
Introducing Continuous Delivery of Mobile Apps in
a Corporate Environment: A Case Study

Sebastian Klepper
TU München

Munich, Germany
sebastian.klepper@tum.de

Stephan Krusche
TU München

Munich, Germany
krusche@in.tum.de

Sebastian Peters
Capgemini

Munich, Germany
sebastian.peters@capgemini.com

Bernd Bruegge
TU München

Munich, Germany
bruegge@in.tum.de

Lukas Alperowitz
TU München

Munich, Germany
alperowi@in.tum.de

Abstract—Software development is conducted in increasingly
dynamic business environments. Organizations need the capa-
bility to develop, release and learn from software in rapid
parallel cycles. The abilities to continuously deliver software, to
involve users, and to collect and prioritize their feedback are
necessary for software evolution. In 2014, we introduced Rugby,
an agile process model with workflows for continuous delivery
and feedback management, and evaluated it in university projects
together with industrial clients.

Based on Rugby’s release management workflow we identified
the specific needs for project-based organizations developing
mobile applications. Varying characteristics and restrictions in
projects teams in corporate environments impact both process
and infrastructure. We found that applicability and acceptance
of continuous delivery in industry depend on its adaptability.
To address issues in industrial projects with respect to delivery
process, infrastructure, neglected testing and continuity, we
extended Rugby’s workflow and made it tailorable.

Eight projects at Capgemini, a global provider of consulting,
technology and outsourcing services, applied a tailored version of
the workflow. The evaluation of these projects shows anecdotal
evidence that the application of the workflow significantly reduces
the time required to build and deliver mobile applications in
industrial projects, while at the same time increasing the number
of builds and internal deliveries for feedback.

Index Terms—Release Management, Configuration Manage-
ment, Continuous Integration, Continuous Delivery, User Feed-
back, User Involvement, Agile Methods, Software Evolution

I. INTRODUCTION

Software development is conducted in increasingly dynamic
business environments. Fast-changing markets, complex and
changing customer requirements, pressure of shorter time-to-
market, and rapidly advancing information technologies are
characteristics found in most mobile software development
projects. Fitzgerald et al. found that 78 % of their interviewed
industry managers and executives think achieving digital trans-
formation is critical to their organizations, while 63 % said
their pace of technology change is too slow. [1]

One digital transformation happens in the sector of mobile
applications. Their usage increased by 113 % in 2013 and
another 76 % in 2014 and they increasingly involve critical
aspects of businesses [2]. Examples like flexible car-sharing
services, apartment sublets and others show that entire busi-
ness models are now based on mobile apps. User feedback is
essential in the development of mobile applications because
usability and user experience play an important role [3].

Users increasingly review mobile applications stating useful
comments, bug reports, their personal experience, and fea-
ture requests [4]. User involvement can help developers to
understand their needs, when their feedback is systematically
obtained and incorporated into the development process [5].

To deal with digital transformations, agile methods like
Scrum [6] advocate flexibility, efficiency and speed. Many
software companies succeeded in incorporating agile practices
into their development workflow [7]. At the same time other
functions inside those organizations (e.g. customer relations,
product management, and software releases) still follow tra-
ditional cycles measured in months or years instead of intro-
ducing an agile approach as e.g. described by Pichler [8].

Continuous software engineering refers to the organizational
capability to develop, release, and learn from software in rapid
parallel cycles [9]. It includes delivering software to users,
collecting and prioritizing their feedback, and incorporating it
into the next development cycle, leading to software evolution.
The capability to perform these activities in short cycles
requires the incorporation of a release management workflow
that automates the delivery of software changes to users [10].

In a project-based organization, stovepipes hinder an ef-
ficient implementation of continuous delivery because the
structure of the organization restricts the flow of information,
inhibiting or preventing cross-organizational communication
[11]. If there is no direct communication between teams,
knowledge silos build up and teams end up reinventing the
wheel, from activities of the release management workflow
to underlying software and even hardware infrastructure [12].
Even if the software organization takes measures to avoid
forming silos – e.g. centralizing IT to standardize infras-
tructure while establishing cross-functional teams to carry
knowledge between projects – they can still remain due to
constraints of the client organization.

Applying agile methodologies in software development
already requires a culture of openness among the project
members and a supportive management style. However, if
project teams are not able to adapt their release management
workflow to their specific needs and constraints, they might not
use it at all. This is why we introduce the concept of tailoring
[13] to Rugby’s release management workflow [14]. Certain
activities of the workflow are optional and the project team can
freely choose whether or not to employ them. Additionally,

each activity can be adapted to the project’s needs: how
an activity is carried out (e.g. manually or automatically)
can vary across projects, but the overall workflow and its
benefits remain. [15] Still, these building blocks form a turnkey
solution that enables projects to get started quickly. Compared
to a manual setup of workflow and infrastructure, time and
effort is saved and more projects are enabled.

This paper is organized as follows. We describe Rugby’s ini-
tial release management workflow in Section 2 and analyze its
applicability in eight industrial projects at Capgemini1 in Sec-
tion 3. Additional requirements found in personal interviews
with project managers lead to an extended workflow focused
on tailoring that we describe in Section 4. We evaluated this
workflow and its impact on industry projects and present our
findings in Section 5.

II. RUGBY’S RELEASE MANAGEMENT WORKFLOW

In 2014, we introduced Rugby [14], a lightweight process
model that includes concepts of Scrum [6] and the Unified
Process [16]. In Rugby, self-organizing teams develop software
in project-based organizations using the concept of sprints
following Scrum. In particular, Rugby includes release man-
agement and user feedback as additional workflows in the
software lifecycle model and allows developers to release soft-
ware event-based to users when they require feedback. Rugby
focuses on innovation projects where problem statements are
formulated as visionary scenarios and where requirements and
technologies can change during the project [17]. Requirements
can be further discussed and negotiated within the sprint. [14]

Fig. 1 shows Rugby’s release management workflow. It in-
corporates version control, continuous integration (CI), contin-
uous delivery (CD), and a feedback mechanism. The workflow
starts each time a developer pushes source code to the version
control server (step 1). This leads to a new build on the CI
server that notifies the developer about the build status, e.g.
via email or chat (step 2 and 3). If the build was successful
and after it passed all test stages, the release manager can
release the build on the CI Server which uploads the build
to the CD Server. Users are automatically notified about the
availability of the new release so that they can download it onto
their device (step 4 - 6). Within the application, they can give
feedback which is uploaded to the CD server and forwarded
to the issue tracker notifying the developer (step 7 - 11). This
workflow allows practices like “release early, release often”,
well established in open source software development [18],
resulting in continual improvement [19], [20].

Rugby focuses on the rapid, event-based delivery of mobile
applications and increases the number of releases and feed-
back reports. It is lightweight and improves the coordination
across multiple teams as well as the communication between
developers and customers. The use of executable prototypes
as communication models reduces the time spent for status
reports and discussion and helps in eliciting additional or

1Capgemini provides consulting, technology, outsourcing services and local
professional services. It is presented in over 40 countries with almost 140,000
employees. http://www.capgemini.com

20

Version
Control
Server

Developer

1

1

notify

upload
build

5

download

6

Issue
Tracker

notify

store crash reports and
feedback as issues

10

release4

Release  
Manager

checkout, compile
package build

2

upload crash reports
and feedback

use and give
feedback

9

Continuous
Integration

Server

Continuous
Delivery
Server

7

Device

8

User

inform about
build status

push

311

Fig. 1. Release management workflow used in Rugby (adapted from [21])

modified requirements during the project. The inclusion of
multiple feedback cycles allows developers to respond to user
feedback in a structured way with release notes to notify
users about changes in the updated release. We successfully
introduced and evaluated Rugby in a university setting with
industry clients. [14] In the next section we discuss how Rugby
can be extended for the use in real corporate environments.

III. APPLICABILITY IN INDUSTRIAL PROJECTS

We analyzed the development process for mobile applica-
tions in a global company with heterogeneous project envi-
ronments with respect to team size and project duration. We
interviewed eight project managers of Capgemini who develop
software solutions for external customers in different industry
sectors such as automotive, telecommunication and financial
services. The answers of the interviews revealed the following
key issues in the investigated projects:

There is no standardized delivery process for mobile ap-
plications. Projects have to rely on knowledge transfer from
other projects. Depending on size and complexity, existing
approaches might not fit. Therefore the same solutions are
reinvented by multiple teams because of the time constraints
within mobile projects and limited communication.

The infrastructure is not sufficient for the delivery of mobile
applications. It contains the basic development tools such as
an issue tracker, a version control repository and an integration
server, but these tools are not pre-configured for mobile
projects and the development team is responsible for the

configuration. A solution for automatic delivery is missing,
some projects decide to create their own one.

Automatic testing is neglected in favor of development
speed, mainly because the setup effort is too high in mobile
projects, which are typically rather short-living. This especially
affects unit, system and integration tests. Acceptance testing
with the customer is done manually, but not regularly.

Continuity is missing in the development. Even if projects
write tests, they rarely automate them. Continuous integration
is only taken seriously by very few mobile projects. Even if
projects use a build server and a delivery solution, integration
and delivery are still done sporadically instead of continuously.
How often a version is delivered to the customer is sometimes
rather driven by the contract and not by development needs.

We asked the project managers why these issues occurred
and why they do not yet apply a standardized workflow for
continuous integration and continuous delivery as e.g. defined
in Rugby. From their answers, we extracted the following
additional requirements that need to be addressed by project-
based organizations like Capgemini that consider to apply
continuous delivery in their mobile projects:

Mobile applications are targeting different platforms, some
of them are developed natively, but in different programming
languages, others using cross-platform frameworks. The con-
tinuous delivery workflow should therefore support multiple
platforms. Business critical applications require a high amount
of security. Customer contracts e.g. do not allow to store
applications on cloud-services. Access control and data pri-
vacy are important topics and should be considered. Due to
pricing pressure, projects are outsourced to offshore locations.
It should be possible to apply activities of the workflow in
different countries for globally distributed teams.

Applications are developed for multiple markets, thus dif-
ferent legal aspects regarding the distribution of applications
need to be considered. Different project environments should
be supported by modular standardized components, that can
be easily adapted and maintained. Managers should be able to
collect metrics about the current state of the project. Larger
mobile application projects require dependency management
for the use of external and internal frameworks. The delivery
and feedback system should distinguish between automatic
and user-generated feedback. Furthermore, it should be possi-
ble to deliver an application manually.

In a company with heterogeneous project environments it is
not possible to introduce one single, out-of-the-box workflow
for all projects. Instead, project managers must be able to
tailor the workflow to their own needs. To address the addi-
tional requirements, we extended Rugby’s release management
workflow. We aim to provide flexible activities as building
blocks that can be combined depending on the individual
characteristics of a given project.

IV. EXTENDING AND TAILORING RUGBY’S WORKFLOW

Using Rugby’s release management workflow as basis, we
split it up into the activities configuration management (includ-
ing version control and dependency management), continuous

integration, continuous delivery and feedback, that may be
optional or provide variations. We modified and extended
each activity to increase both functionality and flexibility.
The resulting tailored workflow is presented in Fig. 2. Its
major components are the activities configuration manage-
ment, integration, delivery and feedback. Scope and transitions
of activities are described in detail to provide projects with
multiple variants of how each activity can be carried out (see
Fig. 2a).

The extended workflow provides tailoring by the possibility
to distinguish between mandatory and optional activities. In
particular, projects can modify the workflow depending on
project size, complexity, staffing, timeline and priorities. For a
better understanding of how a tailored version of our workflow
could be instantiated, we describe two examples that we have
observed at Capgemini:

Large and complex project (see Fig. 2b): Version control
uses an extensive branching model in combination with a full-
fledged dependency management system (DMS). Builds are
triggered manually since the integration system has to resolve
dependencies, build a hybrid core app first and then include
native wrappers for several platforms. It runs unit and system
tests, and also integration tests with a backend API as well as
automated acceptance tests for the user interface. Upload to
the delivery service occurs automatically and emails are auto-
forwarded using lists and filters managed on an email server.
Feedback is solely collected automatically from within the app
usage and relayed to the issue tracker, which also keeps track
of changes and builds.

Small and simple project (see Fig. 2c): Version control uses
a compact branching model, but dependencies are kept in the
repository instead of a full-fledged DMS. The project has to
build a single native app and uses an integration system that
automatically fetches changes and runs a few unit and system
tests. Apps are then uploaded manually to the delivery service
and delivery emails are forwarded manually to users. Feedback
is collected from users via phone, email and personal meetings.

Additional requirements and constraints mentioned before
have been considered in our implementation: Our release
mechanism is based on email and can be configured using
mailing lists, removing the need for team members to learn
new tools. We developed a custom-built, centralized delivery
service developed in Java using modern web frameworks. This
avoids uploading client data to cloud services and enables both
manual and automated delivery – constraints that prevent the
use of available services as e.g. HockeyApp2 or TestFlight3.
The integration system has been rebuilt from scratch, using
available infrastructure and open-source components such as
Jenkins4 and suitable plugins. It can be ordered from central IT
as a turn-key solution running in an isolated virtual machine.
While it comes with a basic configuration, projects can adapt
the entire tool set to their specific needs.

2http://www.hockeyapp.net
3http://www.testflightapp.com
4http://jenkins-ci.org

Developer	

Build	2.1	

Upload app	3.1	

Test	2.2	

Delivery	
Service	

User	

Download app	3.4	

Send email	3.2	

Integration	
System	

Repository	

Push changes	1.1	

Observe/notify	
to trigger build	

1.2	

Package	2.3	

Collect metrics	2.4	

Send user-‐‑gene-‐‑	
rated feedback	

4.3	

Issue	
Tracker	

Observe changes	1.5	

Observe / notify	
about build	

2.5	

Resolve	
dependencies	

1.4	

Send automatic	
feedback	

4.1	

Forward email	3.3	

Update status	4.4	

Release	
Manager	

Update status	4.2	

 Integration	Configuration	
Management	 Delivery	 Feedback	

Fetch changes	1.3	

(a) Standard workflow, basis for tailoring: au-
tomatic build, automatic upload, manual dis-
tribution, both automatic and user-generated
feedback

Developer	

Build	2.1	

Upload app	3.1	

Test	2.2	

Delivery	
Service	

User	

Download app	3.4	

Send email	3.2	

Integration	
System	

Repository	

Push changes	1.1	

Trigger build	1.2	

Package	2.3	

Collect metrics	2.4	

Issue	
Tracker	

Observe changes	1.5	

Notify about build	2.5	

Resolve	
dependencies	

1.4	

Send automatic	
feedback	

4.1	

Forward email	3.3	

Email	
Server	

Update status	4.2	

 Integration	Configuration	
Management	 Delivery	 Feedback	

Fetch changes	1.3	

Release	
Manager	

(b) Example of tailored workflow for large
project: manual build, automatic upload and
distribution, only automatic feedback

Developer	

Download app	3.0	

Delivery	
Service	

User	

Integration	
System	

Repository	

Release	
Manager	

Upload app	3.1	

Issue	
Tracker	

 Integration	Configuration	
Management	 Delivery	 Feedback	

Send email	3.2	

Forward email	3.3	

Build	2.1	

Test	2.2	

Package	2.3	

Trigger build	1.2	

Push changes	1.1	

Fetch changes	1.3	

Download app	3.4	

Send user-‐‑gene-‐‑	
rated feedback	

4.3	

Update status	4.4	

(c) Example of tailored workflow for small
project: no dependency resolution, no metrics,
manual upload, only user-generated feedback

Fig. 2. Extended and tailorable release management workflow with color-coding to indicate activities

It is important to note that the implementation of this
workflow requires collaboration between several individuals
as well as departments. The organizational transformation
necessary to introduce and subsequently fine-tune this process
involves even more detailed descriptions of aspects such as
responsibilities, approval process, project-specific resources,
reporting structures etc. However, this is not part of our
discussion and covered in depth by others like Humble [10]
and Poppendiek [22].

V. EVALUATION

Our goal was to measure the effect of our extended and
tailorable workflow on adoption and impact of continuous
integration and delivery in mobile projects. We evaluated how
the workflow is applied by project teams and how it influences
their development process. Regarding continuous integration,
we were concerned with the degree to which the project has
adopted a continuous workflow as well as what and how
they test, which metrics they collect and how they use them.
Regarding continuous delivery, we were interested in the value
of using the delivery service in combination with an integration
system. We also looked at how this transforms the quantity,
quality and nature of feedback the project receives from users.
Overall, we addressed the following research questions:

• RQ 1 Integration: How are projects building and testing
changes and how often and timely are they doing it?

• RQ 2 Testing: Which types of tests are projects employ-
ing and how are these tests run respectively?

• RQ 3 Metrics: Which metrics are collected, how are they
collected and how is the information used?

• RQ 4 Delivery: How are projects delivering new builds
to users, how much time and effort does it cost and how
many users can be reached?

• RQ 5 Feedback: Which feedback channels are used, how
frequently is feedback collected and what is the quality
of feedback?

A. Study Design

To evaluate our tailored workflow, we introduced it in eight
mobile projects of Capgemini with customers from different
industrial sectors.5 We asked project managers to participate in
a survey including both qualitative and quantitative questions.
Additionally, informal interview questions were included for
survey participants to further elaborate on the setup, activities,
and situation in their project and to share their opinion about
our solution.

5Projects used for field-testing the workflow are the ones we surveyed to
identify constraints in Section 3.

We chose personal interviews using a survey as evaluation
method to find qualitative and quantitative data. We wanted
to know how project members use the workflow and how
often they use it. We designed our survey to be akin to an
expert interview to benefit from the technical and domain
expertise of participants. We chose interviewees according to
their technical and process knowledge. The format of a survey
avoids problematic aspects of an interview such as lack of
structure or influence by personality or setting [23].

Survey participants were project managers with multiple
years of experience in the mobile domain and insights into
how mobile projects work. All surveyed projects were fa-
miliar with agile methodologies and the integration system
was already known within the company. However, there was
little experience with automated delivery in general and no
experience with our custom-built delivery service. Measured
size and complexity of the surveyed projects revealed that
both team and codebase of mobile projects are rather small
compared to non-mobile software projects within the same
company, which have up to ten times as many members.

B. Findings

We grouped our findings into five categories according to
our research questions: integration, testing, metrics, delivery,
and feedback. In each category we analyzed the overall impact
of our solution as well as project advancements in detail. The
majority of projects have adopted the new workflow with 75 %
now using both integration system and delivery service for re-
lease management, most of them added continuous integration
for the first time. The remainder either introduced continuous
integration or just used the manual delivery workflow.

a) Integration: While the primary goal of our solution
is to move projects to continuous delivery, a prerequisite is
to move them to continuous integration [10]. We determined
how many projects use a build server, how dependencies are
managed and how immediately changes are built and tested.
Usage of an integration system increases with a turn-key
solution available, although some projects have their build
server located at the client due to special requirements.

The high setup effort reportedly was a primary factor
preventing projects from practicing continuous integration. De-
pendencies are now managed in a more structured manner with
most projects using both a dependency management system
and version control system. The effect of these improvements
on the integration process is visible in Fig. 3: Instead of
testing changes only sporadically, projects now either integrate
changes immediately or at least regularly, e.g. in a nightly or
weekly build.

b) Testing: Keeping in mind that the effort of defining
and implementing tests remains unchanged, we looked at
whether projects test more or differently when the right
infrastructure is made available. Fig. 4 compares types of tests
employed and the respective method of testing before and after
introduction of our integration system. The introduction of a
build server mainly transforms the way those tests are run:
Unit, integration, and system tests become automated to a

38%	

13%	

38%	88%	

25%	

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

Before	 After	

Immediately	 Regularly	 Sporadically	

Fig. 3. Percentage of projects that integrate changes with respective fre-
quency/immediacy (before and after workflow introduction)

great extent, reducing the time and effort required for manual
testing. Results are immediately visible to all project members,
leading to faster detection of bugs and regressions, improving
software quality and reducing risk [24].

The overall percentage of tests run in a fully or semi-
automated fashion quadruples. This improvement already
saves projects a significant amount of time and enables the
higher immediacy of integration seen in Fig. 3. Both functional
and non-functional acceptance tests as well as additional types
like usability of exploratory tests are still conducted manually.
This kind of testing does not lend itself well to automation –
at least not without significant effort and a highly individual
setup [25], [26]. This would defeat the purpose of our approach
and is reportedly not deemed worth the effort.

13%	

38%	 38%	

13%	

13%	

38%	

13%	

38%	

13%	

38%	

50%	
63%	

13%	

75%	

38%	

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

Before	After	 Before	After	 Before	After	
Unit	 Integration	 System	

Automated	 Semi-‐‑automated	 Manual	

Fig. 4. Percentage of projects that apply certain types of tests with respective
degree of automation (before and after workflow introduction)

c) Metrics: Our integration system allows projects to
collect various metrics. This allows developers and project
managers to gain deeper insights into the codebase, integration
process and state of the project [27], [28]. We examined which
metrics the projects collect, how they collect them and what
the results are used for: Static analysis tools provide codebase

metrics like code quality and test coverage. This information
is mainly used for continuous quality assurance throughout
the project. The integration system reports integration metrics
like build success rate or duration of build and test steps.
Projects use this for status monitoring and take action when
they encounter failing builds or long-running tests.

Finally, project metrics like velocity and cycle time can
be obtained from the issue tracker for decision support. The
issue tracker is ideally connected to both the repository and
the integration system and acts as a “single source of truth”
regarding state and progress of the project. Fig. 5 shows that
a majority of projects makes use of these possibilities while
employing automatic metrics collection instead of collecting
a few metrics manually or using scripts.

8%	

65%	
75%	

38%	
13%	

5%	

6%	 8%	

5%	

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

Before	After	 Before	After	 Before	After	
Codebase	 Integration	 Project	

Automated	 Semi-‐‑automated	 Manual	

Fig. 5. Percentage of projects that collect certain types of metrics with
respective degree of automation (before and after workflow introduction)

d) Delivery: Having implemented a custom delivery
service that supports various degrees of automation, we were
interested in its impact on complexity, effort, and duration of
delivery. About 60 % of projects opted for semi-automatic
delivery, i.e. including a manual control step between gener-
ation of a releasable build and its delivery to users, while the
other 40 % chose to fully automate the process. Automation
and simplification yield a reduction in both time and effort
required for delivery: Getting a new version in the hands of
users now takes fewer steps and requires fewer team members
to be involved.

Number of steps required for delivery (e.g. building, sign-
ing, packaging, uploading the app and then notifying everyone)
reduced from 5 to 1 (median). Projects with a more compli-
cated release process were even able to reduce complexity
from 10 to 1 (median). Likewise, involvement of team mem-
bers in the delivery process was reduced by 25 % (median),
in most cases requiring only one release manager. Before the
introduction of an automated process, deliveries required one
hour up to an entire business day. Projects were able to reduce
this duration to 5 minutes (median).

These time savings implicitly improve cycle time and free
up project members to address other tasks [10], [29]. As a
side effect, projects reportedly plan to involve more external

users in the future, now that complexity of delivery no longer
increases with number of users.

e) Feedback: Finally, we were interested in whether
applying continuous delivery not only saves time and effort but
also increases the quantity and/or quality of feedback that can
be collected from users. Because actual quantity of feedback
is hard to measure and compare, frequency of collection was
used as a proxy. Our results show which channels are utilized
for feedback collection: For weekly feedback collection, 90 %
of projects use email and phone, followed by meetings (50 %)
and software tools (25 %). 40 % of projects supplement this
with additional meetings, virtual meetings or custom tools on
a less frequent basis.

Projects prefer channels that yield unstructured feedback
and state ease of use as the primary reason for this. Reportedly,
channels that facilitate personal communication also yield the
best feedback quality. More frequent delivery as well as better
integration between tools also yield more defined feedback.
These findings correspond to the ones that we reported in [21].

C. Threats to Validity

We designed the survey to gain insight into the development
process of mobile projects and to measure the impact of our
release management workflow. We thoughtfully worded each
question to avoid ambiguity of leading questions and carefully
selected both test projects and survey participants. Despite
our best efforts, our results may be subject to the following
limitations:

• Reliability: Factors such as duration of the evaluation
period, number of metrics, or level of detail may have
influence on the reliability of our results. In any case,
we can consider our findings anecdotal evidence for the
impact of continuous delivery on mobile projects in a
corporate environment [23].

• Generalizability: Number of projects and variation of
project characteristics may be too low in order to achieve
generalizeable results [30]. For example, we did not find a
correlation between project size or complexity and any of
the observed effects since the data is not sufficient to yield
significant results. However, consistent results across all
surveyed projects are an indication that our results apply
to other projects as well.

• Selection bias: Projects participating in our survey may
have already worked in an agile fashion and had a special
interest in automated integration and delivery [30]. Al-
though this might skew the impact of our solution to the
positive, cultural acceptance generally is a prerequisite
for successful agile projects [10], [31].

• Researcher bias: Bias caused by an appreciation for agile
in general or our solution in particular as well as the
positive results of our previous study [14] may have
influenced the wording of our questions. To alleviate
this threat, we chose survey participants with a level of
expertise that allows them to correct for ambiguity and
added open-ended questions to encourage full, meaning-
ful answers [23].

VI. CONCLUSION

In this paper we showed how to introduce continuous
delivery in a corporate environment where no standardized
workflow for mobile projects existed before. Projects had to
reinvent the wheel and created isolated solutions for the inte-
gration and delivery of apps when we investigated the current
state at Capgemini, a global provider of consulting, technology
and outsourcing services. Based on Rugby’s release manage-
ment workflow we analyzed the specific needs for continuous
delivery in a heterogeneous project-based organization.

When comparing project-specific setups in the company
with centralized services in university, we found that the
decentralized nature of projects and the varying project charac-
teristics impact the development process and infrastructure. We
aimed to answer how Rugby’s workflow needs to be extended
in order to fit these requirements and restrictions and how
much value continuous delivery provides to mobile projects
under these conditions. The heterogeneity of the projects made
it necessary to introduce tailoring in the workflow.

To address key issues in industrial mobile projects with
respect to development process, infrastructures, neglected test-
ing and continuity, we extended Rugby’s release management
workflow and made it tailorable, by splitting it into four ac-
tivities – configuration management, integration, delivery and
feedback – with optional and configurable steps. The tailorable
workflow allows project managers to choose a solution that fits
to their project environment and if necessary to incrementally
introduce the components step by step.

We applied and evaluated our tailored workflow in eight mo-
bile projects with diverse project environments and customers.
We addressed research questions with respect to integration,
testing, metrics, delivery and feedback. We found that duration
of integration and delivery significantly decreased while their
frequency increased. The investigated projects value the pos-
sibilities of automated testing and metrics collection. Due to
the close evaluation after the introduction of the workflows we
could not find significant changes in the feedback collection.
From our evaluation, we have first anecdotal evidence that
the tailored workflow provides a good compromise between
technical promises and actual business needs.

The value of the introduced workflow is appreciated, espe-
cially the low time and effort required for setup that allows
projects to get started quickly. Still, there is potential for
improvement and expansion. The existing components already
have the potential for highly complex and individual setups,
e.g. finer control over the build process with build matrices
and branch filters, automated user interface tests, or integration
tests with a backend built in parallel. The next step is to apply
a longer observation period to improve the incorporation of
user needs and evaluate whether development behavior (e.g.
number and size of commits) as well as feedback (e.g. quality
and quantity) will change over time. Overall, we expect our
work to be a strong basis for the agile development of mobile
applications using continuous delivery in a standardized but
customizable fashion in corporate environments.

REFERENCES

[1] M. Fitzgerald, N. Kruschwitz, D. Bonnet, and M. Welch, “Embracing
digital technology: A new strategic imperative,” MIT Sloan Management
Review in collaboration with Capgemini Consulting, 2013.

[2] S. Khalaf, “Flurry analytics insights,” 2015, retrieved February 26, 2015
from http://www.flurry.com/blog/flurry-insights.

[3] S. Krusche and B. Bruegge, “User feedback in mobile development,” in
Proceedings of the 2nd International Workshop on Mobile Development
Lifecycle. ACM, 2014, pp. 25–26.

[4] D. Pagano and W. Maalej, “User feedback in the appstore: An empirical
study,” in Proceedings of the 21st International Requirements Engineer-
ing Conference. IEEE, 2013, pp. 125–134.

[5] D. Pagano and B. Bruegge, “User involvement in software evolution
practice: a case study,” in Proceedings of the 2013 international confer-
ence on Software engineering. IEEE, 2013, pp. 953–962.

[6] K. Schwaber and M. Beedle, Agile software development with Scrum.
Prentice Hall, 2002.

[7] VersionOne, “8th annual state of agile survey,” 2014, http://www.
versionone.com/pdf/2013-state-of-agile-survey.pdf.

[8] R. Pichler, Agile product management with scrum: Creating products
that customers love. Addison-Wesley Professional, 2010.

[9] J. Bosch, “Continuous software engineering: An introduction,” in Con-
tinuous Software Engineering. Springer, 2014, pp. 3–13.

[10] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Addison
Wesley, 2010.

[11] C. Handy, Understanding organizations: managing differentiation and
integration. Oxford University Press, 1993.

[12] W. Brown, H. McCormick, T. Mowbray, and R. Malveau, AntiPatterns:
refactoring software, architectures, and projects in crisis. Wiley, 1998.

[13] O. Pedreira, M. Piattini, M. Luaces, and N. Brisaboa, “A systematic
review of software process tailoring,” SIGSOFT SE Notes, vol. 32, no. 3,
pp. 1–6, 2007.

[14] S. Krusche, L. Alperowitz, B. Bruegge, and M. Wagner, “Rugby: An
Agile Process Model Based on Continuous Delivery,” in Proceedings of
the 1st International Workshop on RCoSE. ACM, 2014, pp. 42–50.

[15] G. Kalus and M. Kuhrmann, “Criteria for software process tailoring: A
systematic review,” in Proceedings of ICSSP. ACM, 2013, pp. 171–180.

[16] I. Jacobson, G. Booch, J. Rumbaugh, J. Rumbaugh, and G. Booch, The
unified software development process. Addison-Wesley, 1999.

[17] B. Bruegge, S. Krusche, and M. Wagner, “Teaching Tornado: from
communication models to releases,” in Proceedings of the 8th edition
of the Educators’ Symposium. ACM, 2012, pp. 5–12.

[18] J. Feller, Perspectives on free and open source software. MIT, 2005.
[19] L. Zhao and S. Elbaum, “A survey on quality related activities in open

source,” SIGSOFT Software Engineering Notes, vol. 25, no. 3, pp. 54–
57, 2000.

[20] M. Aberdour, “Achieving quality in open-source software,” Software,
vol. 24, no. 1, pp. 58–64, 2007.

[21] S. Krusche and L. Alperowitz, “Introduction of Continuous Delivery
in Multi-Customer Project Courses,” in Proceedings of the 36th ICSE.
IEEE, 2014, pp. 335–343.

[22] M. Poppendiek and T. Poppendiek, Implementing Lean Software Devel-
opment: From Concept to Cash. Addison Wesley, 2006.

[23] L. Van Audenhove, “Expert interviews and interview techniques for
policy analysis,” Vrije Universiteit Brussel, 2013.

[24] P. Duvall, S. Matyas, and A. Glover, Continuous integration: improving
software quality and reducing risk. Pearson Education, 2007.

[25] L. Crispin and J. Gregory, Agile Testing: A Practical Guide for Testers
and Agile Teams. Addison Wesley, 2009.

[26] B. Marick, “Agile testing directions: tests and examples,” 2003, retrieved
February 26, 2015 from http://www.exampler.com/old-blog/2003/08/22.

[27] N. Fenton and J. Bieman, Software metrics: a rigorous and practical
approach, 3rd ed. CRC Press, 2014.

[28] M. Lorenz and J. Kidd, Object-oriented software metrics: a practical
guide. Prentice-Hall, 1994.

[29] M. Poppendiek and T. Poppendiek, Lean Software Development: An
Agile Toolkit. Addison Wesley, 2003.

[30] D. Willimack et al., “Evolution and adaption of questionnaire devel-
opment, evaluation, and testing methods for establishment surveys,”
Methods for Testing and Evaluating Questionnaires, pp. 385–407, 2004.

[31] P. Gorans and P. Kruchten, “A guide to critical success factors in agile
delivery,” IBM Center for The Business of Government, 2014.

