User Feedback in Mobile Development

Stephan Krusche

Technische Universitit Miinchen
krusche@in.tum.de

Abstract

Developers need to obtain feedback early to build appli-
cations that fit to the users needs. In this paper we show
how the combination of two approaches enables develop-
ers to continuously improve usability and user experience
of mobile applications. The Tornado model is a light-weight
scenario-based approach for producing executable proto-
types. Rugby, an agile process model based on Scrum, al-
lows the developer to continuously deliver these prototypes
at any time during a sprint to obtain feedback.

Categories and Subject Descriptors D.2.9 [Software En-
gineering]: Management—Programming teams, Software
configuration management, Software process models

Keywords Agile Methods, Release Management, Feed-
back, Continuous Delivery, Executable Prototypes, Com-
munication Models, User Involvement

1. Introduction

With the incorporation of agile methods, software engineer-
ing has gained more flexibility, efficiency and speed. Feed-
back plays a more and more important role in the develop-
ment process. Teams need to incorporate the opinions of end
users as early as possible to build great applications. Mo-
bile applications usually require high usability and user ex-
perience and developer need to perform usability testing to
check the usefulness of their application.

2. Tornado

Tornado is a light-weight scenario-based design approach
that emphasizes the use of informal models for the interac-
tion between developers and users. [1] It is used in inno-
vation projects where problem statements are formulated as

Paper published at MobileDeLi 2014 - preprint version

Bernd Bruegge

Technische Universitit Miinchen
bruegge®@in.tum.de

visionary scenarios and where requirements and technolo-
gies change often. In such cases, clients typically want de-
velopers to explore multiple ideas before they decide how
vague requirements are realized. The Tornado process starts
with visionary scenarios (wide in analysis) funneling down
to demo scenarios (narrow in implementation) and relies on
early and regular delivery of executable prototypes (touch-
points) as well as user feedback (updrafts), see Fig. 1.

Visionary scenario

™ Release

scenario [Feedback

Figure 1. Tornado model (adapted from [1])

To get an early grasp of the user model, developers focus
on low fidelity prototypes. Researcher (e.g. [6]) have shown
that unpolished user interfaces receive more feedback from
end users than polished ones. An example for the evolution
from rough sketches (left) over low-fidelity prototypes to the
delivered application (right) is shown in Fig. 2.

Figure 2. Exemplary evolution of the user interface [2]

Low fidelity prototypes focus on getting feedback about
the user interface as early as possible. They are cheap to
produce, easy to change and allow the rapid production of
alternatives enabling the client to explore design possibili-
ties and reformulate the initial requirements. [6] Using exe-
cutable prototypes, developers are able to test the usability
of the application with end users early in the design process.

2014/10/21

Based on these tests they receive more feedback than they
would receive when using the final, polished user interface.
The feedback helps to adapt the visionary scenarios.

3. Rugby

Rugby is an agile process model based on Scrum [7] and
the Unified Process [3].! Self-organizing teams develop it-
eratively in project-based organizations and apply two new
workflows, release and feedback management. Fig. 3 shows
Rugby’s release management workflow that starts each time
a Developer pushes source code to the Version Control
Server (1), leading to a new build in the Continuous Integra-
tion Server (2) that informs the Developer about the build
status (3). The Release Manager releases successful builds
(4) that are uploaded to the Continuous Delivery Server (5),
which notifies the User about the new release (6). The User
downloads the release (7) onto his mobile Device and pro-
vides feedback (8) that is automatically uploaded (9) and
forwarded to the Issue Tracker (10), which notifies the De-
veloper (11).

970 © - O 9

notify "/, inform about L &
Doveloper 21 Status 3::‘9::; eer
push lo olre\ease give leedbackle

°%e AN upload ° download —

v o % b Gg—> e
checkout, compile

)

oL e
Version and test build Continuous T Continuous
—
Issue Control Integration Delivery _
Tracker Server Server Server upload feedback e Device
m store feedback as issues

Figure 3. Rugby’s continuous delivery workflow [4]

Rugby uses executable prototypes as basis for communi-
cation between developers and users. Developers can hardly
discuss user interface issues without an executable prototype
running on a mobile device. Therefore, Rugby allows re-
leases during sprints, whenever feedback is required or when
a client requests it. Fig. 4 illustrates four types of releases
supported by Rugby.

Sprmt Start -~ Sprint End
a2 @
Developer User Manager Cus(omer
g] WA [I
Master "f - T ‘ -
Branch
1
Development
Branch
\ °
F . @ Non-releasable build
eature @ Releasable build
Branches 00— 1) Release

Figure 4. Event-based delivery in Rugby [4]

Developers use feature branch releases in meetings to
demonstrate development status to their team members (1).
This improves the quality of the communication in meetings,
in particular, it shortens the time required to discuss imple-
mentation details. They can also use releases from feature

! The term rugby was first used by Takeuchi and Nonaka [8].

Paper published at MobileDeLi 2014 - preprint version

branches to obtain feedback from users about the develop-
ment status of the feature (2). Managers can receive releases
from the development branch to track finished features (3).
Master branch releases are time-based at the end of a sprint,
similar to Scrum’s product increments, and are automatically
produced for sprint review meetings (4). Branches increase
the flexibility, because developers can use internal releases
to test software and promote releases to external users.

Rugby includes a feedback management workflow. De-
pending on the change request, developers initiate different
workflows. Fig. 5 shows four usage scenarios to deal with
user feedback. Developers categorize each feedback accord-
ing to its type and handle it in different workflows: feature
requests in the analysis workflow, design requests in the de-
sign workflow (F3) and bug reports in the implementation
workflow (F2). During a sprint, they can also decide to resist
feedback and move it to the product backlog (F1).

Issue
------ Tracker
F3: Design
Change

Feedback
Management
L
-
Developer
Development--

\," Feedback ___
€ Provision

User v Key
RBE———— | 4 Release

F15 — 2 Feedback

Figure 5. Rugby’s feedback workflow (adapted from [5])

4. Conclusion

In this paper we described how two approaches, Rugby and
Tornado, help software developers to obtain feedback early
and continuously. Feedback is especially important in the
development of mobile applications, where usability and
user experience play an important role.

References
[1] B. Bruegge, S. Krusche, and M. Wagner. Teaching Tornado. In
EduSymp. ACM, 2012.

[2] D. Dzvonyar, S. Krusche, and L. Alperowitz. Real Projects
with Informal Models. In EduSymp, 2014.

[3] P. Kruchten. The Rational Unified Process. Addison-Wesley,
2004.

[4] S. Krusche and L. Alperowitz. Introduction of Continuous
Delivery in Multi-Customer Project Courses. In ICSE, 2014.

[5] S. Krusche, L. Alperowitz, B. Bruegge, and M. Wagner. Rugby:
An Agile Process Model Based on Continuous Delivery. In
RCoSE, 2014.

[6] J. Rudd, K. Stern, and S. Isensee. Low vs. high-fidelity proto-
typing debate. Interactions, 1996.

[7] K. Schwaber and M. Beedle. Agile Software Development with
Scrum. Prentice Hall, 2002.

[8] H. Takeuchi and I. Nonaka. The new new product development
game. Harvard business review, 1986.

2014/10/21

