This is relevant for the entries
related to usage monitoring, which are written in red font and followed by a star (*).

3.2 Implications for the Development Process

The introduction of feature crumbs and the adaption of usage monitoring to
CSE impacts the overall development process. This is because usage monitoring
is situated at the end of a development cycle as it verifies the product. In Fig. 4,
we outline the major capabilities required by developers, resulting artifacts, and
supportive tools when cycling through a software development process.

A software development process depends upon the elicitation and manage-
ment of requirements for a feature. A feature might be described as a use case
or as a scenario, while the latter represents a concrete instance of this use case
[3]. Given their lightweight character, feature crumbs fit into different concepts
of how a feature is designed, managed, or tracked during design-time. Notably,
given the similar structure of subsequent events, feature crumbs promote sce-
narios, highlighting their usefulness for collecting and analyzing usage data [15].

The selection of a branching strategy affects the work with feature crumbs:
we propose relying on a branching model that uses feature branches for imple-
mentation work [13] to allow the integration of knowledge into CSE [11]. Feature
crumbs can be added only to feature branches to maintain feature atomicity and
to avoid interference with the development of other features.

During requirements elicitation and feature implementation, developers need
to be able to design a run-time representation of the feature on which they are
working to make it evaluable during usage monitoring. This requires additional
effort during requirements elicitation and implementation: adding feature crumbs
is similar to writing test cases—for which developers have to reflect on the feature
before coding [5]—to be able to verify the implementation.

Only after a software increment is delivered into a target environment, usage
monitoring based on feature crumbs can be performed. To manage and analyze
usage data, tool support in the form of a user understanding system is required.
We provide one aspect of such as system—with a focus on the collection, manage-
ment, and assessment of feature crumbs—in the following Section 4. This enables
developers to evaluate monitored data and reflect upon the product quality.

This is the author-created version of the work published at the 19th International
Conference on Product-Focused Software Process Improvement. The final authenticated

version is available online at https://doi.org/10.1007/978-3-030-03673-7_19.

https://doi.org/10.1007/978-3-030-03673-7_19

Mobile Device Crumb Management Platform

Mobile Application

Crumb Observer
Crumb Collector Crumb Processor Crumb Linker

Crumb Dashboard

Version Control System

Version Control Manager

Feature ABC

A B C

Commit Notifier

Fig. 5. The reference implementation including the major systems. Dashed, red bor-
ders indicate components created or added to enable the feature crumb concept.

4 Reference Implementation and Initial Evaluation

We developed a reference implementation for the feature crumb concept to
demonstrate its feasibility. In Fig. 5, we outline the three major systems: First, a
framework forMobile Devices allows developers to integrate crumbs for a feature.
This framework also includes a Crumb Observer that reports triggered crumbs
during application run-time. Second, we developed a Crumb Management Plat-
form, which is the main interaction point for developers to work with the crumbs.
It receives crumbs from applications via a Crumb Collector. The Crumb Proces-
sor is in charge of connecting received crumbs and the feature path information.
The result, i.e., the feature state, is visualized on a Crumb Dashboard which fur-
ther enables developers to define a feature path for a specific software increment
that is released to users. The Crumb Linker is in charge of creating a relationship
between a feature and a release that is uniquely identified by a code commit.
The commit information is provided by a Commit Notifier, which represents the
third aspect of the implementation. Based on a webhook system, this component
informs the crumb management platform about new commits.

We ran an initial evaluation of the feature crumb concept and the reference
implementation according to two variables of the technology acceptance model:
the perceived usefulness (U) and the perceived ease-of-use (E) [6]. As a sample
of prospective users, we relied upon nine students, each performing a usability
representative role in a project within a university capstone course in which up
to 100 students work on real industry projects [4] over the course of two months.
Regarding U, all projects were able to define one or more features, including a
feature path and crumbs. Users reported useful aspects, such as being able to
determine the repetition of a feature to detect important steps, or to assess if a
customer was able to complete a feature to detect if a navigational path might
be unclear. At the same time, one user reported that their app did not include
much user interaction, which limits the usefulness of feature crumbs; still, they
would have been able to measure implementation internals. Regarding E, we
obtained diverse feedback: the initial manual addition of commits was perceived
as inconvenient, which led to the development of the commit notifier. Some users
reported that the registration of a feature path was cumbersome and error-prone.
One user emphasized increased effort to integrate crumbs into code.

This is the author-created version of the work published at the 19th International
Conference on Product-Focused Software Process Improvement. The final authenticated

version is available online at https://doi.org/10.1007/978-3-030-03673-7_19.

https://doi.org/10.1007/978-3-030-03673-7_19

5 Related Work

The feature crumb concept forms a lightweight task model to describe user in-
teractions and shares similarities with the ConcurTaskTrees specification [16],
which introduces four task types: a user, an abstract, an interaction, and an
application task. Given their manifestation in code, feature crumbs do not dis-
tinguish who, e.g., the system or user, triggered them. Therefore, in Fig. 3, we
apply the same symbol—the hexagon, which is used for application tasks in
[16]—for all classes of feature crumbs (Fig. 2). Generally, feature crumbs focus
on applications developed during fast-cycled processes, such as CSE. Moreover,
they depict a linear path, rather than hierarchies or logical relationships.

To implement actual run-time observation, development environments3 rely
on code additions, similar to feature crumbs, that enable developers to create
success and cancel paths. These concepts are, however, for debugging and profil-
ing applications. Platforms4 that apply such concepts for usage monitoring only
address single events and do not promote the addition of other knowledge types.

There exist various approaches that utilize usage data for software evolution.
For instance, UI-Tracer [10] supports developers in comprehending a software
system by automatically identifying source code that is related to user interface
elements. Similarly, feature crumbs can be understood as traces that relate user
elements with their implementation; however, our concept is not limited to user
interface elements. Furthermore, feature crumbs describe features to collect usage
data, which can be linked to other knowledge types, such as decision knowledge.

6 Conclusion

In this paper, we have presented feature crumbs, a lightweight, code-based con-
cept to describe a feature with the goal of adapting usage monitoring to CSE. We
have summarized six requirements and implications for the development process.
We have outlined a reference implementation to demonstrate the feasibility of
collecting, managing, and assessing feature crumbs. We have reported an initial
evaluation of both the concept and the implementation in a university context.

Discussion. The implementation and evaluation have indicated that fea-
ture crumbs promote usage monitoring in CSE. Now, we face two major areas
for discussion. First, the focus of a feature: while we provide the means for fea-
ture definition and tracking, we observed that it is difficult to decide where to
seed crumbs, i.e., the first crumb. We consider providing a guideline to devel-
opers. Second, the platform usability: developers need different functionalities.
Discussion is required to select important ones and make them easily accessible.

Future Work.We plan to improve the feature crumb management platform
towards a comprehensive user understanding system and to continue evaluating
it to investigate developers’ acceptance. A long-term goal is to add multiple
knowledge sources that can be better assessed when relying on feature crumbs.
3 https://developer.apple.com/videos/play/wwdc2018-405/?time=1097
4 https://docs.microsoft.com/en-us/appcenter/analytics/event-metrics

This is the author-created version of the work published at the 19th International
Conference on Product-Focused Software Process Improvement. The final authenticated

version is available online at https://doi.org/10.1007/978-3-030-03673-7_19.

https://developer.apple.com/videos/play/wwdc2018-405/?time=1097
https://docs.microsoft.com/en-us/appcenter/analytics/event-metrics
https://doi.org/10.1007/978-3-030-03673-7_19

Acknowledgments. This work was supported by the DFG (German Re-
search Foundation) under the Priority Programme SPP1593: Design For Future
– Managed Software Evolution. We thank Jan Philip Bernius and Lara Marie
Reimer for their excellent work on the development of the reference implemen-
tation and the participants of the university capstone course for their feedback.

References

1. Alperowitz, L., Weintraud, A.M., Kofler, S.C., Bruegge, B.: Continuous prototyp-
ing. In: 3rd Int. Workshop on Rapid Continuous Softw. Eng. pp. 36–42 (2017)

2. Bosch, J.: Continuous Software Engineering: An Introduction. Springer (2014)
3. Bruegge, B., Dutoit, A.H.: Object-Oriented Software Engineering Using UML, Pat-

terns, and Java. Prentice Hall Press, 3rd edn. (2010)
4. Bruegge, B., Krusche, S., Alperowitz, L.: Software engineering project courses with

industrial clients. ACM Transactions on Com. Edu. 15(4), 17:1–17:31 (2015)
5. Crispin, L.: Driving software quality: How test-driven development impacts soft-

ware quality. IEEE Software 23(6), 70–71 (2006)
6. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technol-

ogy: A comparison of two theoretical models. Mangagement Science 35(8), 982 –
1002 (1989)

7. Fitzgerald, B., Stol, K.J.: Continuous software engineering: A roadmap and agenda.
Journal of Systems and Software 123, 176–189 (2017)

8. Gotel, O.C.Z., Finkelstein, C.W.: An analysis of the requirements traceability prob-
lem. In: Proc. of IEEE Int. Conf. on Requir. Engineering. pp. 94–101 (1994)

9. Guzman, E., Maalej, W.: How do users like this feature? a fine grained sentiment
analysis of app reviews. In: IEEE 22nd Int. Requir. Eng. Conf. pp. 153–162 (2014)

10. Hebig, R.: UI-tracer: A lightweight approach to help developers tracing user inter-
face elements to source code. In: Software Engineering und Software Management
2018. pp. 225–236 (2018)

11. Johanssen, J.O., Kleebaum, A., Bruegge, B., Paech, B.: Towards a systematic
approach to integrate usage and decision knowledge in continuous software engi-
neering. In: Proc. of the 2nd Workshop on Continuous Softw. Eng. pp. 7–11 (2017)

12. Kleebaum, A., Johanssen, J.O., Paech, B., Bruegge, B.: Tool support for decision
and usage knowledge in continuous software engineering. In: Proceedings of the
3rd Workshop on Continuous Software Engineering. pp. 74–77 (2018)

13. Krusche, S., Alperowitz, L., Bruegge, B., Wagner, M.O.: Rugby: An agile pro-
cess model based on continuous delivery. In: Proceedings of the 1st International
Workshop on Rapid Continuous Software Engineering. pp. 42–50 (2014)

14. Maalej, W., Happel, H.J., Rashid, A.: When users become collaborators: Towards
continuous and context-aware user input. In: Proc. of the ACM SIGPLAN Conf.
Companion on Object Oriented Program. Syst. Lang. and Appl. pp. 981–990 (2009)

15. Nielsen, J.: Scenarios in discount usability engineering. In: Carroll, J.M. (ed.)
Scenario-based Design, pp. 59–83. John Wiley & Sons, Inc. (1995)

16. Paterno, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic Nota-
tion for Specifying Task Models, pp. 362–369. Springer US (1997)

17. Ros, R., Runeson, P.: Continuous experimentation and a/b testing: A mapping
study. In: 4th Int. Workshop on Rapid Continuous Softw. Eng. pp. 35–41 (2018)

18. Seiler, M., Paech, B.: Using tags to support feature management across issue track-
ing systems and version control systems. In: 23rd Int. Working Conf. on Requir.
Eng.: Foundation for Softw. Quality. vol. LNCS 10153, pp. 174–180. Springer (2017)

This is the author-created version of the work published at the 19th International
Conference on Product-Focused Software Process Improvement. The final authenticated

version is available online at https://doi.org/10.1007/978-3-030-03673-7_19.

https://doi.org/10.1007/978-3-030-03673-7_19

	Feature Crumbs: Adapting Usage Monitoring to Continuous Software Engineering

