
Received: 24October 2018 Revised: 1 February 2019 Accepted: 17 February 2019
DOI: 10.1002/smr.2169

SPECIAL ISSUE - EMPIRICAL PAPER

Continuous Software Engineering and its Support by Usage and
Decision Knowledge: An Interview Studywith Practitioners
JanOle Johanssen1 | Anja Kleebaum2 | Barbara Paech2 | Bernd Bruegge1

1Department of Informatics, Technical
University ofMunich, Munich, Germany
2Institute of Computer Science, Heidelberg
University, Heidelberg, Germany
Correspondence
JanOle Johanssen, Department of Informatics,
Technical University ofMunich, Munich,
Germany. Email: jan.johanssen@tum.de

Summary
Continuous software engineering (CSE) emerged as a process that is increasingly applied by prac-
titioners. However, different perceptions impede its adoption in industry. Furthermore, oppor-
tunities through utilizing usage and decision knowledge remain unexploited. We conducted a
semi-structured interview study with 24 practitioners from 17 companies to study how practi-
tioners apply CSE during software evolution and how usage and decision knowledge can support
CSE. Regarding the application of CSE, we identified five perspectives on CSE with tool- and
methodology-driven definitions most prevalent. Automated tests, involved users, and shared
rulesets are perceived asmost relevant for CSE. Practitioners reportmore positive than negative
experiences; however, more than half of their responses were neutral. Practitioners’ future plans
for CSE focus on enhancement, expansion, and on-demand adaption. Regarding the integration of
usage and decision knowledge into CSE, practitioners perceive accountability and traceability as
major benefits, while raising concerns about its feasibility and user groups. As short-term exten-
sions, practitioners expect improvements regarding automation and role aspects,while long-term
additions to integration and experimentation capabilities are demanded. We conclude that CSE
remains partially difficult to capture for practitioners, while their attitude toward integrating
usage and decision knowledge into CSE is positive.
KEYWORDS:
continuous software engineering, interview study, agile software development, usage knowledge,
decision knowledge, tool support

1 INTRODUCTION

Note on Self-Archiving
This is the peer reviewed version of
the following article: Johanssen JO,
Kleebaum A, Paech B, and Bruegge
B. Continuous software engineer-
ing and its support by usage and
decision knowledge: An interview
study with practitioners. J Softw
Evol Proc. 2019;e2169., which has
been published in final form at
https://doi.org/10.1002/smr.2169.
This article may be used for non-
commercial purposes in accordance
withWiley Terms and Conditions for
Use of Self-Archived Versions.

Continuous software engineering (CSE) bundles activities, such as continuous integration and delivery, to enable continuous learning and improve-
ment by frequently iterating on software increments 1,2. This classifies CSE as a software engineering process 3. Krusche and Bruegge address the
need for a formal description of the continuous aspects of CSE to enable its adoption in real world settings 4. Similarly, researchers highlight chal-
lenges in the introduction and enhancement of CSE in companies 5,6. Practitioners need a starting point in order to approach CSE, since they might
lack insight into interrelationships, potential risks, and challenges 7,8. Comparing their CSE process with what other companies have implemented
allows practitioners to assess their own progress. Likewise, practitioners can benefit from guiding principles to establish CSE in their company 2. In
order to derive such guidance, it is necessary to review the state-of-the-practice of CSE as a process. Since there are no previous empirical studies
with practitioners that address CSE as a process, we conducted 20 interviewswith 24 practitioners from 17 companies between April and Septem-
ber 2017. We studied various aspects that are related to CSE, i. e., how practitioners understand CSE. In addition, we focus on how practitioners
utilize usage and decision knowledge, since these are important knowledge types that developers require to successfully evolve a software to the
users’ satisfaction. CSE offers new opportunities for a better management and utilization of usage and decision knowledge. Our overall goal is the

https://doi.org/10.1002/smr.2169

2 JOHANSSEN ET AL.

integration of usage and decision knowledge in CSE to support software evolution 9,10. In this article, we present findings on how practitioners per-
ceive CSE in the industry. In addition, we develop and discuss a vision that describes how CSE can be supported by usage and decision knowledge.
We describe the practitioners’ opinions regarding its benefits, obstacles, short-term extension, and long-term addition proposals.
The contribution of our work consists of five parts. First, we report on study data that provides insights into the characteristics of companies,

practitioners, as well as projects in the context of CSE. Second, we describe a set of 19 observations that are derived from practitioners’ responses
andwhich detail practitioners’ perspectives,most relevant elements, experiences, and future plans forCSE. Third,we introduce and discuss amodel
to describe the components of CSE—the Eye of CSE. The model contains CSE elements and categories, highlights relations among them, and aims
to support practice.We compare our findings to those of related empirical studies. Fourth, we describe our vision of integrating usage and decision
knowledge into CSE and summarize the practitioners’ opinions regarding benefits, obstacles, short-term extensions, and long-term additions of the
presented vision. Furthermore, based on their responses, we derive their overall attitude toward the vision. Fifth, we discuss an improved version of
the initially presented visionwhich incorporates thepractitioners’ responses, in particularwith respect to the feedbackonextensions and additions.
This article is structured as follows. Section 2 describes how we derived CSE elements and categories and presents the initial version of our

approach for integrating usage and decision knowledge into CSE.We introduce our research questions in Section 3 alongwith the applied research
method and elaborate on threats to the validity of our study. Section 4 provides descriptive statistics regarding companies, practitioners, and
projects. Major observations on how practitioners apply CSE are presented in Section 5. We discuss our observations in Section 6 by describing
the Eye of CSE and providing an overview of similar studies in the context of CSE. Section 7 presents the results of practitioners’ impressions about
usage and decision knowledge, while Section 8 discusses the implications for an improved version of the approach. Section 9 concludes the paper.
This article is an extended version of work published by Johanssen et al. 11. The extension addresses the integration of usage and decision knowledge in CSE

by introducing RQ2, adaptions throughout the article, extensions in Section 2 and 3, and new results and their discussion in Sections 7 and 8.

2 FOUNDATIONS
In this section, we provide the foundation for understanding the context of our research questions. Therefore, we divide CSE into elements and
categories. Furthermore, we describe an approach for a systematic integration of usage and decision knowledge into CSE.

2.1 Categories and Elements of Continuous Software Engineering
Bosch et al. 1,5 define the Stairway to Heaven covering four major steps that a company needs to take on the way from traditional software develop-
ment towardCSE: adopting agile practices, continuous integration ofwork, continuous deployment of releases, and advancing toward research and
development as an innovation system. Fitzgerald and Stol 2 provide a holistic view on activities from business, development, and operation. Similar
to the last step of the Stairway to Heaven, they state that CSE is more than adopting continuous delivery and continuous deployment. For them, CSE
goes beyond theDevOps approach that demands that software development and its operational deployment are tightly integrated. They coined the
term BizDevOps as a synonym for CSE to emphasize the need to improve the link between business strategy and software development. Based on
this work 1,5,2, we assembled characteristics typical for CSE.We refer to them as CSE elements separated by CSE categories as listed in Table 1.

TABLE 1CSE categories and CSE elements derived fromBosch et al. 1,5 and Fitzgerald and Stol 2.

CSE Categories CSE Elements
User Involved users and other stakeholders; learning from usage data and feedback; proactive customers

SoftwareManagement Agile practices; short development sprints; continuous integration of work; continuous delivery;
continuous deployment of releases

Development Continuous planning activities; continuous requirements engineering; focus on features;
modularized architecture and design; fast realization of changes

Code Version control; branching strategies; fast commit of code; code reviews; code coverage
Quality Automated tests; regular builds; pull requests; audits; run-time adaption
Knowledge Sharing knowledge; continuous learning; capturing decisions and rationale

JOHANSSEN ET AL. 3
The frequent involvement of users is a major concept in CSE. Thus, we introduced user as a CSE category that refers to both customers who

commissioned a project and end-users. Software management includes practices concerning the overall software process. The development category
is composed ofmore specific development activities, such as requirements engineering and design excluding implementation and quality assurance.
The code category includes implementation-related practices, such as version control and branching strategies. We bundled activities such as audits
and pull requests in the quality category. The knowledge category collects practices supporting the overall knowledgemanagement.
We acknowledge that the allocation of elements to categories is not always straightforward. For instance, we consider arguably technical prac-

tices, such as continuous delivery, under software management, in order to highlight their impact on the overall CSE process. Similarly, we include
code reviews in the code category to emphasize their operational character, while pull requests, i. e., merging code, are viewed as quality-related
tasks.We refined the list of CSE elements and categories based on the interview observations and discuss the issue of ambiguities in Section 6.

2.2 Toward the Integration of Usage andDecision Knowledge into Continuous Software Engineering
WeseeCSE as an opportunity to support stakeholders in capturing, exploiting, and understanding usage and decision knowledge 9. Both knowledge
types are essential for software evolution and can contribute to an improved product quality as described in the following.
Short feedback cycles in CSE enable close involvement of users since they have access to the most recent version of the software system. Thus,

usage knowledge provides insights into the users’ acceptance of a software increment. Usage knowledge occurs in different forms, such as explicit
or implicit feedback, that is either pushed toor pulled by developers 12. It can be a valuable source for the validation andderivation of requirements 13.
Usage knowledge helps to improve the usability of a software system, however, user-centered design techniques are ”[...] underused, difficult to
master, and [..] inaccessible to common developers and small and medium-sized software development teams” 14. With its lightweight and agile
character, CSE provides the opportunity to close this gap between software engineering and usability practices.
When implementing requirements or fixing bugs, developers solve issues and therebymake decisions. During CSE, developers implement these

decisions while keeping the software system in a releasable state of a high quality 4. In order to make decisions that contribute to the high quality
of the software system, developers need decision knowledge. Decision knowledge covers knowledge about decisions, the issues they address,
solution proposals, their rationale, and their context. If developers lack such decision knowledge, they are likely to contribute to the erosion of
the software architecture or introduce other quality problems. Capturing decision knowledge has many benefits, e. g., it improves decision-making
through making criteria explicit and prevents knowledge vaporization 15. However, decision knowledge is often not captured in practice 16. CSE
offers new opportunities to overcome this capture problem since it provides multiple practices and documentation locations in which developers
can capture decision knowledge 17,18. For example, developers capture decisions when they commit code in commit messages 19.
Given the benefits of usage and decision knowledge for CSE, we developed a vision of how these knowledge types can be better integrated.

As part of the research project CURES (”Continuous Usage- and Rationale-based Evolution Decision Support”), we develop an extension to a CSE
Infrastructurewhich enables to systematically manage usage and decision knowledge during CSE 9. In Figure 1, we outline the major components
of the CURES vision and describe them in the following inmore detail.
This infrastructure incorporates the CSE elements given in Section 2.1 and refined in Section 6.1 except for the elements of the user and knowl-

edge categories.Developers andUsers are the twomain stakeholders. An event-based environment enables the developers to create new releases
of software increments and to deliver them to the users at any time 20,21. Developers organize their work following a well-defined strategy: they
use feature branches to develop a specific software increment and they canmerge back a feature branch into amaster branch as soon as they have
completed a feature under development. A proposal P forms the basis to start work on a feature F. For instance, the proposal P1 initiates work on
the feature F1. After the first commit, the current state of the feature branch is delivered through a release R1 to users, who are able to use it in
their target environment. AMonitoring and Feedback component collects information about the release in operation and offers the possibility to
the user to give explicit feedback FB. In the running example, FB1 is provided by the user. Given this feedback, the developer makes a decision D1
to merge back the feature into the master branch, and thereby closing their work on the feature. The core of the CURES vision is represented by
theKnowledge Repository. The knowledge repository continuously stores and relates information collected from theCSE infrastructure aswell as
from themonitoring and feedback component. ADashboard component enables to access the stored knowledge. Developers use the dashboard to
interact and reflect with the knowledge in order to improve their decision-making and development process in the CSE infrastructure.
The CURES vision supports more complex scenarios. For example, two proposals—P2a and P2b—can simultaneously lead to the development of

the feature F2 in two differentways. Based on the retrieved feedback FB2 and FB3, the developer puts the development of F2a on hold andmakes the
decisionD2which leads to themergeofF2 into themasterbranch.Byutilizing thedashboard, theknowledge repository, aswell as themonitoringand
feedback component, the CURES vision extends the CSE infrastructure with support for usage and decision knowledge. This enables a continuous
knowledge activity that should improve software evolution and the overall quality of software products.

4 JOHANSSEN ET AL.

Knowledge Repository CSE Infrastructure

P1

D1

FB1

P2a P2b

FB2 FB3

D2

Dashboard

Master Branch

Feature Branch 1

Feature Branch 2a

Feature Branch 2b

P2b

P2a

P1 D1

D2

R1 R2 R3

FB1 FB2 FB3

Developer

monitors
usage

creates
branch,
commit,
release

interacts, reflects

analyzes, visualizes

uses release gives feedback

F1 F2

User

Release in Operation

Monitoring and Feedback

FIGURE 1 The initial CURES vision as introduced in our previous work 9. The development of a feature F is initiated by a proposal P. Individual
software increments can be delivered to users through a release R. While or after using a release, a user provides feedback FB. A decision Dmight
lead tomerging a feature into themaster branch or capture other rationale regarding the feature under development.

3 STUDYDESIGN
This section describes our research questions which we split into two areas of interest. Furthermore, we present our research method which we
split into three phases. In addition, with respect to our study, we describe threats to its validity which were split into four aspects.

3.1 ResearchQuestions
Based on the foundations described in the preceding section, we study two areas of interest for this research.

RQ1 How do practitioners apply CSE during software evolution?—Amajor goal of this interview study is to understand how practitioners apply
CSE during software evolution. From this goal, we derived the following four research questions that are based on the collection of CSE
elements and categories introduced in Section 2.1.

RQ1.1 How do practitioners define CSE?—With this core question, we intend to learn about the practitioners’ perception of CSE. Further,
wewant to knowwhether practitioners define a threshold that needs to be passed before a company can claim to practice CSE.

RQ1.2 Which CSE elements are perceived as most relevant by practitioners? — To understand the perception of CSE in more detail, we
asked the practitioners about the three CSE elements most relevant to them. In addition, we collected applied tools.

RQ1.3 What are practitioners’ experiences with CSE? — With this research question, we want to reveal positive, neutral, and negative
experiences with the CSE elements. This is of particular interest for the practitioners that plan to adopt them as well.

RQ1.4 What are practitioners’ future plans for CSE?—We asked for planned additions in the short and long term in order to understand
trends of future CSE elements adoption.

RQ2 How can usage and decision knowledge support practitioners during CSE?—As described in Section 2.2, usage and decision knowledge are
suitable candidates to be included in theCSE processes to improve the product increments.Wewere interested in the practitioners’ thoughts
of the CURES vision. To understand these thoughts, we derived the following five research questions.

RQ2.1 What is the attitude of practitioners toward the CURES vision?— Apart from detailed aspects in the following questions, we were
interested in the practitioners’ overall impression and their opinion on the feasibility of the CURES vision.

JOHANSSEN ET AL. 5
RQ2.2 What are benefits of the CURES vision perceived by practitioners?—This research question intends to find the core benefits of the

integration of usage and decision knowledge into CSE. The practitioners’ responses strengthen the goal of the CURES vision.
RQ2.3 What are obstacles of the CURES vision perceived by practitioners?—By asking the practitioners formajor obstacles of the CURES

vision, we detailed the feasibility aspects of the proposed approach. Responses help to understand practitioners’ problems.
RQ2.4 What are important extensions to the CURES vision according to practitioners?—Based on their perceived benefits and obstacles,

we asked the practitioners to provide ideas for short-term extensions to the CURES vision that do not require major changes.
RQ2.5 What are potential additions to theCURES vision according to practitioners?—Following the long-term visions of the practitioners,

we strive for feature requests that could improve theCURES vision, while requiring significant changes to the overall idea. In compar-
ison to RQ1.4, this research question has a focus on knowledge during CSE. Furthermore, it requires the practitioners to relate their
answers to the CURES vision.

3.2 ResearchMethod
We performed a semi-structured interview study 22,23 and organized our study into the three phases design and planning, data collection, and data
analysis. Each phase is described subsequently; the first two authors were equally involved in each of the phases.

3.2.1 Design and Planning
We conducted a semi-structured interview study, since we focus on knowledge that resides in the minds of practitioners rather than in docu-
ments 23. Furthermore, interviews allowed us to clarify problems right away and collect more information from the practitioners. We prepared a
questionnaire containing descriptive data questions and interview questions derived from the research questions. The questionnaire contained
multiple open questions that included sub-questions to further stimulate verbose answers by the practitioners. Figure 2 states example questions.
We actively encouraged the interviewees to give detailed answers. We planned 90 minutes for the interview, which included research questions
that are not further addressed in this article.
We assembled a list of companies who to our knowledge apply the majority of our preliminary collection of CSE elements (Table 1). We formu-

lated a template requestmail for scheduling an interview.We attached a slide deck sketching theCSE elements and categories.We asked interview
partners to agree to the interview only, if they haveworked in at least one project that applied themajority of the CSE elements.We did not restrict
interview partners by role descriptions. However, we provided examples of roles that we preferably address, e. g., developer or project manager.
Since two authors conducted the interviews simultaneously, we set up an interview guideline to ensure comparability. Besides the interview

questions, the guideline comprised remarks to increase the questions’ understandability. We ran two dry runs with colleagues who have industry
experience to practice the interview procedure.

3.2.2 Data Collection
We sent the interview requests to 22 companies, of which 18 replied. The first two authors conducted 19 interviews between April and June 2017
and one additional in September 2017. Half of the interviews were conducted in person; the others via phone. Descriptive data about the study
participants areprovided in Section4. The interviews took70minutes onaverage andwere audio-recordedwith thepermissionof the interviewees.
We transcribed the audio recordings and sent the transcripts to the interviewees to correctmisunderstandings.During some interviews—especially
with respect toRQ2—the interviewees gaveusnotably relevant feedback after the interview, for exampleon thewayout or after some timeviamail.
We collected and added this information to the interview protocol to treat it like the rest of the interview, i. e., by systematically allocating answers
to research questions and coding the answers, as described in the following Section 3.2.3.We guaranteed the anonymity of the practitioners by only
publishing aggregated results.

3.2.3 Data Analysis
Two authors of this paper analyzed the transcripts 24. We utilized a qualitative data analysis software to apply two stages, as indicated with blue and
red color in Figure 2. During the first stage, we allocated answers to a research question. Hereafter, we performed a fine-grained coding stage. The
allocation to research questions was alwaysmade at sentence-level, the coding at word-level for RQ1 and sentence-level for RQ2.
For the first stage, i. e., allocating answers to research questions, both authors analyzed a single interview to measure the intercoder reliability;

representativeness and completeness were criteria for choosing the interview. One author found 85 answers related to the research questions,
the other 77. Given the total number of 162 instances, the authors matched in 134 and mismatched in 28, leaving a result of 82.72% in equally
allocated answers. The 28mismatched instances were jointly discussed and resolved bymutual consent. The discussion necessary for this purpose

6 JOHANSSEN ET AL.

RQ1.3
and implementation discussions to the feature I am working on. Also, I like the fact that I

am presented with user feedback . RQ2.2Usage KnowledgeDecision Knowledge

Interviewer

Practitioner

Are you satisfied with your current CSE implementation?

We struggle to enable continuous deployment for our
RQ1.4

Question

Answer
product. We work on this and on user feedback .

Do you plan any extension? If so, which?

Interviewer

Practitioner

Given your role as a developer, what do you think are major benefits of the CURES vision?

Well, first of all, I appreciate the idea of improved decision-making by relating design
Answer

FIGURE 2 Two example interview extracts. The left side exemplifies practitioners’ answers to RQ1 (red), while these in turn may contain multiple
occurrences of fine-grained codes (blue). The right side shows an example for RQ2, in which one sentence could relate tomultiple RQs and codes.

strengthened the shared understanding of the authors. We observed that almost all mismatches were caused by a missing allocation, not by the
allocation todifferent researchquestions. In case of doubt,weagreedonallocatingmultiple researchquestions to an answer to prevent information
loss. After the allocation of answers to the questions of RQ1,weupdatedour initially elected list ofCSEelements in Table 1, basedon the insightswe
derived from the answers. The updated collection is presented in Section6.1, alongwith the rationale for the applied changes. After the allocation of
answers to the questions of RQ2, we decided to update ten of these allocations due to a more sharpened understanding of minor differences, such
as regarding short-term extensions (RQ2.4) and long-term additions (RQ2.5), which sometimes appeared to be similar and only differed in minor
nuances, orwere actual benefits (RQ2.2) overseenby thepractitioners. The allocated answers to researchquestions formunits for the second stage.
The second stage covered the coding of these answers. For RQ1,we used the updated collection of CSE elements as fine-grained codes. For RQ2,

we coded the answers in terms of their focus; we distinguished between a usage knowledge focus, decision knowledge focus, or other focus. The coding
was done manually, since searching for keywords is insufficient, given that practitioners use varying formulations to describe the same aspect. For
instance, in Figure 2 on the left side, this refers to the CSE element continuous deployment, leaving the decision to add a code up to the author.
Occasionally, the authors had to decide which code to use based on the context. We practiced the coding and agreed to prefer to code an instance
if in doubt. Each author coded their own interviews. We analyzed the results quantitatively (Figure 4, 5, and 7). In case we coded a practitioner’s
answer to a research question more than once with the same code, we recorded only a single occurrence to receive binary results. We analyzed
the interviews on the interview-level, and not on person-level, which means that—in case two interviewees participated in an interviewee—their
answers were treated as one subject. Further, we analyzed the results qualitatively. With respect to RQ1, we summarized the results to describe
observations (Section5).With respect toRQ2,we summarized the results to form topics (Section7). At least answers from two individual interviews
were required to form an observation or a topic, respectively. Answers from a single interview can account for more than one response per topic,
while one response can relate tomore than one knowledge focus—which is relevant for Tables 2, 3, 4, and 5. An initial version of this paperwas sent
to the interviewees to validate the interview results.

3.3 Threats to Validity
Wediscuss the study’s threats to validity according to the four aspects of validity by Runeson et al. 23. In case the collection and assessment of data
for a specific research questions posed an individual threat, we providemore details on it in the related section, such as in the case of Section 5.3.
Construct validity concerns the disparity between the intended and the actual study observations 23. First, the practitioners resemble a het-

erogeneous group, each having its own point of view on CSE. The conformance between them might be small. We tried to address heterogeneity
by describing observations instead of facts. Second, the questions may be interpreted by practitioners in a different way than intended by us. We
tried to minimize this possibility by conducting two interviews with colleagues. We discussed these interviews afterwards to reveal potential mis-
interpretations. Also, the format of the interviews allowed practitioners to ask questions at any time. Third, the authors might have influenced the
participants by asking specific questions. To mitigate this risk, we used open-ended questions to elicit as much information as possible from prac-
titioners. Finally, the collection of CSE elements is based on a model that is an abstraction of reality and—to some extent—subjective. We asked
practitioners to describe their experiences with the proposed set of CSE elements, which might have biased them.We tried to mitigate this risk by
collecting additional CSE elements.
Internal validity concerns correlations between the investigated factors and other factors 23. The practitioners might have provided answers

that do not fully reflect their daily work, since they were aware that the results would be published. We addressed this possibility by guaranteeing
the full anonymity of interviewees and companies. Further, the interpretation of answers might be biased by the authors’ a priori expectations and
subconscious impressions.We addressed this threat by coding the transcriptions and discussing the codes. Finally, the slides might have biased the
practitioners’ perception of CSE.We perceive this as aminor threat, since it only affects RQ1.1 and theymight have prepared beforehand anyway.
External validity addresses the generalizability of the study results 23. We contacted companies that we already knew, which affects the sam-

pling and might result in a selection bias. However, there is no central register of companies that apply CSE 25. Clearly, this amounts to a risk to
the representativeness of the participants. It is mitigated by the fact that the authors are from two different universities. Further, the diversity of

JOHANSSEN ET AL. 7
projects andparticipants reinforces the generalizability. Finally, interviews are subjective, since they rely on thepractitioners’ statements. To reduce
subjectivity, we conducted 20 interviews, to acquire a wider set of opinions.
Reliability validity concerns the study’s dependency on specific researchers 23. After we carried out coding training and checked intercoder

reliability, two authors individually coded different transcripts. We address this threat by discussing questions during coding. In addition, a third
author of this paper supervised the interview analysis.

4 DESCRIPTIVE STUDYDATA
In this section, we report on descriptive data about the companies, practitioners, and projects that were analyzed. Figure 3 visualizes a summary of
the following subsections. Overall, we interviewed 24 practitioners from 17 companies during 20 interviews. One companywas interviewed twice,
another one three times. We aimed for a diverse composition of interviews through companies varying in size, practitioners of different roles, and
projects from various domains.

Company size Practitioner’s role description

Practitioner’s role in CSE*

Project is cross functional?

Project’s software typeCompany’s main focus

*multiple answers were allowed

11

9Yes

No

4

13

SME

Corporation

7

10

Consultancy Service

Product

6

1

56

6Developer

Executive Director

CSE Specialist

Project Manager

Technical Leader

14

15

14

3

Using CSE

Defining CSE

Planning CSE

Other 15

3

2

Bespoke

Off-the-shelf

Both

FIGURE 3 Descriptive data of the interview study: 24 practitioners from 17 companies were interviewed on 20 projects. In each interview, the
practitioners related their answers to one particular project; four interviews were attended by two practitioners.

4.1 Companies
Four companies (24%) are considered as small andmedium-sized enterprises1 (SME), whichmeans amaximum staff headcount of 250.We call the
remaining 13 companies corporations, while they could be further categorized in companies of up to 2.000 (8), around 50.000 (2), and 100.000 or
more employees (3). We report the overall number of employees, since we assume that the CSE process is not limited to a specific role from the
development team. Seven (41%) of the interviewed companies offer consultancy services, mostly to other businesses, while ten (59%) companies
develop software products for the consumer and business markets.

4.2 Practitioners
Based on their role description, we grouped the 24 practitioners into five categories: CSE specialists (21%), a role with a CSE reference, e. g., a
continuous deployment manager or a DevOps engineer, developers (25%), project managers (25%), a role with project-focused responsibilities, and
technical leaders (25%), a rolewith technical-focused responsibilities; onepractitioner reported as an executive director. Onaverage, thepractitioners
have spent two years in the respective role. All practitioners hold a Bachelor orMaster degreewith three-quarters in a field in or close to computer
science.With one lacking response, on average, 23 practitioners have an experience in IT projects of 10 years and participated in 19 IT projects.
Weasked thepractitionerswhether they see themselves in oneof the following three roles:using,defining, orplanningCSE. Practitioners in ausing

role frequently apply andbenefit fromCSE, e. g., developerswho regularly commit code. Practitioners in adefining role set rules onhowCSEelements
are applied, e. g., whether a code integration is triggered by an event, such as a commit, or on an hourly basis. It is the responsibility of a planning

1http://ec.europa.eu/growth/smes/business-friendly-environment/sme-definition

http://ec.europa.eu/growth/smes/business-friendly-environment/sme-definition

8 JOHANSSEN ET AL.

role to think ahead and take future addition to aCSE environment into consideration.Many practitioners saw themselves inmultiple roles: 14 using,
15 defining, and 14 planning. Seven practitioners reported to adhere to all three roles—I am everything or straight through. Six other practitioners
grouped themselves into two roles at the same time: In one role, they collect knowledge regarding a CSE element and in the other role they share it
with other practitioners. Six practitioners adhered to a single role only. Two developers saw themselves solely in a using role; a projectmanager and
aCSE specialist classified themselves in a defining and planning role, respectively. Twoother practitioners did not see themselves in one of the three
roles provided. They and a third practitioner proposed an additional role: promoting. This role pushes CSE efforts forward, in particular in situations
in which it does not appear reasonable from a time or cost perspective—but would pay off in the long run.

4.3 Projects
For each interview, we asked the practitioners to select one project that they are currently working on or which contains several CSE elements. On
average, 20.25 employees work in a project, for SMEs 10.0 and for corporations 22.81. Eleven practitioners (64.71%, including all SMEs) consider
their project as cross functional, e. g., involving several other stakeholders from within the company, such as marketing professionals to represent
the users. Note that practitioners fromall four SMEs stated a cross functional project structure. Three-quarters (15) of the projects develop bespoke
software, e. g., custom software. Three projects (all by SMEs) develop commercial off-the-shelf software; two projects target both types.We asked
thepractitioners, if their projects and theway theyhave tobe approachedneed to complywith any legal, security,medical, or environmental factors;
every second practitioner confirmed this. However, some practitioners referred to the rules for the product, rather than the project.

5 RESULTSONHOWCOMPANIES APPLY CSE (RQ1)
In this section, we present the results on RQ1 introduced in Section 3.1. We illustrate the results of our quantitative analysis of CSE elements and
categories mentioned in the interviews in Figures 4 and 5. They relate to the model in Section 6.1. The following subsections address the research
questions based on both figures: At the beginning of each subsection, we answer a research question and then provide a more detailed analysis by
stating several observations.

User BusinessDeveloper OperationDevelopment Software
Management

Knowledge CodeQuality

4

6

1

2

3 3

6 6

2

4

1

8

9

4

8

5

1

3

2

1

2

7

1

2

4 4

7

1

2

1

4

3

1

3 3 3

2

1 1

3

5

3 3

10

4

1

3

1

4

1 1

2

1 1 1 1 1 1 1 1 1

2 2

3

2

7

2

3

2

3

1

2

In
v

ol
ve

d
us

er
s

an
d

 o
th

er
 s

ta
ke

ho
ld

er
s

P
ro

ac
ti

ve
 c

u
st

om
e

rs

Le
a

rn
in

g
fr

o
m

 u
sa

ge
 d

at
a

an
d

 u
se

r
fe

ed
ba

ck

O
pe

n
-m

in
d

ed
 m

en
ta

lit
y

C
o

n
te

m
p

or
ar

y
&

 c
o

nt
in

uo
u

sl
y

e
vo

lv
in

g
 s

ki
ll

s

C
o

m
pl

y
 w

it
h

sh
a

re
d

ru
le

se
t

Se
lf

-r
ef

le
ct

io
n

 a
n

d
 d

is
ci

pl
in

e

M
an

ag
em

en
t

co
m

m
it

m
e

nt

A
p

pr
o

p
ri

a
te

 p
ro

du
ct

 id
e

a

C
o

n
ti

n
uo

u
s

p
la

n
ni

ng
 a

ct
iv

it
ie

s

C
o

n
ti

n
uo

u
s

re
q

u
ir

em
en

ts
 e

n
gi

n
ee

ri
n

g

M
o

du
la

ri
ze

d
 a

rc
hi

te
ct

u
re

 a
n

d
 d

es
ig

n

F
oc

u
s

o
n

 fe
at

ur
e

s

Lo
gg

in
g

an
d

 m
o

ni
to

ri
n

g

R
eu

sa
b

le
 in

fr
as

tr
uc

tu
re

C
o

n
ve

n
ie

n
t s

et
u

p

St
ag

in
g

e
nv

ir
o

n
m

e
nt

s

Sh
ar

in
g

kn
o

w
le

d
ge

C
o

n
ti

n
uo

u
s

le
ar

ni
n

g

C
ap

tu
ri

n
g

d
ec

is
io

ns
 a

n
d

ra
ti

o
n

al
e

A
gi

le
 p

ra
ct

ic
e

s

C
o

n
ti

n
uo

u
s

in
te

gr
at

io
n

 o
f w

o
rk

C
o

n
ti

n
uo

u
s

d
el

iv
er

y

C
o

n
ti

n
uo

u
s

d
ep

lo
ym

en
t o

f r
e

le
as

e
s

A
u

to
m

at
e

d
te

st
s

R
eg

u
la

r
b

u
ild

s

R
un

-t
im

e
ad

ap
ti

o
n

P
u

ll
re

qu
es

ts

A
u

d
it

s

V
er

si
on

 c
on

tr
o

l

B
ra

nc
h

in
g

 s
tr

at
eg

ie
s

C
o

d
e

co
v

er
ag

e

C
o

d
e

re
vi

ew
s

... was used to define CSE (RQ1.1)

... was recognized as relevant for CSE (RQ1.2)

... was planned as future addition (RQ1.4)

Number of interviews in which the CSE element ...

FIGURE 4Howoften during an interview is a CSE elementmentioned regarding a particular research question? Yellow bars indicate the number of
interviews in which the respective CSE element was used for defining CSE (RQ1.1). Blue bars indicate the practitioners’ tendency toward relevant
elements for CSE (RQ1.2). Green bars indicate CSE elements intended as future additions (RQ1.4). Answers were summarized as one interview, in
casemultiple practitioners participated at the same time. The CSE elements are headed by their categories.

JOHANSSEN ET AL. 9

5.1 Practitioners’ Definition of CSE
Since the termCSE only emerged in recent years, we asked the practitioners how they define CSE.We plot the results in Figure 4.
RQ1.1 HowdopractitionersdefineCSE?Wefound that thepractitionersdefinitionsofCSEaremainlydrivenbyCSEelements fromthe soft-
ware management category, i. e., continuous integration of work, agile practices, and continuous deployment of releases. CSE elements from
the development and user category were also mentioned repeatedly. Based on the responses, we identified five perspectives that influence
the definition of CSE: a tool (5.1.1),methodology (5.1.2), developer (5.1.3), life cycle (5.1.4), and product management (5.1.5) perspective.
Out of the 24 practitioners interviewed, slightly more than half (54%) were using the term CSE as part of their active vocabulary. About two-

thirds (66%) of all interviewees gave a definition of their understanding of CSE. Notably, 75% of the interviewees in SMEs both gave a definition
and actively used the term CSE. For some practitioners, CSE is still ambiguous. They describe it as fuzzy, abstract, and lacking a distinction.

5.1.1 Tool Perspective
Practitioners, i. e., six developers and CSE specialists, make use of tool descriptions when defining CSE. Their descriptions are built on statements
such as in that regard, company A provides tool B, or after introducing tool C, we were able to accomplish element D, orwe are currently looking into tool E of
company F. Four practitioners explicitly highlight that it is a well-chosen tool chain that enables CSE. In their opinion, the successful accomplishment
of the steps availability, integration, and usage of tools allow a company to claim to be implementing CSE.
Observation 1 In particular developers and CSE specialists rely on a tool-driven approach to define CSE. Commercial tools influence their understanding.

5.1.2 Methodology Perspective
In more than half of the interviews, practitioners cite a methodological perspective to define CSE. They emphasize a focus on short iterations and
feedback. Not mentioning specific tools, many practitioners highlight the importance of how the tools are applied. For instance, a sophisticated
branching strategy should be preferred, instead of the exhaustive use of capabilities a version control system might offer. A state of on-going iter-
ation should be reached, in which each commit leads to a finalized product. Different elements, such as continuous integration or agile practices,
are applied to achieve a high level of automatization. Notably, some practitioners reflect on the combination of multiple CSE elements to achieve
synergy effects. This implies that their perspective takes the impacts of CSE on other areas, such as themanagement of requirements, into account.
Observation 2 Practitioners define CSE from amethodological perspective that aims for short iterations during software evolution. This perspective relies
onwell-defined steps in tool usage, workflows, and procedures. Every step enables a seamless workflow from a commit until its finalization in form of a build.
Several practitioners mention the importance of instant feature visibility to users. This enables constant retrieval of user feedback on the latest

releases and more iterations with input from outside are performed. One practitioner advocates that every CSE process should be designed in
accordance with the goal of matching customers’ requirements through the implementation of short feedback loops. Another practitioner advises
the collection of feedback as often as necessary, rather than as often as possible. Observations 2 and 3 are related and depend on each other to reach
their full potential. However, we observed that not all practitioners implement both, leaving opportunities for improvement.
Observation 3 CSEmakes changes instantly visible to users. As a result, user feedback can be elicited and used tomatch the software to the requirements.

5.1.3 Developer Perspective
Several developers, projectmanagers, and CSE specialists suggest a developer-driven perspective on CSE. Similar to Section 5.1.2, they do not base
their descriptions on specific tools. First, they emphasize that CSE enables developers to fully focus on their main task, i. e., developing software,
rather thandealwith other processes, such as infrastructuremanagement. This includes increasing the speedof thedevelopment process by remov-
ing idle times. Second, CSE allows practitioners to better estimate and classify their daily tasks. It ensures that newly introduced changes do not
break code—an aspect which is not only in the interest of the overall product, but also a factor in the mind of developers. Providing a safe environ-
ment todevelop and test software is amajor characteristic ofCSE. Third, according to practitioners, CSE supports thedetachment of recurring tasks
from an individual; in particular, by introducing defined processes, knowledge vaporization can be prevented. Remarkably, one practitioner high-
lights the increased responsibility of developers when giving their definition of CSE. This relates to the fact that developers independently create
and deploy releases which—to unlock the full potential of CSE—should take place without any clearance or dedicated release plan.
Observation 4 CSE allows developers to focus on their tasks and creates a safe development environment. Specific tasks are removed from individuals.

10 JOHANSSEN ET AL.

5.1.4 Life Cycle Perspective
Various practitioners agreed that CSE opens up a new perspective on the software life cycle: development, deployment, and operational phases
blend into each other. Practitioners report shorter intervals between the development and the production phases. They further state that CSE is
characterized by the fact that a system’s functionality is extended continuously and shaped by continuous application life cycle management.
Observation5 Practitioners characterizeCSEby the blending of different phases of software engineering, such as development, deployment, and operation.
According to their perception, this makes long-living systems easier to maintain.

5.1.5 ProductManagement Perspective
Project managers, technical leaders, and executive directors formulate a definition of CSE from a product perspective. In their opinion, CSE is rep-
resented by constant funding, provided to continuously improve a product. This includes the project managers’ ability to continuously acquire new
requirements as well as to create and re-prioritize product tasks. One technical leader admits that not every product is guaranteed to follow this
pattern. According to this practitioner, the application of CSE cannot simply be defined for a project: it is the product that determines whether CSE
can be applied or not. Most of the projects are designed to follow other software evolution practices, and not CSE in particular. A product’s com-
patibility with CSE processes needs to be ensured before applying CSE. Further, the environment in which the user receives the product plays an
important role, as pointed out by a practitioner from a large corporation. It is required to keep pace with the CSE practices as defined in observa-
tion 2. For instance, if the deployment of a product requires certain manual steps, the product itself cannot be developed using CSE processes. One
practitioner defines CSE as the integration of customer, business model, software, and hardware. If a company successfully combines these four
aspects, it is implicitly implementing CSE practices such as continuous integration and continuous delivery.
Observation 6 Practitioners’ definition of CSE is influenced by the product under development. Product-related factors such as funding, functionality,
business model, and its future target environment need to match the continuous development capability.

5.2 Practitioners’ Relevant Elements of CSE
We asked practitioners’ for CSE elements that driveCSE. Thus, they were required to list the three—in their opinion—most relevant CSE elements.
In case a practitioner mentioned a CSE element that was not part of Table 1, we recorded it as a relevant element.We plot the results in Figure 4.
RQ1.2 WhichCSE elements are perceived asmost relevant by practitioners?Practitioners perceiveCSE elements from three categories as
most relevant: quality, i. e., automated tests, user, i. e., involved users and other stakeholders, developer, i. e., compliance with a shared ruleset.
Practitioners mentionmore CSE elements: in particular the developers consider elements from the code category, such as version control, as
obligatory, pivotal, and indispensable to any further steps in CSE. This strengthens the first stair in the Stairway to Heavenmodel of Bosch et
al. 1. We summarize the results as follows: user commitment (5.2.1), team commitment (5.2.2), and automated loop (5.2.3).

5.2.1 User Commitment
In particular practitioners from SMEs that develop off-the-shelf software highlight the contact with users as a CSE element. One technical leader
points out a significant difference in the user audience:While there is a large number of users that are passively using software, i. e., users that do not
state an interest in newadditions that donot affect their typicalworkflows, it is the less represented activeuserswhohelp tomake theCSE feedback
loop efficient and functional. One projectmanager continues this thought by stating that the interactionwith the users is barely technically defined
in CSE. They approach this issue by actively trying to involve users through the promotion of nightly and beta builds. Two technical leaders claim
that the success of aCSE project depends to a great extent on the degree of user involvement—if there is no involved user, you lose. Somepractitioners
remark that users do not know what they want until they see it. Enabled by continuous delivery, users can frequently provide feedback and thereby
steer the development process toward their needs.
Observation 7 Practitioners perceive the users’ commitment toward taking an active part in the development process as a relevant aspect of CSE.

5.2.2 TeamCommitment
Many practitioners perceive the team and its commitment as highly relevant for CSE. According to one developer, it is important that team mem-
bers are open-minded toward the development process and take an active role in its formation. They need to adhere to a shared ruleset to work
successfully. This poses challenges, as noted in Section 5.3. Practitioners illustrate a need for the full support of managers and executives. They
should provide their attention to the project and trust in the performance and skills of the team. Rather than tools, it is the methods and processes
introduced by agile practices that bind teammembers together. A continuous process improvement activity should be carried out by the team.

JOHANSSEN ET AL. 11
Observation 8 Practitioners perceive an open-minded team mentality that complies with a shared set of rules as the basis of successful CSE teams.
Management commitment is indispensable, while agile practices serve as the main unifying factor.

5.2.3 Automated Loop
Half of the practitioners declare the automatization of process loops to be the core of CSE. According to these individuals, discrete phases should
be replaced by short, compact loops. They use the term continuous pipeline to describe a well-defined, highly automated process, which can be
further adapted to the characteristics of the product under development. The practitioners share a vision of a non-linear process that can either
be serialized or else run in parallel. Automated tests is the most relevant CSE element for ten practitioners. Others mention continuous integration
and continuous deployment as themajor building blocks of an efficient automated loop comprising different fulfillment levels. Operational aspects,
such as staging environments, complete their idea of an automated loop.
Observation 9 Practitioners perceive a high maturity level of automatization as an essential aspect of CSE. This is enabled by well-defined steps that form
a non-linear process model. Furthermore, practitioners state automated tests as the most relevant CSE element.

5.3 Practitioners’ Experiencewith CSE
Weasked practitioners about positive, neutral, and negative experienceswithCSE elements. Figure 5 shows the results grouped by their respective
categories. Note that not every practitioner provided an experience report and—given that we grouped the responses by the CSE categories—
practitioners may be represented multiple times if they responded to more than one CSE element of the same category. Furthermore, we coded
responses as either positive or negative only in cases in which clear indicators by the practitioners were provided, for instance if the practitioners
used phrases such as ”we had problems with implementing <CSE element>” or ”we could not work without <CSE element>”. At the same time, the high
number of neutral experiences could be understood as a questions-specific threat that is caused by the design of the question.
RQ1.3 What are practitioners’ experiences with CSE? 19 positive, 56 neutral, 17 negative experiences with CSE elements were reported.
Notably, more than 50% of the positive experiences are stated by SMEs, while forming roughly a quarter of the interviewee sample. Cate-
gories with many positive experiences as in code and software management are an indicator for CSE elements that can serve as an entry point
to CSE, since they may be easy to implement. Few positive mentions as is the case with knowledge, business, and user may be a sign of the
low maturity of CSE elements. Neutral responses may indicate that practitioners are currently evaluating various CSE elements in the field.
A large number of negative experiences as with the developer category indicates challenging CSE elements. We discuss distinct experience
reports derived from five CSE categories: developer (5.3.1), operation (5.3.2), software management (5.3.3), user (5.3.4), and quality (5.3.5).

1

6

1

2

1

2

3

1

2

6

3

4

3

15

10

13

1

1

1

1

6

1

8

0 2 4 6 8 10 12 14 16 18 20 22

User

Developer

Business

Development

Operation

Knowledge

Software Management

Quality

Code

Number of CSE Elements with

Negative Experiences Neutral Experiences Positive Experiences

FIGURE 5 For RQ1.3, the practitioners’ reported on negative, neutral, and positive experiences with CSE elements. The bar length indicates the
number of CSE elements mentioned by practitioners.We grouped responses for individual CSE elements by their corresponding category.

12 JOHANSSEN ET AL.

5.3.1 Developer
Most negative experiences were reported in the developer category, in particular for complying with shared rulesets and contemporary and continu-
ously evolving skills. Negative experiences are amplified by problems with other CSE elements, such as branching strategies. One practitioner reports
problems when dealing with too many branches, which they consider poisonous to continuous integration. However, they admit that it is sometimes
inevitable to have several branches, even though this situation can be approached with well-defined rules; for example, keeping the lifespan of a
branch as short as possible, and committing code frequently. According to six practitioners, this demands attention from developers. Switching to a
newway of developing software requires thewillingness to evolve skills and extensive knowledge—which iswhy one practitioner views young grad-
uates as having advantages over long-serving employees. One practitioner sketches solutions on how to overcome obstacles: providing incentives
for successful work, enabling and supporting in-house training, as well as creating showcase projects. The practitioners agree that an open-minded
mentality on the part of developers, as well as their ability to adapt and withstand the speed and frequency of CSE amount to both the basic
requirement and also amajor challenge for developers.
Observation 10 Practitioners acknowledge a major challenge in the developers’ capability to comply with shared rulesets and in their open-minded
mentality to continuously evolve their skills.
Two practitioners note that automatization makes developers use methods which they would otherwise dispense with. However, they admit

that this makes it easier for developers to neglect other responsibilities; therefore, they stress that CSE demands self-reflection and discipline.
Practitioners with a leading role state that they trust their teammembers. They initiate discussions to find a consensus whenever necessary.
Observation 11 CSE does not solely build on the developers’ skills, but also on their ability to reflect on their work and on their sense of responsibility.

5.3.2 Operation
Corporations struggle with legacy burdens, e. g., existing tool contracts that are not intended for CSE. Similarly, tools intended for CSE are used
for other purposes, such as issue tracking systems for internal incident management, rather than for software development. Practitioners of other
corporations emphasize the fact that tools are not a hurdle for them, since they can easily be bought—it is the integration that poses the chal-
lenges. Other corporations have to adhere to formal regulations that impede or prevent CSE from being applied in a given project, e. g., by relying
on paperwork-driven processes. One practitioner states that there is a risk that agile projects could fall back into their previous static patterns.
Observation 12 While practitioners are willing to apply CSE, it is their company’s current set of tools that keeps them from making a complete transition
and fully adapting CSE. Furthermore, requirements in regulated domains hinder the implementation of CSE.
Onepractitioner complains that amajor cost factor lies in setting up the infrastructure for newprojects to useCSE elements. Furthermore, given

the internal hierarchical andmanagement structure, some corporations do not have the capacity to respond rapidly to changes within the project.
Observation 13 Practitioners state that the successful implementation of CSE requires the ability to set up projects without major cost or time penalties.

5.3.3 SoftwareManagement
Practitioners report positive experiences with the implementation of agile practices. Building-blocks such as sprints, review meetings, or SCRUM-
Boards are well-received and provide high value. Some difficulties arise during task prioritization, since only limited resources—time and money—
are available. Apart from that, CSE elements, such as continuous integration, are essential to practitioners. One practitioner mentions significant
synergy effects when using tools of the same vendor for issue tracking, source codemanagement, as well as continuous integration and delivery.
Observation 14 Practitioners attest that CSE elements related to software management, such as agile practices or continuous integration of work, are
widely and successfully adopted in their projects.

5.3.4 User
CSE elements related to users are barely referencedwhenever practitioners are asked about their experiences. The user’s role is rated as fuzzy and
there is a threat that user feedback does not continuously flow back to developers. One practitioner ascribes this to the fact that CSE does not
produce major releases that are perceived as notable changes by the users. Thereby, user feedback is submitted late in the process in the form of
incidents or change requests. Developers then lack traceability links to changes that caused the feedback. One project manager is concerned that
software quality suffers from the release frequency in the short run since immature releases impede the users’ confidence in the product.
Observation 15 Practitioners have not yet created processes that interact with the users in a way similar to well-established practices such as continuous
integration. This is mainly due to the fact that the users’ responses to ongoing changes are difficult to record, trace, and assess.

JOHANSSEN ET AL. 13

5.3.5 Quality
Practitioners welcome CSE elements such as pull requests combined with code reviews. Code coverage and audits are practices that are gaining in
importance. However, some practitioners raise concerns because quality metrics are not being tracked.We observed that practitioners’ responses
regarding the quality category are driven by various testing and exploration reports. First, every project strives for high software quality and there-
fore tries to invest effort into improving. Second, as there is no final release, processes to improve software quality can always be developed further.
Third, the influence of changes to software quality might become apparent only at a later time.
Observation 16 Practitioners have had varying experiences with quality elements during CSE, but they still invest into improvements.

5.4 Practitioners’ Future Plans for CSE
We asked practitioners which CSE elements they plan to add in the future to discover future trends in CSE.We plot the results in Figure 4.
RQ1.4 Whatarepractitioners’ futureplans forCSE?Practitioners’ plans are vagueandmostly distributedacross elements. 19CSEelements
either received only one, two, or three mentions by the practitioners in the interviews. One CSE element stood out with seven mentions:
automated tests. We found that the majority of practitioners described plans that span multiple CSE categories. We identified three main
strategies in the practitioners’ answers: enhancement (5.4.1), expansion (5.4.2), and on-demand adaption (5.4.3).

5.4.1 Enhancement Strategy
Practitioners base their strategy for the future on a combination of themethodology perspective (observation 2) and quality, one of themost relevant
categoriesmentioned (observation 9), yet onewithmostly neutral experiences (observation 16). Seven practitionersmention automatization in the
context of quality as one of their major plans for the short and long term. While automated tests are applied for some parts of the products, they
should be made available for all. Two practitioners mention their plans of combining elements from the operation category, such as deployment in
containers to enhance automatization. Three practitioners list activities to enhance their current state: code qualityworkshops, giving codemetrics
a meaning by calling for action rather than representing read-only information, and connecting CSE elements from different CSE categories.
One technical leader plans to bring the interaction with the user to the next level by detaching feedback collection from the individual—which

is currently often the case—and creating a well-defined, high maturity level process similar to the one used for continuous integration. Other
practitioners mention various ways of optimizing the implementation of agile practices or the application of branching strategies.
Observation 17 Practitioners aim for a fully automated loop to increase software quality by applying goal-driven enhancements to existing CSE elements.

5.4.2 Expansion Strategy
The future plans of four practitioners can be summarized as an expansion strategy, i.e., applying recently established CSE elements to other areas
of a project. The expansion of continuous delivery to more platforms is mentioned several times. This means adapting similar practices such as
automatic deployment in mobile environments to their server-side counterparts. Similarly, expanding continuous integration to more platforms
is mentioned several times; for example, one practitioner praises progress in Java environments, while they struggle with JavaScript. Another
practitioner mentions the expansion of documentation tomore areas than it is the case at the present time.
Observation 18 Practitioners aim to extend efficient CSE elements to other areas of the project or similar products.

5.4.3 On-DemandAdaption Strategy
Three practitioners indicate a general interest in future CSE additions, however, they rely on an event-triggered or on-demand strategy to adapt,
i.e., enhance or extend, their CSE elements. One practitioner describes an exploratory process in which CSE elements are added step by step. If
they encounter a situation that would benefit from improvements, they initiate further investigations into possible solutions. Another practitioner
makes the addition of further CSE elements dependent on the team’s dynamic. A project manager highlights the effort in time that is required to
implement certain CSE elements, making an overall process transition a time-consuming undertaking.
Observation 19 Practitioners make enhancements and additions to CSE dependent on events that call for action. They postpone decisions for further
additions to a later point in time.

14 JOHANSSEN ET AL.

CSE

User

Developer

Involved users and other stakeholders

Proactive customers

Learning from usage data and feedback

Open-minded mentality

Self-reflection and discipline

Comply with shared ruleset

Contemporary and continuously evolving skills

Business Management commitment
Appropriate product idea

Development
Continuous planning activities

Continuous requirements engineering

Modularized architecture and design

Focus on features

Operation Logging and monitoring
Reusable infrastructure

Convenient setup
Staging environments

Knowledge

Sharing knowledge

Continuous learning

Capturing decisions and rationale

Software
Management

Agile practices

Continuous integration of work

Continuous delivery

Continuous deployment of releases

Quality

Regular builds

Automated tests

Run-time adaption

Pull requests

Audits

Code
Code reviews

Code coverage

Branching strategies

Version control

FIGURE 6 The model Eye of CSE consists of nine CSE categories and 33 CSE elements. The proximity of elements and categories suggests
relationships between them. Themodel can open up one’s eyes to new ideas for additions to current CSE processes.

6 DISCUSSIONONHOWCOMPANIES APPLY CSE (RQ1)
In this section, we summarize our insights in the form of a model and present related work. Above all, we find it necessary to state that some
observations fromthis studyappearobvious, ambiguous, ormayevenbe seenas a tautology.However, sinceweare searching for empirical evidence
onwhich to base assumptions that were previously only anecdotal, to some extent this leaves us with reporting obvious conclusions 25.

6.1 Eye of CSE
Basedon thepractitioners’ answers,weupdated theCSEelements andcategories inTable1byadding threenewcategories—developer,business, and
operation—and removing twoCSEelements,which are represented in thenewcategories.We refer to thefinal set ofCSEelements and categories as
the Eye of CSE and present a graphical representation in Figure 6. A well-established infrastructure as demanded by our CURES vision (Section 2.2)
incorporates all of these CSE elements.
The eye’s focus lies on a comprehensive implementation of CSE, represented by the pupil. The process of reaching this goal is influenced by the

categories that are part of the eye’s iris. The categories define thediameter and size of the pupil and thereby the perception ofCSE.We learned from
the interviews that CSE categories are intertwined and have fuzzy boundaries. This is partly different from the sequential nature of the Stairway to
HeavenbyBosch et al. 1,5: even if someCSEelements, such as continuous integration anddelivery, require a step-wise introduction, thepractitioners’
statements suggest that CSE should be approached frommultiple angles simultaneously. From the results of our interview study, we cannot advise
a clearly defined sequence of adding CSE elements toward the implementation of CSE in a company. Instead, the Eye of CSE can serve as a checklist
for practitioners to tackle the subject of CSE by incrementally applying CSE elements and keeping an eye on potential next steps.
During the design of the Eye of CSE, we strived to accurately allocate CSE elements to categories by analyzing the practitioners’ answers and

carrying out internal discussions. By connecting CSE elements to the iris and not directly to CSE categories, we acknowledge that one CSE element
can relate to one or more categories—their allocation is rather loose. Therefore, the proximity of CSE elements within the sclera, the white of the
eye, only suggests a relation to a category and among multiple CSE elements. The grouping of CSE categories allows practitioners to recognize
relationships based on their proximity within the eye and the position of the CSE elements. In particular, when improving one category, it can be
worth considering the addition of another category that features similar CSE elements.
Example 1 Whenever practitioners expand on software management, the categories knowledge and quality should be incorporated, since their containing
CSE elements are interrelated and have a positive effect on each other.
The addition of one CSE element from a category can have a positive effect on one or more CSE elements from the same or another category.

The joint addition of CSE elements could allow companies to benefit from synergies of the CSE elements’ effect or to reduce the implementation
efforts. However, this relationship cannot be derived from themodel at its current state.

JOHANSSEN ET AL. 15
Example 2 Audits can include code reviews, which makes them part of the quality category. Likewise, learning from usage data and feedback requires
the developers’ open-minded mentality. Addressing sharing knowledge is an example for a CSE element that has positive effects on almost all other CSE
elements, for instance agile practices are improved through experience reports or branching strategies from best practices.
Themodel should open practitioners’ eyes to new ideas when extending their CSE process. Furthermore, the relationships can start discussions

for the future consolidation of the model: The categories user, developer, and business could be further summarized as stakeholders, while the cate-
gories business, development, and operation share common characteristics and might be combined as BizDevOps, following the naming conventions
by Fitzgerald and Stol 2. As highlighted, we see structural dependencies between softwaremanagement and knowledge and between quality and code.

6.2 RelatedWork
To the best of our knowledge, there are no previous studies with practitioners that address CSE as a process. Thus, we present and discuss studies
that followed research approaches similar to our work and addressed specific CSE elements and CSE categories. Kuhrmann et al. research devel-
opment approaches in practice 26. They highlight the importance of traditional frameworks, a factor that is supported by our observation 12. Their
results indicate that companies apply hybrid approaches, which are defined stepwise, in ways similar to the strategies we identified in Section 5.4.
Mäkinen et al. report the widespread adoption of version control and continuous integration, based on semi-structured interviews with 18 organi-
zations 27. Our observations confirm this situation in practice. In fact, we found that most positive experience reports were stated in the respective
CSE categories (Figure 5). Ståhl and Bosch interviewed practitioners to assess their experience of continuous integration and discuss benefits 28.
We can confirm most of their findings, e. g., that it increases developer productivity (observation 4). The same observation partially supports their
finding that practitioners see improvements in project predictability. Further literature studies list benefits and challenges regarding continuous
integration, delivery, and deployment 8,29. Kevic et al. reveal the positive impact of experiments; this points toward a relationship between continu-
ous deployment and a change in user behavior 30, and supports our model (Figure 6). Dybå andDingsøyr highlight human and social factors in work
settings that are similar to CSE 31. Ayed et al. conclude that the success of agile practices depends on various social and inter-cultural factors 32.
Larusdottir et al. note the importance of teams’ ability to trust in their capabilities 33. Based on these reports and multiple answers in our study, we
added the category developer, as described in Section 6.

7 RESULTSONHOWUSAGEANDDECISIONKNOWLEDGECAN SUPPORTCSE (RQ2)
To present the results on RQ2, we provide a summary followed by a more detailed analysis for every research question. For RQ2.1, we analyzed
the practitioners’ attitude throughout the interview to derive their overall impression and their opinion on the overall feasibility, both grouped by
positive, neutral, and negative responses. For RQ2.2 to RQ2.5, we analyzed the occurrence of the codes usage knowledge focus, decision knowledge
focus, and other focus in relation to the answers to a research questions. During multiple interviews, we noticed that benefits were refined in a later
question or used as an obstacle when viewing it from a different perspective. Further, answers to RQ2.4 and RQ2.5 were often very similar and
dependent on how we phrased the questions during the semi-structured interview.We relied on a fine-grained distinction since the questions put
different emphases: the extensions refer to theproposedCURESvision (Section2.2) anddonot assumemajor changes. Thepractitioners’ responses
regarding additions tend to result in fundamental changes to the CURES vision. Figure 7 provides an overview of the responses.

9
11

3

1110

5
7

910

16
14 14

0

5

10

15

20

Benefits (RQ2.2) Obstacles (RQ2.3) Extensions (RQ2.4) Additions (RQ2.5)

Usage Knowledge Focus Decision Knowledge Focus Other FocusNumber of Interviews seperated by

FIGURE7Overviewof coded answers separated by research questions. Amore detailed analysis of the responses is provided in Tables 2, 3, 4, and 5,
inwhichwe combined responses in case theywerementioned by at least two practitioners. Therefore, the numbers in this figure can be higher than
the sum of responses per row in the tables. On the other hand, the numbers in this figure can be lower compared to the sum of rows in Tables 2, 3, 4,
and 5, since this figure is based on interviews, while the tables detail the practitioners’ responses, which allows amore fine-grained analysis.

16 JOHANSSEN ET AL.

7.1 Practitioners’ Attitude toward the CURES Vision
The practitioners were asked to provide their overall impression and opinion toward the feasibility of the CURES vision to derive first assumptions
about their attitude. We classified their response as positive if it clearly verbalized their support for one of the aspects. Neutral responses reflect
responses that do not provide a definite point of view. A negative response articulates a substantial concern. The results are plotted in Figure 8.
RQ2.1What is the attitude of practitioners toward the CURES vision? Practitioners primarily react positive to the integration of usage and
decision knowledge into CSE. Regarding the practitioners’ overall impression, 15 positive, three neutral, and one negative responses were
collected. For the overall feasibility, seven practitioners provide positive feedback, while eleven state a neutral- and two a negative opinion.

2

11

7

Negative

Neutral

Positive

0 5 10 15 20

Number of Interviews

Overall Feasability (RQ2.1)

1

4

15

Negative

Neutral

Positive

0 5 10 15 20

Number of Interviews

Overall Impression (RQ2.1)

FIGURE 8 The practitioners’ attitude toward the CURES vision expressed by their overall impression and opinion on its feasibility.

In 15 out of 20 interviews, the practitioners noted a positive impression by describing the ideas as beneficialor exciting, aswell as stressing out the
advantagesof a certain ideaor aspect.Manyof thepractitioners acknowledgedifferent aspects of theCURESvision, such as documentingdecisions,
as important and continued to refine their responses when discussing RQ2.2. During four interviews, the practitioners did not clearly take a stance
for or against the proposed vision, however, they showed interest and did not articulate negative impressions. While generally being interested
in the vision, one interviewee determined it impossible for their project at hand, rendering the vision only beneficial for specific projects; a closer
elaboration on their reasoning is provided as part of RQ2.3, the obstacles, in which it is summarized under Applicability, i. e., finding themselves in a
state in whichmultiple software versions are delivered to users.
With respect to the practitioners’ attitude toward the overall feasibility of the CURES vision, we noted that the practitioners provided highly

subjective feedback dependent on their roles in the project, e. g., developers’ responses mainly addressed technical aspects. Out of the 20 inter-
views,we received sevenpositive responses, expressing that they can imagine the implementation of such a concept. Someof themnoted thatmany
elements of the vision have already been addressed by individual, detached systems, but given a vast amount of effort, they consider the vision to
be feasible. With eleven interviews, the majority of practitioners took a neutral view on the vision’s feasibility by not clearly stating their opinion;
some practitioners see challenges in the applicability in real-world scenarios, since the vision presented in Section 2.2 reflects a simplified scenario.
A more detailed analysis of their responses is summarized under Feasibility in the obstacles discussion of Section 7.3. Two practitioners expressed a
negative opinion regarding the overall feasibility of the CURES vision. They ground their doubts in technical- and process-oriented challenges.

7.2 Practitioners’ Perceived Benefits of the CURES Vision
After an introduction to the CURES vision, we asked practitioners about benefits assuming that they would apply the vision in their company set-
ting. We refined our questions more precisely around existing components, such as the arrangement of the Dashboard in Figure 1, in case the
practitioners did not knowwhere to start their observations.We consolidated their responses and found six major benefits as shown in Table 2.
RQ2.2 What are benefits of the CURES vision perceived by practitioners? From the practitioners’ responses, we derived six benefits:
Accountability (7.2.1), Traceability (7.2.2), Parallel Feedback (7.2.3), Automation (7.2.4), Flexibility, and Change Impact Analysis (both in 7.2.5). Six-
teen responses relate to decision knowledge and eleven for benefits summarized as Accountability. Usage knowledge-focused benefits are
mentioned in 12 responses by the practitioners, while Parallel Feedback was highlighted four times. Nine responses focus on other benefits,
most of them addressing Traceability.

JOHANSSEN ET AL. 17

TABLE 2 Benefits of the CURES vision sorted by the number of practitioners who addressed them. The practitioners’ responses can have a usage
knowledge, decision knowledge, or other focus. A star next to the name indicates benefits for which one response hadmore than one focus.

BenefitName Accountability∗ Traceability∗ Parallel
Feedback Automation Flexibility Change Impact

Analysis
Usage Knowledge Focus 3 2 4 1 2 0

Decision Knowledge Focus 11 4 0 0 0 1
Other Focus 1 4 1 2 0 1

Number of Responses 12 8 5 3 2 2

7.2.1 Accountability
The practitioners appreciate the possibility to discuss decisions collaboratively and to comment on the decisions made. The developers’ possibility
to capture their feedback and thoughts is seen as a key factor for success. In addition, documenting decisions within the development context,
i. e., close to developers, and their easy retrievability is better than collecting the information in separate documents. Two practitioners explicitly
highlight the benefit that the collected decision knowledge provides a proof on why a certain decision has been made, allowing to focus on the
content of the decision, and not the individual—whether it is a member of the development team or a customer—that made the decision. The fact
that decisions are collected continuously appeals to one practitioner whomentions that documenting is incorporated within the process of making
the decision.Onepractitioner states that this can lead to gooddecisions on how the product should be further developed. Three practitioners stress
accountability benefits by combining a usage and decision view on the development process: the user feedback supports the product management
in decision-making regarding the next step of the product development. The Dashboard and the Knowledge Repository with integrated usage and
decision knowledge, as introduced on Figure 1, are understood as a central point of interaction and discussion. The combination of the Knowledge
Repository and theDashboard becomes an important component during decision-making, almost as a generator for making decisions.
Observation 20 Practitioners highlight that an explicit and structuredway of decision-making improves transparency, comprehensibility, and replicability.

7.2.2 Traceability
Two practitioners praise the feature-based separation of knowledge. This allows to allocate knowledge directly to feature branches, enabling
a development-driven documentation and simplifying the process of retrieving documented knowledge afterwards. Developers can track down
knowledge rightwhere it is created. In particular, traceability links to issue entries anddeployed releases are automatically established. This enables
to easily review the decisions made during particular software increments, a process that previously involved manual efforts. Three practitioners
highlight that interweaving different components, such as the Knowledge Repository with the CSE Infrastructure, increases traceability. Three other
practitioners mention practical aspects of traceability benefits that facilitate the daily workflows of developers: First, the CURES vision allows for
an instant retrieval of typical coding issues and their solutions, e. g., regarding the design of an implementedmethod. Second, it reduces the need of
using other tools, such as the version control system, which are cumbersome to use in order to figure out implementation decisions. Third, it allows
to capture and explore decisions in amore intuitive way than in current decision documentation practices, such as when committing code.
Observation 21 Feature branches as a main reference point simplify the traceability of usage and decision knowledge.

7.2.3 Parallel Feedback
The practitioners respond consistently that they perceive an environment in which they can evaluate two different implementations as highly ben-
eficial for their development process. In this context, they emphasize the possibility to easily branch andmerge the better-performing feature branch
to continue their work. Two practitioners highlight similarities to A/B testing.
Observation 22 Practitioners point out benefits in being able to contact users directly and receive instant feedback.

7.2.4 Automation
The practitionersmention benefits in the fact that the components support developers through semi-automated processes. For example, user feed-
back on an old release can be automatically mapped to the corresponding proposal, which allows the current development activities to focus only
on relevant feedback. Furthermore, automating this process supports consistency and comparability of test results.

18 JOHANSSEN ET AL.

Observation 23 Automation supports practitioners in synchronizing different knowledge artifacts.

7.2.5 Flexibility and Change Impact Analysis
Twopractitionershighlight thatCSEelements suchas continuousdeliveryease theprocessof deciding fromwhomusage feedback is tobe collected.
Similarly, with regard to change impact analysis, practitioners expect to retrievemore precise results on how a decision affects a software product.
Based on these insights, a decision can be established, such as whether to continue improving a functionality that is used by aminority of users.
Observation 24 The CURES vision can enable fine-grained usage and decision knowledge collection and assessment.

7.3 Practitioners’ PerceivedObstacles of the CURES Vision
With respect to the CURES vision, we asked the practitioners for obstacles to its implementation within their project that go beyond and detail the
feasibility and overall impression addressed in Section RQ2.1.We consolidated their responses and found six major obstacles as shown in Table 3.
RQ2.3 What are obstacles of the CURES vision perceived by practitioners? From the practitioners’ responses, we derived six obstacles:
Feasibility (7.3.1),User Groups (7.3.2), Applicability (7.3.3), Cost (7.3.4),Usability (7.3.5), and Privacy (7.3.6).With twelve responses for Feasibility
and six both for Applicability and Cost, the practitioners see major obstacles in areas other than usage and decision knowledge. Furthermore,
15 responses relate to usage knowledge, from which more than half can be summarized under User Groups. None of the obstacles had a
particular relation to decision knowledge.

TABLE 3Obstacles to the CURES vision sorted by the number of practitioners who addressed them. The practitioners’ responses can have a usage
knowledge, decision knowledge, or other focus. A star next to the name indicates obstacles for which one response hadmore than one focus.

ObstacleName Feasibility User Groups∗ Applicability∗ Cost Usability Privacy
Usage Knowledge Focus 0 9 3 0 1 2

Decision Knowledge Focus 0 0 0 0 0 0
Other Focus 12 1 6 6 3 1

Number of Responses 12 9 7 6 4 3

7.3.1 Feasibility
One practitioner sees manual documentation as a major hurdle. Another practitioner stresses that especially developers prefer to perform their
tasks efficiently, e. g., by using their system console, and are reluctant to use a different system than the one they are normally working with. Three
practitioners see a problem in the strict separation between theKnowledge Repository and theCSE Infrastructure. One of themgoes as far as suggest-
ing to integrate the knowledge directly into the CSE infrastructure, which would benefit the portability of both, since references are less likely to
get deprecated. However, they admit that the separation is reasonable, as long as they are physically located at a similar location. One practitioner
criticizes that feedback items are related back to themaster branch, not the feature branch at hand. Following the feasibility obstacles of theCURES
vision, more sub-aspects with respect to the complexity were given by practitioners. They state that the many constraints between the developed
software and its features cannot sufficiently be representedwith theCURES vision. Furthermore, for some projects, the complexity increases given
their dependability on other software projects or even physical devices. One practitioner finds a flaw in the simplified tree-structure indicated in
Figure 1, since thismodel does notfit real-world applications, in particular ifmultiple individuals are involved over a period of time.One practitioner
summarizes this aspect by stating that theCURESvision in its current statemight be feasible for off-the-shelf software, butwould strugglewith com-
plex bespoke software. Twopractitioners are afraid that searching in a knowledge repository is challenging; this depends on the type of visualization.
They propose different approaches to search for information and consider a text-based approach as themost difficult but alsomost important one.
Observation 25 Practitioners are concerned about the required effort on their side to create and integrate documentation into the Knowledge Repository.

JOHANSSEN ET AL. 19

7.3.2 User Groups
Practitioners highlight that the user groups that provide user feedback tend to be internal development teams, not the targeted end user groups,
whichmakes it difficult to use the received feedback as a representative baseline for decisions. They continue to highlight that—to correctly distin-
guish between two feature implementations—it requires many users to retrieve statistically significant results; this is barely reachable in such an
environment. Two practitioners specify their concerns of finding users that provide usable feedback: First, it sometimes requires effort to under-
stand the changes which reduces the users’ acceptance to provide feedback. Second, the process of selecting users based on their skills is an
important step, since it allows to ensure valuable feedback; however, this possibility is not providedwith the current CURES vision.
Observation 26 Practitioners prefer a system that can be used in a day-to-day workflow that is close to users, similar to an environment in which a few of
their colleagues can briefly be consulted to receive feedback on a new software increment.

7.3.3 Applicability
Three practitioners see a high risk in providing different features to their user audience, since it would directly interfere with their business pro-
cesses. For one practitioner, collecting usage data is a business-critical part of the product, which makes different versions of a software feature
difficult, if not impossible to justify and bill. Two practitioners argue that the vision is incompatible with their way of developing and delivering soft-
ware due to safety-critical aspects. Two practitioners mention technical problems in delivering multiple feature versions as demonstrated in the
vision.While they are generally resolvable, itwould requiremajor efforts and adjustments in their development process to implement such changes.
Finally, the practitioners mention a high coupling to server-side information which makes the applicability of the vision problematic. In particular,
different staging environments that are used during the development make the supply of different client-side versions challenging. Further, even if
this would be solved, repeating the process continuously poses new challenges.
Observation 27 Practitioners are concerned about the effects on run-time aspects when creating different versions of a feature at the same time.

7.3.4 Cost
They see the overhead in developing multiple versions of a feature in parallel as an additional cost, however, they admit that the result would be
improved as well. They highlight that the cost estimations can be difficult to justify to product managers or leaders. Further, two practitioners
mention a cost aspect in ensuring that the user base regularly uses new feature additions. One practitioner points out that—in case they have two
versions of a feature—theywould rather sell this as an additional customization or variant of the feature. Likewise, one practitioner states that they
would never develop a feature and then stop its development, nor would they evaluate three different alternatives against each other.
Observation 28 According to practitioners, cost aspects of the CURES vision can be a major obstacle for its implementation.

7.3.5 Usability
Some practitioners wonder why a developer should use such a system, especially when they already have to deal with other, complex systems.
Further, theyareunsurewhether the right stakeholders areaddressedwith the current versionof thevision. This is theonly timepractitionersnoted
not enough roles as an obstacle. Two practitioners mention practical obstacles: while one practitioner notes that the proposed vision would solve a
problem that they are currently not confrontedwith, another practitioner foresees upcoming problems inmanaging a new system by providing the
Dashboard component, which needs to be integrated into user management systems and requires a variety of configuration possibilities.
Observation 29 The integration of usage and decision knowledge into CSEmust be easy to use to be adapted by stakeholders.

7.3.6 Privacy
The practitioners point out that the data that gets collected provides detailed insights into the user base. This may contain sensible information,
which gets difficult to protect when processed and presented in other systems, such as the Knowledge Repository or Dashboard. One practitioner
states that this obstacle can only be overcome if the development is clearly separated from production, which, however, interferes with the idea of
continuous software engineering—following the quote ”You build it, you run it” 34 the practitioner indicates that this obstacle needs to be addressed.
Observation 30 Practitioners have privacy concerns when applying the CURES vision with real users. Therefore, the practitioners suggest to apply parts of
the CURES vision in development environments only.

20 JOHANSSEN ET AL.

7.4 Practitioners’ Extensions to the CURES Vision
Weasked the practitioners for extensions to the presentedCURES vision. In particular, we asked them to relate to their perceived benefits and how
they could be strengthened. Likewise, we asked the practitioners to provide extensions to overcome obstacles and improve the overall feasibility
of the CURES vision. Extensions are classified to be short-term changes to the CURES vision that do not require a major change and can be easily
integrated into the existing concepts.We consolidated their responses and established six major extensions as shown in Table 4.
RQ2.4 What are important extension to the CURES vision according to practitioners? From the practitioners’ responses, we derived six
extensions: Automation (7.4.1), Roles (7.4.2), Run-Time (7.4.3), Design-Time (7.4.4), Human and Processes (7.4.5), and Commit (7.4.6). Multiple
usage anddecision knowledge-focused extensions arementioned, however,with nonoticeable peaks. In contrast, we found27 responses that
put a focus on other aspects, withmany of them forming the topics Automation, Roles, and Run-Time.

TABLE 4 Extensions to the CURES vision sorted by the number of practitionerswho addressed them. The practitioners’ responses can have a usage
knowledge, decision knowledge, or other focus. A star next to the name indicates extensions for which one response hadmore than one focus.

ExtensionName Automation∗ Roles Run-Time∗ Design-Time Human&
Processes∗ Commit

Usage Knowledge Focus 1 2 2 0 1 0
Decision Knowledge Focus 1 0 0 2 2 2

Other Focus 8 6 6 3 4 0
Number of Responses 9 8 6 5 5 2

7.4.1 Automation
The practitioners share a common idea for an extension to automate every aspect of the system. One practitioner formulates automation steps
based on certain actions; for example, as soon as a feature branch is created, other processes such as creating a representation of this very feature
branch in the Knowledge Repository should be triggered. They mention that it would be sufficient to have a basic support for this functionality, such
as following naming conventions, in order to make it work. Another practitioner states that automation needs to be implemented differently for
individual stakeholders and that a lowest common denominator should be found; otherwise, there are multiple things that canmake such a system
fail. As soon as one aspect that could be automated requires effort, such a system is difficult to establish; one practitioner justifies the need for
automationwith the fact that—if there is just oneaspect that needs tobedonemanually—thedatawill turn inconsistentover time. Twopractitioners
highlight that automation allows them to see the relevant information at the time it is needed and enables to drill-down on information at hand.
Observation31 Practitioners request an additional component between theKnowledgeRepository and theCSE Infrastructure that is in charge of executing
various automation steps, such as showing relevant usage knowledge when available or synchronizing both components in case a change occurs.

7.4.2 Roles
Four practitioners state the need for adding capabilities for a project manager, i.e., a management role. According to their statements, these roles
could benefit from the Dashboard by collecting information required for resource planning and estimation. At the same time, they can use it to be
updated about latest developments, such as the delivery of certain software versions to users, or the availability of features in a feature branch. The
Dashboard serves as an access point to information which previously required other tools, such as a git client, which some project manager might
refrain from using. Two practitioners highlight different roles in the target audience, i. e., the users, and suggest to distinguish between internal
users, such as developers, and external users. One practitioner sees the benefit of more roles in the fact that the more stakeholders are involved in
making and capturing decisions, themore comprehensive and complete the knowledgewill be. Another practitioner justifies the need for extended
roles in being able to comply with privacy aspects; more roles allow for amore fine-grained selection of who is allowed to see which information.
Observation 32 Practitioners stress the need for extending the CURES vision to more roles than developer and user.

JOHANSSEN ET AL. 21

7.4.3 Run-Time
With a focus on technical aspects, the practitioners express an interest in being providedwithmonitoring data from technical logs. This allows them
to understand the features that are used by the users and control server-side capacities accordingly; based on metrics shown in the Dashboard,
indications for roll-out or release dates could be inferred. One practitioner sees practical extensions that could be easily added to the current
implementation: they would like to have an easy way to access older versions of a release, which could be integrated into the Dashboard. Another
practitioner requests to seemore dependencies to other software and physical devices in order to adjust the release of a feature at hand.
Observation 33 Practitioners are interested in run-time knowledge that goes beyond usage knowledge to control operational aspects.

7.4.4 Design-Time
The practitioners demand an extension for an improved design-time supportwhich goes beyond decision knowledge. Theywould like to add links to
existing knowledge, such as architecture diagrams, guidelines, or ticket and issue discussions, which are not expressed in code and stored in other
locations. Further, they would like to see a possibility to addmeta-decisions independent of an individual feature branch.
Observation 34 Being able to create links to design-time artifacts is important to practitioners.

7.4.5 Human and Processes
The practitioners highlight that that by applying the CURES vision, involved individuals need to rethink existing processes. They acknowledge that
the factor human needs to be addressed. To convince individuals of processes, practitioners suggest to provide support such as acknowledging
that—initially—more effort is required tomake the processwork. Likewise, they encourage the integration of process additions, such asmaking pull
requests dependent on the availability of a certain type of knowledge, to foster the capturing of knowledge and to promote the usage of the system.
One practitioner sees potential of the CURES vision inmaking aspects of the process visible, whichmight have been undiscovered before.
Observation 35 The integration of usage and decision knowledge in CSE needs to be acknowledged by individuals and processes.

7.4.6 Commit
Two practitioners would like to see extensions in the way decision knowledge is captured. They proposed to be more verbose in commit messages.
Onedeveloper iswilling to apply adedicated languageor syntax to capturedecisions knowledgewhen committing code—even if thatmeans anaddi-
tional workload at that stage. They are, however, not willing to review a previous commit after it has been added to the repository. One practitioner
expresses their thoughts about a naive way of tagging decisions in commits—an idea, that we strive for with the CURES vision.
Observation 36 Practitioners suggest to capture decision knowledge in documentation locations typical for CSE such as commit messages.

7.5 Practitioners’ Additions to the CURES Vision
We asked the practitioners to list major feature additions, which they would expect to see from a system that allows to capture, maintain, and
explore usage and decision knowledge during CSE. We strive for collecting long-term additions to the CURES vision that go beyond the presented
idea and that require amajor refinement of the concept.We consolidated their responses and established six major additions as shown in Table 5.
RQ2.5 What are potential additions to the CURES vision according to practitioners? From the practitioners’ responses, we derived six
additions: Integration (7.5.1), Experimentation (7.5.2), Interaction and Reaction (7.5.3),Granularity (7.5.4),Community (7.5.5), andDeveloper Focus
(7.5.6). With eleven responses, usage knowledge additions stood out among the responses, with a peak in Experimentation. Five responses
addressed additions regarding decision knowledge, most of them in Integration. The practitioners addressed additions of other areas in 14
responses, with a peak in Interaction and Reaction.

7.5.1 Integration
The integration with tools available in a company’s development process is stated most prominently by the practitioners: (1) support for external
usage knowledge systems, i. e., to receive a greater variety of qualitative and quantitative feedback, (2) full support for functionality that is provided
by the developers’ integrated development environments, i. e., to reflect knowledge that is visualized in the dashboard immediately in code, (3)
support for interfaces to systems that are close to hardware, i. e., to be able to read andwrite data viamarkdownor plain text, and (4) full support for
any kind of project management tool. Overall, the integration should increase the stakeholders’ acceptance by focusing on usability and efficiency.

22 JOHANSSEN ET AL.

TABLE 5 Additions to the CURES vision sorted by the number of practitioners who addressed them. The practitioners’ responses can have a usage
knowledge, decision knowledge, or other focus. A star next to the name indicates additions for which one response hadmore than one focus.

AdditionName Integration∗ Experimentation Interaction &
Reaction∗ Granularity∗ Community Developer

Focus
Usage Knowledge Focus 3 4 1 1 0 2

Decision Knowledge Focus 3 0 0 2 0 0
Other Focus 5 1 4 1 3 0

Number of Responses 9 5 4 3 3 2

Observation 37 Future concepts of usage and decision integration into CSE need to feature a high tool integration.

7.5.2 Experimentation
Five practitioners express specific feature additions: One technical leader describes scenarios in which users are required to find themselves in a
particular setting to test a new feature addition; this setting is maybe given through a particular physical surrounding or a selection of parameters
within the application. The practitioner would like to formalize such scenarios to be able to put users automatically into a setting in which they can
use the feature. This, however, requires a high degree of integration, which makes its applicability for small features less likely. One practitioner
would like to define experiments in a way that a continuous representation of results can be visualized, for example by a numeric value. Another
practitioner evolves this idea by being able to measure any kind of interaction with the user to derive valuable information for the Dashboard.
They suggest to observe time spans until a feature is understood by a user and try to derive phases in which the users find themselves—such as a
learning phase, identification phase, orientation phase, searching phase, or productivity phase. Two practitioners focus their needs for additions in
the interplay with users; they would like to address certain groups of users to specifically release a new feature to them. They propose that users
canmake the decision themselves, whether they want to use and provide feedback for a specific feature version.
Observation 38 Collecting usage knowledge and providing monitoring and feedback components provides the opportunity for experimentation in CSE.

7.5.3 Interaction and Reaction
Addingmore interaction possibilities to theDashboard is seen as beneficial. The practitioners would like to control released versions from theDash-
board. Similarly, they request the possibility to connect and link existing knowledge to create new knowledge. Apart from the interaction aspects,
the practitioners expect theDashboard and its underlyingKnowledge Repository to be reactive. For instance, the system should be able to send notifi-
cations to the stakeholders in case a previously defined threshold is reached. Likewise, relationships should be identified intelligently and presented
to stakeholders by suggestions or warnings for interaction.
Observation 39 Practitioners request to extend the functionality of the CURES dashboard beyond static representation of usage and decision knowledge.

7.5.4 Granularity
The practitioners would like to introduce more layers to the feature representation in the knowledge repository, in order to differentiate between
knowledge for low-level code decisions, such as how to build a specific view, and knowledge regarding a large feature or use case. This would be
similar to a differentiation known from epics, user stories, and implementation tasks. One practitioner states that in particular decisions require more
information than just the decision itself; in particular, they asked for addingmoremeta information, such as whomade a decision.
Observation 40 Practitioners request major additions to the granularity of knowledge collected in the knowledge repository.

7.5.5 Community
The practitioners request a community component and justify their decision by referring to the constant availability of new technology and speed
of development. According to their statements, some decisions have already been made and could be reused, in particular in the case of best
practices for development decisions. Therefore, connecting the Knowledge Repository with external sources, such as GitHub, could be a valuable
addition. One practitioner remarks that it would be a valuable addition if external standard repositories were treated differently, which would
allow to rely on other stakeholders’ knowledge, for example in the case of a version increment. An intermediate step is elaborated by a practitioner

JOHANSSEN ET AL. 23
who expresses their thoughts for software that is developed within a consortium, which already crosses a company’s borders. Allowing different
Dashboard instances to communicate with each other is perceived as a beneficial addition.
Observation 41 Learning from external knowledge can be a valuable addition to the internal body of knowledge during CSE.

7.5.6 Developer Focus
Since developers know how to trigger a certain behavior of the system, they should be able to simulate a user and produce data which is treated
separately from the data produced by actual end users. An additional component could enable the replay of a situationwhich allows them to better
understand aproblem. Introducing this developer focus and separating it fromother, endusermechanisms for usagemonitoringwould allowamore
rigorous, yet effective way of collecting usage knowledge, without inferring with privacy aspects.
Observation 42 The CURES vision can benefit from providing the ability to let developers assess their own behavior.

8 DISCUSSIONONAN IMPROVEDCURESVISION (RQ2)
From the practitioners’ responses, we received a broad view of how usage and decision knowledge can support them to improve the results of
CSE. The assessment of RQ2.1 shows that the majority of practitioners have a positive overall impression of the CURES vision. Regarding their
opinion on its feasibility, neutral responses dominated the practitioners’ responses, followed by seven positive statements: Given the fact thatmost
of the neutral responses can be related to either no clear statement or general remark, we also conclude the feasibility aspect as accomplished.We
combined the practitioners’ responses from RQ2.2 to RQ2.5 and updated our original CURES vision presented in Figure 1—the result is outlined in
Figure 9 and detailed in the remaining part of this section, combinedwith two examples of how the improvements could be instantiated.
A major addition is represented by a new Automation component; multiple practitioners point out that the separation between the knowledge

repository and the CSE infrastructure is too strict (see obstacles in Section 7.3: Feasibility). While the original CURES vision intended knowledge

Usage and Decision

Knowledge Repository
CSE Infrastructure

P1

FB1

P2a P2b

FB3

 Dashboard

Master Branch

Feature Branch 1

Feature Branch 2a

Feature Branch 2b

P2b

P2a

P1 D1 D2

R1 R2 R3

FB1 FB2 FB3

monitors
usage

creates
branch,
commit,
release

uses

analyzes, visualizes

F1 F2

 Monitoring and Feedback

Rulesets and Guidelines

configures

Automation

F2

FB3

D2

∞

Kit nKit 2Kit 1

D2D1

FB2

Follow Reflect Interact React

User

uses release gives feedbackaffects

Role

Process

Developer, Project Manager, other Stakeholders

FIGURE 9 An improved version of the CURES vision based on the results of RQ2.2 to RQ2.5. Changes and additions to the version introduced
in Section 1 are highlighted in blue color: major improvements can be found in a new Automation component, the addition of Ruleset and Guide-
line artifacts, as well as the extended functionality of the Dashboard and Monitoring and Feedback component. More Stakeholders are considered.
Furthermore, the Knowledge Repository received refinements and the CSE Infrastructureminor changes.

24 JOHANSSEN ET AL.

elements to be transmitted between these components, the new automation component makes it clear that this needs to be done by an additional
component. We see a broad field of tasks that can be accomplished by the automation component. Following the practitioners’ suggestions, it can
perform a set of tasks as soon as an event is triggered, such as collecting all available information for a feature branch that has just been created
(see extensions in Section 7.4: Automation); this could also mean to collect other knowledge from technical logs (see extensions in Section 7.4: Run-
Time). The automation component can also be in charge of regularly checking the knowledge available in the knowledge repository and investigating
whether there are deprecated knowledge elements or missing knowledge links (see extensions in Section 7.4: Automation). It is also responsible for
preparing knowledge that could be usedwithin the new extensions of the dashboard, as explained in the following.
Example 3 Knowledge originates from different sources, i.e., is created in heterogeneous platforms. For instance, the CSE infrastructure might be an online
repository server that is running independently from a server that hosts the knowledge repository or the monitoring and feedback component. A hook archi-
tecture can enable the connection aspects which are required to achieve the goals of the automation component. Web hooks represent a simple way of
connecting sources, since they usually authenticate only via a web address and a secret; this makes them easy to integrate into already existing systems.
Furthermore, they are event-based, which fits the requirements for the automation component: whenever a new commit is pushed, the knowledge repos-
itory can receive a notification from the CSE infrastructure. Based on this, it can start gathering data. Likewise, whenever a developer captures a decision
knowledge or the user creates a new feedback, this knowledge can be pushed into the knowledge repository and automatically related to a commit.
The automation component is further linked to the Dashboard, which was addressed by the practitioners as part of multiple responses. Initially,

the dashboard’s intentionwas to consume knowledge that is stored in the knowledge repository—now represented by the Follow andReflect compo-
nents.With thepractitioners’ feedback,wefind it important tobemore specific about thepossibilities thedashboardoffers 10: The Interact andReact
components make the dashboard more active, offering the possibility to inform stakeholders about relevant changes (see additions in Section 7.5:
Interaction and Reaction). A new aspect is given through the affect relationship from the role toward the dashboard; depending on who is using the
dashboard, it changes its appearance and the way it works to encourage knowledge gain from stakeholders (see extensions in Section 7.4: Roles).
Several practitioners address the limited set of Roles in the original version of the CURES vision (see obstacles in Section 7.3: Usability and

extensions in Section 7.4:Roles). Therefore,we extend the scope of roles, considering any possible stakeholderwith an interest in the product devel-
opment. We see Cost (see obstacles in Section 7.3) as a motivation to explicitly mention Project Manager next to Developer. Furthermore, by fusing
the user role into the other stakeholder roles, we acknowledge that our CURES vision is planned to be used in a development-close environment, in
which a developer is the first user, followed by other stakeholders, of which one of them might represent the actual end user. This removes uncer-
tainty regarding the User Groups (see obstacles in Section 7.3), i. e., the availability of end users, their necessity to have a certain level of knowledge
and to invest effort. Also, it increases theApplicability (seeobstacles in Section7.3), since—if performedbyadeveloper—business- and safety-critical
areas of a software product can be tested in a controlled environment. Finally, having developers act as users can reduce concerns regarding Pri-
vacy (see obstacles in Section 7.3), since they are interactingwith the applicationwhile they know that they are being observed. However, thismight
influence the results. Moreover, it accommodates the request of developers for amoreDeveloper-focused (see extensions in Section 7.4) system.
We improve the capabilities of the Knowledge Repository. First, we follow the suggestion to link more sources of knowledge to existing elements

in our knowledge graph; as indicated with D2, different kinds of knowledge, such as Run-Time (see extensions in Section 7.4) or Design-Time (see
extensions in Section 7.4) knowledge canbe linked to the decision. Second, links between knowledge elements, such as between FB2 and D1, can help
to address the Feasibility (see obstacles in Section 7.3), and potentially also contribute to the aspects ofGranularity (see additions in Section 7.5).
Supported by the practitioners’ reports (see benefits in Section 7.2: Parallel Feedback), we enhanced the composition of theMonitoring and Feed-

back component. By the introduction of Kit components, different modules for user Experimentation (see additions in Section 7.5) can be added to
the monitoring and feedback component. In the case of a special knowledge need, a kit can be activated and used for collecting usage data; this
might even be the Integration (see additions in Section 7.5) of an external service that offers specializedmonitoring features.
Example 4 Stakeholders might have different interests about the usage knowledge that is collected. This need is reflected in the possibility to use kits.
For example, a FeatureKit addition allows stakeholders to analyze the execution status of newly developed features increments 13; information whether a
feature was started, completed, or canceled helps to understand the usability of a feature. Other kits can provide additional data, such as information about
the users’ behavior or their impression that was derived from a hardware or a software sensor. By combining these knowledge sources, the decision-making
on the next steps for the feature increment can be supported or improved.
A minor addition lies in the introduction of a new Process layer, which should ensure the Human and Processes (see extensions in Section 7.4)

aspects, which are required to successfully implement theCURES vision. Thismay be reflected in the introduction of a basic naming convention (see
extensions in Section7.4:Automation) to support the automation aspects of theCURESvision. Likewise, it could be understood as afirst step toward
a Community (see additions in Section 7.5) connection which would mean to open up knowledge to other parties. Furthermore, minor changes to
the CSE Infrastructure encompass the routing of feedback to the commit fromwhich it has been originated (see obstacles in Section 7.3: Feasibility).

JOHANSSEN ET AL. 25

9 CONCLUSION
Wedescribe themethod and observations of a semi-structured interview study involving 24 practitioners from17 companies during 20 interviews.
The study provides an overview of the current state of practice in CSE, as a way to assist practitioners in understanding CSE. Further, the study
results in a refined approach to integrate usage and decision knowledge into CSE according to the practitioners’ feedback on its initial version.
Regarding RQ1, i. e., how companies apply CSE, we found that the practitioners have different perspectives, i. e., tool,methodology, developer, life

cycle, and product management perspectives. Most relevant elements of CSE are user and team commitment, as well as a high degree of maturity of
automated loops. With respect to CSE elements, the practitioners report more positive experiences than negative ones, but more than half of the
responses were neutral. This might indicate that many practitioners are currently only testing various CSE element in the field. For the future, the
practitioners focus on three strategies: enhancement, expansion, and on-demand adaption. To support practitioners in their approaches to establish
CSE in companies, we created the Eye of CSEmodel based on our interviewobservations. The Eye of CSE allows practitioners to identify relevantCSE
elements, themutual relationships between them, and to devise future additions to their own projects.We do not claim that themodel is complete.
Regarding RQ2, i. e., how usage and decision knowledge support CSE, we found that most of the practitioners have a positive impression of the

proposedCURES vision, and—whilemore than half of the responses regarding its feasibilitywere neutral—there is the tendency that the practition-
ers consider the CURES vision as feasible. The practitioners mention six different areas of benefits of which Accountability, Traceability, and Parallel
Feedback stood out in the number of occurrences. All of them relate to usage and decision knowledge, which strengthens the overall CURES vision.
At the same time, the practitioners were primarily concerned about the Feasibility, Dependability, and Applicability. In particular, they highlighted
technical challenges and the dependability on users as major problems that could arise when implementing the CURES vision. The practitioners
provided insights on extensions and additions they perceive as most important for the CURES vision: Automation, Roles, and Run-Time, as well as
Integration, Experimentation, and Interaction and Reaction. We revised our initial idea of the CURES vision and created an improved version.
Notably, results fromRQ1are reflectedwithinRQ2. For instance, the importanceof the users’ commitment as stated in observation8 is reflected

in the addition of the Process component in the improved CURES vision to highlight the need for a shared ruleset and guidelines. Likewise, the
observation 7 is reflected in the practitioners’ responseswith respect to theDependability (see obstacles in Section 7.3) on users; as a consequence,
we refined the notion of a user and extended the target audience of the CURES vision bymore stakeholders.
We see a continuation of the study in the formof a survey to further validate the perception of the Eye of CSE. In particular, it should be evaluated

whether a large number of practitioners would agree with our allocation of CSE elements to categories. This allows to further refine the position
of individual CSE element within the Eye of CSE and thereby unfold more relationships between the CSE elements. When practitioners use the
Eye of CSE as suggested as a checklist, they would benefit from this knowledge. Furthermore, insights from practitioners from different domains
might open up new research directions. In addition, we are working on the implementation of the presented CURES vision. We are incrementally
implementing theproposed components in the formof tool 17 andplatform 35 support.Using thiswork in progress,weare evaluating the acceptance
of the implementations by applying them in a multi-project course that provides access to a real-world development setting 36,37,38. We strive to
receive further insights which we use for improvements.

ACKNOWLEDGMENTS
This work was supported by the DFG (German Research Foundation) under the Priority Programme SPP1593: Design For Future –Managed Soft-
ware Evolution (CURES project).Wewould like to thank the practitioners for their participation in the interviews and sharing their insights, as well
as Rana Alkadhi and Doris Keidel-Mueller for their valuable feedback.

References
1. Bosch Jan. Continuous Software Engineering: An Introduction. Cham: Springer; 2014.
2. FitzgeraldBrian, Stol Klaas-Jan. Continuous software engineering: A roadmap and agenda. Journal of Systems and Software.2017;123:176–189.
3. HumphreyWatts S.. The Software Engineering Process: Definition and Scope. SIGSOFT Software Engineering Notes. 1988;14(4):82–83.
4. Krusche Stephan, Bruegge Bernd. CSEPM - A Continuous Software Engineering Process Metamodel. In: 2017 IEEE/ACM 3rd International
Workshop on Rapid Continuous Software Engineering (RCoSE):2-8; 2017; Buenos Aires, Argentina.

26 JOHANSSEN ET AL.

5. Olsson Helena Holmström, Alahyari Hiva, Bosch Jan. Climbing the "Stairway to Heaven" – A Mulitiple-Case Study Exploring Barriers in
the Transition from Agile Development towards Continuous Deployment of Software. In: 2012 38th Euromicro Conference on Software
Engineering and Advanced Applications:392-399; 2012;Washington, DC, USA.

6. Ståhl Daniel, Mårtensson Torvald, Bosch Jan. The continuity of continuous integration: Correlations and consequences. Journal of Systems and
Software. 2017;127:150–167.

7. Rahman Akond Ashfaque Ur, Helms Eric, Williams Laurie, Parnin Chris. Synthesizing Continuous Deployment Practices Used in Software
Development. In: 2015 Agile Conference:1-10; 2015;Washington, DC, USA.

8. Rodríguez Pilar, Haghighatkhah Alireza, Lwakatare Lucy Ellen, et al. Continuous deployment of software intensive products and services: A
systematic mapping study. Journal of Systems and Software. 2017;123.

9. Johanssen Jan Ole, Kleebaum Anja, Bruegge Bernd, Paech Barbara. Towards a Systematic Approach to Integrate Usage and Decision
Knowledge in Continuous Software Engineering. In: 2ndWorkshop on Continuous Software Engineering:7–11; 2017; Hannover, Germany.

10. Johanssen JanOle, KleebaumAnja, BrueggeBernd, PaechBarbara. Towards theVisualization ofUsage andDecisionKnowledge inContinuous
Software Engineering. In: 2017 IEEEWorking Conference on Software Visualization (VISSOFT):104-108; 2017; Shanghai, China.

11. Johanssen Jan Ole, Kleebaum Anja, Paech Barbara, Bruegge Bernd. Practitioners’ Eye on Continuous Software Engineering: An Interview
Study. In: Proceedings of the 2018 International Conference on Software and System Process:41–50ACM; 2018; Gothenburg, Sweden.

12. Maalej Walid, Happel Hans-Jörg, Rashid Asarnusch. When Users Become Collaborators: Towards Continuous and Context-aware User
Input. In: Proceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented Programming Systems Languages and
Applications:981–990ACM; 2009; Orlando, Florida, USA.

13. Johanssen Jan Ole, Kleebaum Anja, Bruegge Bernd, Paech Barbara. Feature Crumbs: Adapting Usage Monitoring to Continuous Software
Engineering. In: KuhrmannMarco, Schneider Kurt, Pfahl Dietmar, et al. , eds. Product-Focused Software Process Improvement, :263–271Springer
International Publishing; 2018; Cham.

14. SeffahAhmed,Metzker Eduard. TheObstacles andMyths ofUsability and Software Engineering.Communications of the ACM.2004;47(12):71–
76.

15. Dutoit AllenH,McCall Raymond,Mistrík Ivan, PaechBarbara.RationaleManagement in Software Engineering. Berlin,Heidelberg: Springer; 2006.
16. Alexeeva Zoya, Perez-Palacin Diego, Mirandola Raffaela. Design Decision Documentation: A Literature Overview. In: LNCS, vol. 5292: Cham:

Springer Berlin Heidelberg 2016 (pp. 84–101).
17. Kleebaum Anja, Johanssen Jan Ole, Paech Barbara, Bruegge Bernd. Tool Support for Decision and Usage Knowledge in Continuous Software

Engineering. In: Krusche Stephan, Lichter Horst, Riehle Dirk, Steffens Andreas, eds. Proceedings of the 3rd Workshop on Continuous Software
Engineering, :74–77CEUR-WS.org; 2018; Ulm, Germany.

18. Kleebaum Anja, Johanssen Jan Ole, Paech Barbara, Alkadhi Rana, Bruegge Bernd. Decision Knowledge Triggers in Continuous Software
Engineering. In: Proceedings of the 4th International Workshop on Rapid Continuous Software Engineering:23–26ACM; 2018; Gothenburg,
Sweden.

19. Brunet João,MurphyGail C, TerraRicardo, Figueiredo Jorge, SereyDalton.Dodevelopers discuss design?. In: Proceedings of the 11thWorking
Conference onMining Software Repositories -MSR 2014:340–343ACMPress; 2014; Hyderabad, India.

20. Krusche Stephan, Alperowitz Lukas, Bruegge Bernd, Wagner Martin O.. Rugby: An Agile Process Model Based on Continuous Delivery. In:
Proceedings of the 1st InternationalWorkshop on Rapid Continuous Software Engineering:42–50; 2014; Hyderabad, India.

21. Krusche Stephan. Rugby - A ProcessModel for Continuous Software Engineering. PhD thesisTechnical UniversityMunich, Germany2016.
22. MyersMichaelD,NewmanMichael. TheQualitative Interview in ISResearch: Examining theCraft. Information andOrganization.2007;17(1):2–

26.
23. Runeson Per, Host Martin, Rainer Austen, Regnell Björn. Case Study Research in Software Engineering: Guidelines and Examples. Hoboken, N.J.:

JohnWiley & Sons; 2012.

JOHANSSEN ET AL. 27
24. Saldaña Johnny. The Coding Manual for Qualitative Researchers. Los Angeles ; London ; New Delhi ; Singapore ; Washington DC: SAGE

Publications; 2 ed.2009.
25. Torchiano Marco, Ricca Filippo. Six reasons for rejecting an industrial survey paper. In: 2013 1st International Workshop on Conducting

Empirical Studies in Industry (CESI):21-26; 2013; San Francisco, CA, USA.
26. KuhrmannMarco, Diebold Philipp, Münch Jürgen, et al. Hybrid Software and SystemDevelopment in Practice: Waterfall, Scrum, and Beyond.

In: Proceedings of the 2017 International Conference on Software and System Process:30–39ACM; 2017; Paris, France.
27. Mäkinen Simo, Leppänen Marko, Kilamo Terhi, et al. Improving the delivery cycle: A multiple-case study of the toolchains in Finnish software

intensive enterprises. Information and Software Technology. 2016;80:175 - 194.
28. Ståhl Daniel, Bosch Jan. Experienced Benefits of Continuous Integration in Industry Software Product Development: A Case Study. In:

Proceedings of the 12th IASTED International Conference on Software Engineering, SE 2013:736–743; 2013; Innsbruck, Austria.
29. Shahin Mojtaba, Ali Babar Muhammad, Zhu Liming. Continuous Integration, Delivery and Deployment: A Systematic Review on Approaches,

Tools, Challenges and Practices. IEEE Access. 2017;5(Ci):3909–3943.
30. Kevic Katja, Murphy Brendan, Williams Laurie, Beckmann Jennifer. Characterizing Experimentation in Continuous Deployment: A Case

Study on Bing. In: Proceedings of the 39th International Conference on Software Engineering: Software Engineering in Practice Track
(ICSE-SEIP):123-132; 2017; Buenos Aires, Argentina.

31. Dybå Tore, Dingsøyr Torgeir. Empirical studies of agile software development: A systematic review. Information and Software Technology.
2008;50(9-10):833–859.

32. AyedHajer, Vanderose Benoit, HabraNaji. Agile cultural challenges in Europe andAsia: insights from practitioners. In: Proceedings of the 39th
International Conference on Software Engineering: SEIP Track:153–162IEEE; 2017; Buenos Aires, Argentina.

33. Larusdottir Marta, Gulliksen Jan, Cajander Åsa. A license to kill – Improving UCSD in Agile development. Journal of Systems and Software.
2017;123:214–222.

34. O’Hanlon Charlene. A Conversation withWerner Vogels.Queue. 2006;4(4):14:14–14:22.
35. Johanssen Jan Ole. Continuous User Understanding for the Evolution of Interactive Systems. In: Proceedings of the ACM SIGCHI Symposium

on Engineering Interactive Computing Systems (EICS ’18):15:1–15:6ACM; 2018; Paris, France.
36. Johanssen Jan Ole, Henze Dominic, Bruegge Bernd. A Syllabus for Usability Engineering in Multi-Project Courses. In: 16. Workshop Software

Engineering imUnterricht der Hochschulen (SEUH):126–133; 2019; Bremerhaven, Germany.
37. KleebaumAnja, Johanssen JanOle, PaechBarbara, BrueggeBernd. TeachingRationaleManagement inAgile ProjectCourses. In: 16.Workshop

Software Engineering imUnterricht der Hochschulen (SEUH):134–145; 2019; Bremerhaven, Germany.
38. Bruegge Bernd, Krusche Stephan, Alperowitz Lukas. Software Engineering Project Courses with Industrial Clients. ACM Transactions on

Computing Education. 2015;15(4):17:1–17:31.

Howto cite this article: Johanssen JO,KleebaumA,PaechB, andBrueggeB.Continuous software engineering and its support byusage anddecision
knowledge: An interview studywith practitioners. J Softw Evol Proc. 2019;e2169. https://doi.org/10.1002/smr.2169

https://doi.org/10.1002/smr.2169

	Continuous Software Engineering and its Support by Usage and Decision Knowledge: An Interview Study with Practitioners
	Abstract
	Introduction
	Foundations
	Categories and Elements of Continuous Software Engineering
	Toward the Integration of Usage and Decision Knowledge into Continuous Software Engineering

	Study Design
	Research Questions
	Research Method
	Design and Planning
	Data Collection
	Data Analysis

	Threats to Validity

	Descriptive Study Data
	Companies
	Practitioners
	Projects

	Results on how Companies Apply CSE (RQ1)
	Practitioners' Definition of CSE
	Tool Perspective
	Methodology Perspective
	Developer Perspective
	Life Cycle Perspective
	Product Management Perspective

	Practitioners' Relevant Elements of CSE
	User Commitment
	Team Commitment
	Automated Loop

	Practitioners' Experience with CSE
	Developer
	Operation
	Software Management
	User
	Quality

	Practitioners' Future Plans for CSE
	Enhancement Strategy
	Expansion Strategy
	On-Demand Adaption Strategy

	Discussion on how Companies Apply CSE (RQ1)
	Eye of CSE
	Related Work

	Results on how Usage and Decision Knowledge can Support CSE (RQ2)
	Practitioners' Attitude toward the CURES Vision
	Practitioners' Perceived Benefits of the CURES Vision
	Accountability
	Traceability
	Parallel Feedback
	Automation
	Flexibility and Change Impact Analysis

	Practitioners' Perceived Obstacles of the CURES Vision
	Feasibility
	User Groups
	Applicability
	Cost
	Usability
	Privacy

	Practitioners' Extensions to the CURES Vision
	Automation
	Roles
	Run-Time
	Design-Time
	Human and Processes
	Commit

	Practitioners' Additions to the CURES Vision
	Integration
	Experimentation
	Interaction and Reaction
	Granularity
	Community
	Developer Focus

	Discussion on an Improved CURES Vision (RQ2)
	Conclusion
	Acknowledgments
	References

