
Definitive version available at https://doi.org/10.1109/RCoSE/DDrEE.2019.00010

Continuous Thinking Aloud
Jan Ole Johanssen, Lara Marie Reimer, and Bernd Bruegge

Department of Informatics
Technical University of Munich

Garching bei München, Germany
jan.johanssen@tum.de, laramarie.reimer@tum.de, bruegge@in.tum.de

Abstract—Thinking Aloud is a method that allows the col-
lection of expressive user feedback for software improvement.
However, its frequent application in a rapid development pro-
cesses such as Continuous Software Engineering (CSE) is chal-
lenging, since repetitively performing manual observations and
evaluations demand high effort. We propose the Continuous
Thinking Aloud (CTA) approach for conducting Thinking Aloud
during CSE. CTA records speech feedback for a user who starts
using a new feature increment. The recordings are automatically
transcribed and classified into one of four feedback categories
that differentiate between insecure, neutral, positive, and negative
sentiments. CTA visualizes these feedback classifications on a
sentence level, next to its related high-level change of the feature
increment. This supports developers in problem discovery, in par-
ticular regarding usability. CTA integrates with CSE processes
and represents a scalable approach enabling repeated application
during the software development lifecycle.

Index Terms—thinking aloud, continuous software engineering,
usability engineering, feature crumb, classifier, visualization.

I. INTRODUCTION

Continuous software engineering (CSE), i.e., the rapid and
frequent release of software increments [1], [2], puts a special
emphasis on user feedback as valuable source for improve-
ment. User feedback might be provided through informal
channels, such as email, or as a formal issue or bug report.

Jakob Nielsen’s Thinking Aloud method represents another
feedback source to retrieve expressive insights: it bases on
the idea that users, while using the application, immediately
verbalize their thoughts [3]. The access to such a rich and
qualitative feedback source benefits software development, in
particular with respect to usability. However, the application
of Thinking Aloud in a CSE process faces challenges.

First, as minor changes during CSE occur frequently, it is
particularly important that users’ spontaneous impressions are
transmitted to developers “cheap, fast, and easy” [4]. Tradi-
tional Thinking Aloud impedes these goals, as it requires users
to attend a dedicated test setup in a laboratory environment.

Second, stopping processes frequently to perform regression
testing accounts for a major waste of development time [5],
which most likely further increases if developers are repeatedly
performing and analyzing Thinking Aloud protocols.

We argue that a successful integration of Thinking Aloud in
CSE requires a scalable approach to reduce manual activities.
This decreases the time investment for users and developers:
while the former would be able to verbalize thoughts in
their target environment, the latter would be able to focus on
feedback utilization, rather than on its collection or processing.

In this position paper, we introduce the Continuous Think-
ing Aloud (CTA) approach for the automation of Nielsen’s
Thinking Aloud method to obtain better insights into users’
thoughts on a new feature increment. CTA targets applications
developed in a CSE environment; it asks users to record
speech feedback for a new feature increment as soon as they
start using it. These recordings are analyzed automatically
on a sentence level, meaning that we use a natural language
classifier to differentiate the content of the user feedback
between four categories, namely insecure, neutral, positive,
and negative sentiment. Results of the analysis are visualized
in accordance with the newly implemented functionality, pro-
viding developers with a powerful tool to efficiently utilize and
benefit from expressive user feedback during CSE. Overall,
CTA represents an additional knowledge source for automated
and continuous experimentation that is available to developers.

This paper is structured as follows. Section II outlines
foundations and Nielsen’s Thinking Aloud method. Section III
presents the CTA approach that is further discussed in Sec-
tion IV based on first experience reports. Section V outlines
related work. Section VI summarizes future directions to
improve the CTA approach. Section VII concludes the paper.

II. FOUNDATIONS

Thinking Aloud originates from psychological research with
the goal of developing a method to model cognitive processes:
by inspecting protocols, i.e., written transcripts, different ap-
proaches in solving a problem become identifiable [6].

The method’s idea was transferred to software engineering
as a means to support the identification of usability problems
through asking subjects to provide feedback while using the
software [7]. Nielsen describes Thinking Aloud as “the sin-
gle most valuable usability engineering software engineering
method” [3], as it reflects users’ thoughts about a software: He
emphasizes that the main strength of the method lies on the
quality of feedback gained by only a few testers, even though
such feedback may have been biased based on the testers’
subjective theories regarding the software. Thinking Aloud
reveals the underlying reasons for the user’s actions [8]: it
allows developers to gain a better understanding of application
usage and to detect usability issues they were unaware of.

We refer to Nielsen’s Thinking Aloud [3] as the traditional
method, since a tester and a supervisor physically sit together
with former talking while using the application, whereas a
supervisor takes notes to manually identify usability problems.

Accepted at the 2019 IEEE/ACM Joint 4th International Workshop on Rapid Continuous Software Engineering and
1st International Workshop on Data-Driven Decisions, Experimentation and Evolution (RCoSE/DDrEE 2019), Copyright IEEE

https://doi.org/10.1109/RCoSE/DDrEE.2019.00010


Definitive version available at https://doi.org/10.1109/RCoSE/DDrEE.2019.00010

Developer: CTA Setup User Continuous Thinking Aloud System Developer: CTA Analysis

Classified 
Sentences per 

Crumb

Yes

No
No

Yes

No

Yes

Crumb is
 First Crumb
of Activated 

Feature?

Crumb
Belongs to
Activated
Feature?

Activate Feature
for CTA

Trigger 
Crumb

Fetch Activated
Feature for CTA

Record Speech 
and Transform

to Text

Classify
Sentences 

Think Aloud while 
Using the Application 

Inspect CTA 
Results

Identify Problem
and Work on 
new Feature 
Increment

Prepare
Feature under 
Development

Trigger
Next Crumb

Transcribed
Text per
Crumb

 Activated
Feature 

has Next
Crumb?

Bundle and 
Store Results

CTA
Results

Fig. 1. An activity diagram showing actions and control flows during CTA application, under four perspectives performed by three actors: the developer
during the CTA setup and analysis, a user of an application, and the Continuous Thinking Aloud system. Except for the setup, the activities of each actor
can be repeated multiple times per feature increment, without the need for further manual interaction by the developer.

III. CONTINUOUS THINKING ALOUD

The Continuous Thinking Aloud (CTA) approach adapts the
traditional Thinking Aloud method to an automated setting that
builds upon frequent and rapid software increments. Figure 1
outlines the main dynamic flow of a complete CTA session.

A. Developer Perspective: CTA Setup

To enable a feature for CTA, the developer needs to first
Prepare [a] Feature under Development by adding Feature
Crumbs to define the feature’s interaction flow [9]. Feature
crumbs, or crumbs, are a lightweight, code-based approach for
describing steps in an interaction flow, similar to a breakpoint
during source code debugging [9]. For example, a developer
can add crumbs in the source code to reflect button actions
or new screen view events. As a result, a new feature version
is created consisting of a concatenation of multiple feature
crumbs that describe a linear sequence of a feature.

The feature version and the related feature crumbs are
defined once per commit. During the development on a branch,
whenever new feature crumbs are added, the feature version is
increased. Such scenario allows results from different commits
to be compared later. In case at least two feature crumbs are
added to a commit, the developer can add a flag to the related
feature to Activate [the] Feature for CTA.

B. User Perspective

Application users, i.e., testers or end user, receive a new
release containing a feature under development and start using
it. As soon as they Trigger [a Feature] Crumb that is part of
the previously defined feature, they are asked whether they
would want to start participating in a CTA session.1

1In Fig. 1, we omitted user interface-related activities that are triggered by
CTA in the application to maintain the readability of the activity diagram.

If they opt out, feature crumbs will be ignored for the
current session and no data is recorded. However, if they agree,
the CTA system will start recording their Think[ing] Aloud
while [they are] Using the Application. A screen initially
presented to inform users about the CTA session contains a
reference to the feature that was detected and further provides
suggestions for the type of speech feedback expected, given
their unfamiliarity with Thinking Aloud.

Afterward, the users continue to Trigger [the] Next [Fea-
ture] Crumb, while they use the application and verbalize their
thoughts. After the CTA system determines that the last feature
crumb has been triggered, an information screen is shown to
the users and the recording is stopped.

C. CTA System Perspective

The CTA System performs the core actions for automating
the traditional Thinking Aloud method to enable the CTA
approach. After a user initially triggers a feature crumb, the
CTA system Fetch[es the] Activated Feature for CTA from a
remote server hosting all features previously flagged by the
developer, as described in Section III-A. The system initiates
the CTA process if the Crumb is [the] First Crumbs of [the]
Feature. Subsequently, CTA continuously Records Speech and
Transform[s it] to Text. Whenever a new feature crumb is
triggered and the Crumb Belongs to [the] Activated Feature,
the resulting text is transmitted to a natural language classifier;
if not, CTA proceeds to record speech and awaits the next
crumb. On a sentence level, the classifier determines whether
the text falls under insecure, neutral, positive-, or negative
sentiment. Given the limitation of the available data set as
described in Section IV, we restricted the classifier to four
categories, while a more fine-grained differentiation may result
in a better analysis process; the categories are detailed below.

Accepted at the 2019 IEEE/ACM Joint 4th International Workshop on Rapid Continuous Software Engineering and
1st International Workshop on Data-Driven Decisions, Experimentation and Evolution (RCoSE/DDrEE 2019), Copyright IEEE

https://doi.org/10.1109/RCoSE/DDrEE.2019.00010


Definitive version available at https://doi.org/10.1109/RCoSE/DDrEE.2019.00010

CTA Results

Insecure Neutral Positive Negative

Tapped Price Cell

Saved Price Change

0 1 3 4 5Number of Sentences

Feature History

Filter price

Branch: feature/PROJECT-21-filter-price

C

D

B
A

Fig. 2. A dashboard allowing control and assessment of CTA sessions.

• Insecure sentences express that users are unsure of what
to do. Sentences describing insecurity often contain words
such as “maybe” or verb forms such as the conjunctive.

• Neutral sentences contain impressions and actions: Im-
pressions describe sentences reflecting the users’ visual
experience while using the application, which may in-
clude sentences as “All right, here I see a picture of a car
and a button.” Actions refer to sentences reflecting users’
interactions within the application, which may include
structures such as “Now I am going to tap on the button.”

• Positive and Negative sentences form the most important
sentiment and assess the current state of the application.
For example, “I love the design of this date picker; it is
very simple and intuitive!” expresses a positive sentiment,
while “This button is useless; I do not understand what
it is good for” indicates a negative attitude.

This procedure is repeated for as long as the Feature has
[a] Next Crumb: In case the feature consists of more feature
crumbs, CTA continues to record the speech. Otherwise, the
Classified Sentences per Crumb are Bundle[d] and Store[d]
by the CTA system and handed over to the developer.

D. Developer Perspective: CTA Analysis

After a CTA session becomes available, the developer can
Inspect [the] CTA Results. Figure 2 sketches a visualization
that allows access to the classification results in a widget.2

Initially, developers select a feature they wish to inspect in
detail for the CTA results (Fig 2-A). This feature typically
relates to a development branch, where a new feature is
currently implemented. Next, the developers select a commit:
In Fig. 2-B, the orange circle indicates a released commit with
a first version v1 of the feature and blue circles other commits.

2We developed a CTA system prototype that is integrated in the Continuous
User Understanding (CUU) platform [10], which includes an interactive
knowledge dashboard for developers. The core classes of the client-side CTA
system are available as an open source project at https://github.com/cures-hub/
cures-cuu-sdk/tree/master/CUU/Classes/ThinkingAloudKit.

A widget presents a bar graph of classification results
separated by the feature crumbs that are part of feature v1
(Fig. 2-C). The x-axis shows the number of classification
results (Fig. 2-D). For both feature crumbs listed in Fig. 2,
there are three instances of recorded sentences classified with
a neutral sentiment. In fact, this sentiment is expected to be
the most prevalent, but can be omitted, since it is encouraged
by Thinking Aloud, i.e., describing what one sees. More
interestingly, the second feature crumb Saved Price Change
contains one instance of a positive sentiment, indicating well
that the latest improvements to the feature have fulfilled their
purpose. Nevertheless, for the first crumb Tapped Price Cell,
there is one instance each for insecure and negative sentiments,
signifying that the developers need to revisit the related part of
the application, i.e., where they previously added the feature
crumb, to Identify [the] Problem and Work on [a] new Feature
Increment to resolve issues in future releases.

IV. DISCUSSION AND EXPERIENCE REPORTS

The overall performance of CTA depends on the accuracy
of the underlying speech-to-text and classifier performance.
We experienced that speech-to-text frameworks are not op-
timized for transcribing loosely coupled text fragments, al-
though this is typical in Thinking Aloud. To create a classifier
prototype for CTA, we had to rely on 10 manually collected
and transcribed Thinking Aloud protocols, from which we
used 200 sentences as the training data set. The small data
set is a limitation of the current prototype: while it fulfills
the purpose of a concept proof, a larger data set and more
advanced classifier approaches would enhance the results. In
addition, the choice of protocols needs to be further consid-
ered, as they directly influence the classifier results.

To test the feasibility of CTA, we collected various ex-
perience reports. First, we successfully integrated the CTA
prototype into three mobile applications. Second, a comparison
between five CTA and five traditional Thinking Aloud sessions
with a total of 10 test subjects revealed that performing a CTA
session is on average more than 3.5 times faster, excluding
the time for transcription in case of the traditional Thinking
Aloud. A reason might be the lack of a supervisor that could
be consulted for questions. Third, we showed a visualization
sketch similar to Fig. 2 to six developers, all of which were
able to identify crumbs with potential usability problems.
However, two crumbs did not contain any problem but were
likewise considered relevant. This starts the discussion if more
roles besides developers are required in the process, i.e., a
dedicated role for both the CTA setup and the CTA analysis.

An advancement is achieved by the continuous aspect of
CTA that leads to additional benefits as compared to the tradi-
tional Thinking Aloud method. The environment where users
perform the CTA sessions is the actual target environment—a
CSE principle enabled by continuous delivery. This increases
the probability that users will provide additional and more
relevant feedback. A potential bias introduced by a supervisor
who is constantly observing the user is removed—which, to
recall, was encouraged by Nielsen for avoidance [3].

Accepted at the 2019 IEEE/ACM Joint 4th International Workshop on Rapid Continuous Software Engineering and
1st International Workshop on Data-Driven Decisions, Experimentation and Evolution (RCoSE/DDrEE 2019), Copyright IEEE

https://doi.org/10.1109/RCoSE/DDrEE.2019.00010
https://github.com/cures-hub/cures-cuu-sdk/tree/master/CUU/Classes/ThinkingAloudKit
https://github.com/cures-hub/cures-cuu-sdk/tree/master/CUU/Classes/ThinkingAloudKit


Definitive version available at https://doi.org/10.1109/RCoSE/DDrEE.2019.00010

V. RELATED WORK

Since traditional usability testing exhibits low coverage of
tested features due to its expensive application [11], Remote
Usability Testing, divided into synchronous and asynchronous
approaches [12], was established. During synchronous testing,
user and supervisor might be geographically separated, but
communicate during the test such that the supervisor observes
and evaluates the user’s behavior, e.g., through a virtual three-
dimensional laboratory [13]. Asynchronous testing removes
the need for a supervisor which results in time savings. CTA
classifies as a remote asynchronous testing that leverages time
benefits, while simultaneously overcoming the limitations of
asynchronous testing highlighted by Bruun et al. [14].

Marsh et al. combine speech recordings with screen cap-
turing for greater context [15]. In contrast, CTA realizes
the context using feature crumbs, allowing faster analysis of
speech results and better comparability between commits.

Guzman et al. visualize user feedback with a focus on
user emotions [16]. CTA uses similar approaches for both
processing text-based feedback and visualizing the results.
However, CTA focuses more on qualitative aspects of feature
increments and thereby addresses the high frequency of CSE.

Ferre et al. describe the extension of an analytics framework
to record user interactions for usability evaluation [17]. CTA
relies on a similar concept to describe a task under investiga-
tion. However, while Ferre et al. focus on usage logs analysis,
CTA additionally utilizes speech to identify usability defects.

VI. FUTURE WORK

Current, the CTA system only provides access to the clas-
sification results. We envision to show the full transcripts
of a CTA session to provide greater context to developers.
This preserves the richness of feedback that Thinking Aloud
provides in the first place and further extends the advantages of
CTA, as the user feedback could be inspected on both a high-
and a fine-grained level. Furthermore, we will evaluate whether
to add assistance in case a user is stuck during a feature
execution. Similar to a traditional Thinking Aloud session, in
which an observer can step in to provide support, a text-to-
speech component of the CTA system could read out meta data
of the next feature crumb. Finally, a combination with other
knowledge sources would increase the effectiveness of CTA:
Provided a trigger in case a user is confused could prevent
requesting feedback from each user and only address users in
situations when usability problem deem to occur.

VII. CONCLUSION

Rapid development approaches, such as CSE, rely on user
feedback for continuous improvement a software increment.
The Thinking Aloud method by Jakob Nielsen [3] enables the
collection of expressive user feedback. However, its manual
character hinders its application in CSE. To automate the
traditional Thinking Aloud method, we introduced the Contin-
uous Thinking Aloud approach. CTA adds scalability and cost
efficiency to Thinking Aloud while it maintains the method’s
benefits. We described an integrated action flow that enables

CTA application in CSE for increased acceptance by users.
Furthermore, CTA enables developers to benefit from multiple
Thinking Aloud sessions simultaneously, without the need
to manually supervise, transcribe, and analyze the sessions,
practically minimizing their efforts during the CSE process.

ACKNOWLEDGMENT

This work was supported by the DFG (German Research
Foundation) under the Priority Programme SPP1593: Design
For Future – Managed Software Evolution (CURES project).
We thank the participants for their experience reports.

REFERENCES

[1] J. Bosch, Continuous Software Engineering: An Introduction. Cham:
Springer International Publishing, 2014.

[2] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A
roadmap and agenda,” Journal of Systems and Software, vol. 123, pp.
176 – 189, 2017.

[3] J. Nielsen, Usability Engineering, ser. Interactive Technologies. Elsevier
Science, 1994.

[4] K. Schneider, “Focusing spontaneous feedback to support system evo-
lution,” in 2011 IEEE 19th International Requirements Engineering
Conference, Aug 2011, pp. 165–174.

[5] D. Saff and M. D. Ernst, “Reducing wasted development time via contin-
uous testing,” in 14th International Symposium on Software Reliability
Engineering., Nov 2003, pp. 281–292.

[6] M. van Someren, Y. Barnard, and J. Sandberg, The Think Aloud
Method: A Practical Guide to Modelling Cognitive Processes. London:
Academic Press, 1994.

[7] C. Lewis, P. G. Polson, C. Wharton, and J. Rieman, “Testing a
Walkthrough Methodology for Theory-based Design of Walk-up-and-
use Interfaces,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’90. ACM, 1990, pp. 235–242.

[8] A. Holzinger, “Usability Engineering Methods for Software Developers,”
Communications of the ACM - Interaction design and children, vol. 48,
no. 1, pp. 71–74, Jan. 2005.

[9] J. O. Johanssen, A. Kleebaum, B. Bruegge, and B. Paech, “Feature
Crumbs: Adapting Usage Monitoring to Continuous Software Engi-
neering,” in 19th International Conference on Product-Focused Soft-
ware Process Improvement., M. Kuhrmann, K. Schneider, D. Pfahl,
S. Amasaki, M. Ciolkowski, R. Hebig, P. Tell, J. Klünder, and S. Küpper,
Eds. Cham: Springer International Publishing, 2018, pp. 263–271.

[10] J. O. Johanssen, “Continuous user understanding for the evolution of
interactive systems,” in Proceedings of the ACM SIGCHI Symposium
on Engineering Interactive Computing Systems, ser. EICS ’18. ACM,
2018, pp. 15:1–15:6.

[11] M. Y. Ivory and M. A. Hearst, “The State of the Art in Automating
Usability Evaluation of User Interfaces,” ACM Computing Surveys
(CSUR), vol. 33, no. 4, pp. 470–516, Dec. 2001.

[12] J. Scholtz, “Adaptation of Traditional Usability Testing Methods for Re-
mote Testing,” in Proceedings of the 34th Annual Hawaii International
Conference on System Sciences. IEEE Computer Society, 2001.

[13] K. Chalil Madathil and J. S. Greenstein, “Synchronous Remote Usability
Testing: A New Approach Facilitated by Virtual Worlds,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’11. ACM, 2011, pp. 2225–2234.

[14] A. Bruun, P. Gull, L. Hofmeister, and J. Stage, “Let Your Users Do
the Testing: A Comparison of Three Remote Asynchronous Usability
Testing Methods,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’09. ACM, 2009, pp. 1619–
1628.

[15] S. L. Marsh, J. Dykes, and F. Attilakou, “Evaluating a Geovisualization
Prototype with Two approaches: Remote Instructional vs. Face-to-
Face Exploratory,” in Tenth International Conference on Information
Visualisation (IV’06), July 2006, pp. 310–315.

[16] E. Guzman, P. Bhuvanagiri, and B. Bruegge, “Fave: Visualizing user
feedback for software evolution,” in 2014 Second IEEE Working Con-
ference on Software Visualization, Sept 2014, pp. 167–171.

[17] X. Ferre, E. Villalba, H. Julio, and H. Zhu, “Extending mobile app
analytics for usability test logging,” in Human-Computer Interaction –
INTERACT 2017. Springer, 2017, pp. 114–131.

Accepted at the 2019 IEEE/ACM Joint 4th International Workshop on Rapid Continuous Software Engineering and
1st International Workshop on Data-Driven Decisions, Experimentation and Evolution (RCoSE/DDrEE 2019), Copyright IEEE

https://doi.org/10.1109/RCoSE/DDrEE.2019.00010

