Experiences of a Software Engineering
Course based on Interactive Learning

Stephan Krusche, Nadine von Frankenberg, Sami Afifi

Technische Universitat Miinchen, Munich, Germany

krusche@in.tum.de, nadine.frankenberg@tum.de, afifi@mytum.de

Abstract

Learning to apply software engineering requires prac-
tical experience, and can not be taught through tra-
ditional theory-based lectures. Interactive learning is
an approach that combines lectures and exercises into
multiple iterations of theory, example, exercise, solu-
tion and reflection. It is based on active, computer
based and experiential learning and on immediate
feedback to improve the learning experience in large
classes. It includes hands-on activities with the goal
to increase students’ motivation and engagement.

This paper describes an interactive learning course
design that includes multiple choice quizzes and inter-
active tutorials as in-class exercises and a team project
in which students apply their knowledge in a different
setting. Based on this course design, we present a case
study with 300 students in 2016. An evaluation shows
that students are more engaged and motivated, if they
practically apply and exercise the previously learned
theory in the classroom. By providing students with
both, theoretical foundations and practical exercises,
their learning experience improves.

1 Introduction

Software engineering (SE) requires practical appli-
cation of knowledge (Connolly et al., 2007; Shaffer,
2004), because it is an interactive and collaborative
activity (Whitehead, 2007). In particular, project man-
agement in SE is an activity that requires practical
experience. The learning experience of students is low
when educators disregard the practical relevance of
SE and do not handle real problems in a course (Cun-
liffe, 2002). Interaction with students is limited if the
learning activities focus on the educator in front of
the classroom. Then, students’ participation and moti-
vation are low and the learning outcome decreases.

Educators can apply self-guided learning, personal
responsibility, practical relevance and individualiza-
tion to overcome this problem. Several pedagogic
theories have been developed that include these el-
ements: Problem-based learning teaches a subject
through the experience of problem solving. Educators
support, guide, and monitor this process (Boud and

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

Feletti, 1998). Cooperative learning organizes class-
room activities into social learning experiences: Stu-
dents complete exercises in groups towards a common
goal (Johnson et al., 1991). Computer based learning
allows students to learn through computer-mediated
activities (Garrison and Kanuka, 2004). Experiential
learning is the process of learning from experience and
reflecting about it (Kolb, 1984). Active learning pro-
motes that students actively participate in the learning
process (Bonwell and Eison, 1991). Instead of only
passively listening, they are involved in exercises and
engaged in solving problems.

We developed a course that includes a mix of these
approaches and teaches SE concepts through inter-
active learning (Krusche et al., 2017). The course
includes interactive tutorials and quizzes as activating
in-class exercises where students immediately receive
feedback to reflect about their performance. It also
integrates team based exercises in which students ap-
ply the knowledge in a different situation to deepen
their understanding and to increase their knowledge
retention.

While the integration of multiple learning theories
and exercise types increases the effort for educators,
it can lower their stress and it can lead to higher sat-
isfaction for educators and learners (Ben-Ari et al.,
2003). We base our teaching methodology on a Chi-
nese proverb: “Tell me and I will forget. Show me and I
will remember. Involve me and I will understand. Step
back and I will act” (Korthagen et al., 2001). It empha-
sizes that involving students into the learning process,
activating them in the classroom, is the key for their
understanding. Self-guided and problem-based learn-
ing let students take responsibility to solve a problem
on their own, using concepts they learned before.

The paper is organized as follows: Section 2 de-
scribes active learning and the Revised Bloom’s Tax-
onomy as foundations of the learning theories in our
course. In Section 3, we present the course design
that follows an interactive learning approach with an
iterative process combining lectures and exercises into
short cycles. Section 4 presents a case study about a
large software engineering course with 300 students
in which we applied interactive learning. In Section 5,

32

Stephan Krusche, Nadine von Frankenberg und Sami Afifi - Experiences of a Software Engineering Course based on Interactive Learning

we present the findings of an evaluation of this case
study. Section 6 discusses related work and Section 7
concludes the paper.

2 Foundations

Active learning is an educational approach to increase
student involvement with the subject being taught. In-
stead of students acting as receivers of knowledge by
passively listening to lectures, active learning puts the
emphasis on developing student skills and engaging
them in activities. Bonwell and Eison define active
learning as “anything that involves students in doing
things and thinking about the things they are doing”
(Bonwell and Eison, 1991). The active learning ap-
proach draws from constructivist learning theories
and can be summarized in four main premises (Bro-
phy and Good, 1994):

1. Learners construct their own meanings

2. New learning builds on prior knowledge

3. Learning is enhanced by social interaction

4. Meaningful learning develops through “authentic”
tasks

Grabinger and Dunlap emphasize that authentic
contexts encourage students to take more responsi-
bility and engage them in learning activities that pro-
mote high level thinking processes (Grabinger and
Dunlap, 1995). In SE education, an authentic con-
text would be a software project where students have
to develop an application: they experience typical
development workflows and tools such as software
configuration management.

Students experience collaborative learning through
learning communities that involve both peer students
and instructors. Their learning progress is supported
and assessed through realistic tasks such as planning
and conducting a meeting. There is broad support for
the benefits of active learning on knowledge transfer
and student performance (Prince, 2004). Active learn-
ing has an improved learning outcome compared to
more passive approaches (Michael, 2006).

Bonwell and Eison propose a set of activities that
align with the principles of active learning (Bonwell
and Eison, 1991). Examples are:

e Think-Pair-Share: Students think and discuss
about a topic in pairs.

e Simulation: Classroom activities resemble real-
life situations.

e Working in group: Collaborative or cooperative
group work requires high involvement of students.

e Case studies: Practical examples encourage stu-
dents to integrate knowledge from class with real-
life.

While keeping active learning principles in mind,

instructors can use the Revised Bloom’s Taxonomy
(RBT) to classify curricular objectives and exercises

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

(Krathwohl, 2002). The RBT identifies six cognitive
process categories (remember, understand, apply, an-
alyze, evaluation, create) and four knowledge cate-
gories, ordered from concrete to abstract knowledge:

e Factual: Basic knowledge to acquaint with a dis-
cipline and to solve problems.

e Conceptual: Connection of basic knowledge in a
larger context.

e Procedural: Methodology of knowledge applica-
tion using skills, techniques, and methods.

e Metacognitive: Knowledge about the use of par-
ticular strategies for learning or problem solving.

The cognitive process dimension together with the
knowledge dimension help to formulate learning ob-
jectives. Learning activities that require higher order
cognitive processes and that lead to acquisition and
construction of more abstract knowledge can be classi-
fied as active learning. Figure 1 shows the RBT matrix
classifying more active and more passive learning ap-
proaches.

lower order thinking higher order thinking

concrete remember‘understand‘ apply ‘ analyze evaluate ‘ createJ
factual
knowledge . | .
conceptual passive learning
knowledge
roce;dgral
nowledge . :
. active learning
metacognitive
knowledge

abstract

Figure 1: Classification of more active and more pas-
sive learning approaches in the matrix of the Revised
Bloom’s Taxonomy (adapted from (Krathwohl, 2002))

3 Course Design

With the aforementioned pedagogical foundations in
mind, we designed a course to teach software project
management by mixing lectures with engaging in-
class and homework activities, such as hands-on tu-
torials, multiple choice quizzes, team exercises and
team projects. To activate students, we put emphasis
on the interactivity of the course.

3.1 Learning Objectives
The course has the following intended learning out-
comes: Participants understand the key concepts of
software project management. They learn and apply
the basic techniques and methods of project orga-
nization that are used when complex software sys-
tems are developed such as task, issue and meeting
management. The course focuses on agile models
as preferred software lifecycle, in particular Scrum
(Schwaber, 1995) and Kanban (Anderson, 2010).
Students communicate and collaborate in team
projects, learn to estimate tasks and to schedule a
project. They learn how to model software life-cycles

33

Stephan Krusche, Nadine von Frankenberg und Sami Afifi - Experiences of a Software Engineering Course based on Interactive Learning

and how to write an agile contract. They design user
interfaces, create prototypes and evaluate these using
typical usability heuristics. Student apply software
configuration management including change, branch,
merge and review management using git (Chacon,
2009) and pull requests (Krusche et al., 2016). They
apply build and release management by implementing
typical continuous integration and continuous deliv-
ery workflows (Krusche and Alperowitz, 2014).

Students do not only get familiar with the theory
of each topic, but also get practical experience. They
get to know specific cases and learn how to use each
concept in different settings.

3.2 Organization

The course is designed for large audiences with more
than 100 students. One instructor teaches the course
with the help of teaching assistants (TAs). Besides
helping the students, the TAs also act as intermediaries
between the students and the instructor. To maintain
a high level of interactivity, informal communication
channels encourage students to interact with other
course participants, with their team members and
with the instructor. A learning management system is
used for formal information sharing.

During class, TAs monitor a question channel of a
chat tool, and respond when necessary. This gives
students the opportunity to clarify questions through
informal communication. People respond and com-
municate more frequently when using an informal
communication tool (Kraut et al., 1990), such as a
chat application. During class, TAs can inform the
instructor about issues that are of interest for other
students. Then, the instructor can clarify issues and
answer questions in front of all students. In addition,
the instructor encourages students to ask questions in
the lecture hall as well.

Lectures and exercises are combined into interactive
classes to encourage students to attend. Students are
expected to actively participate: they must bring their
own laptop, tablet or smartphone and use it in class
for computer based exercises. To motivate students to
participate in these exercises, students can earn bonus
points to improve their grade in the final exam. In
addition, students can participate in a team project
to apply the learned knowledge in another setting.
This team project includes with five team members
and is a simplified version of the team projects de-
scribed by Bruegge and his colleagues (Bruegge et al.,
2015): there is no real customer and students have
less deliverables, but the applied process model is the
same. While the team projects are not mandatory to
the students, the instructor encourages them to take
part, because students learn important communica-
tion and negotiation skills when it e.g. comes to task
distribution and meeting management.

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

3.3 Interactive Learning

Figure 2 shows the iterative process of interactive
learning. Each lecture has multiple iterations of the
following five phases (Krusche et al., 2017):

1. Theory: The instructor introduces a new concept
and describes the theory behind it. Students listen,
try to understand it and ask questions.

2. Example: The instructor provides an example so
that students can refer to a concrete situation.

3. Exercise: The instructor asks the students to ap-
ply the concept in a small exercise. The students
submit their solution to the exercise.

4. Solution: The instructor provides a sample so-
lution, explains it to the students and discusses
exemplary student submissions to provide imme-
diate feedback and guidance.

5. Reflection: The instructor facilitates a discussion
about the theory and the exercise so that students
reflect about the concept.

[Theory]

2
[Solution] [Exercise]

Student

Figure 2: Iterative process of interactive learning per-
formed multiple times during lectures (Krusche et al.,
2017)

While the theory helps to build factual knowledge
and conceptual knowledge, exercises can build proce-
dural and metacognitive knowledge.

3.4 Exercises

TAs help in the conduction of the exercises: they walk
through the classroom, answer questions and provide
help in case problems occur or exercise instructions
are unclear. The assessment of the submitted solu-
tions can either be automated using tool support, or
manually done by the TAs who review the submit-
ted solutions and provide immediate feedback to the
students. The degree of automation depends on the
exercise type and the solution’s format. The course in-
cludes individual exercises and team based exercises:

Individual exercises

E1 Quizzes with drag and drop questions or multiple
choice questions (automatic evaluation through a
quiz system).

E2 Interactive tutorials with step-by-step instructions
(automation degree depends on the exercise).

34

Stephan Krusche, Nadine von Frankenberg und Sami Afifi - Experiences of a Software Engineering Course based on Interactive Learning

In each class, theory is followed by short in-class
quizzes, serving as self-assessment so that students
can instantly check whether they understood the main
concepts or not. Therefore, quizzes help to increase
factual and conceptual knowledge by repeating and
connecting the learned theory.

Interactive tutorials include detailed, step-by-step
instructions so that even beginners are able to con-
duct the exercises. They are helpful to experience a
concept for the first time. The instructor performs
these tutorials live in class so that students can follow
on their own laptops. He uploads the presentation
slides with detailed screenshots before class, so that
students can look up the steps of the exercise on the
slides if they cannot follow in the given time.

He asks the students several times during a tutorial
how many of them can still follow. If not enough
students raise their hand, he waits and explains the
current step again in more detail. If more than around
80 % raise their hand, the instructor continues. More
experienced students are kept motivated with optional
challenges. Interactive tutorials help to build proce-
dural knowledge by involving the students into the
methodology of knowledge application and by build-
ing skills, techniques and methods to solve particular
tasks.

All tutorials are self-contained and do not depend
on previous exercises. They are based on the same
common problem statement provided in the beginning
of the class, so students know the context and can
follow exercises more easily. The instructor does not
have to introduce a new problem statement in each
class and saves time. If students miss a class, they can
also catch up with the exercise at home.

Team based exercises

E3 Project teamwork that includes communication
and collaboration aspects (automation degree de-
pends on the exercise).

Team based exercises incorporate the concepts of
peer learning and cooperative learning. They repeat
the topic of individual exercises to deepen and retain
the knowledge by applying the learned concepts in
a different setting. Students transfer the previously
learned knowledge to the concrete team situation
and tailor the concepts. This facilitates self-guided
learning and promotes the idea of self-organization,
an important management aspect.

To create a context for their project, the teams
choose a problem statement and a development envi-
ronment in the beginning of the course. In team based
exercises, students need to transfer the previously-
learned factual, conceptual and procedural knowl-
edge into a concrete situation. They need to adapt the
learned skills, techniques and methods or find new
ones to solve the problem collaboratively while taking
responsibility because the instructor steps aside. This
helps to build metacognitive knowledge.

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

4 Case Study

The following case study describes the university
course "Software Engineering II: Project Organization
and Management" (POM) that implements interactive
learning. We evaluated the course in summer 2016,
amongst others by means of a questionnaire that in-
cluded free text fields in which the students stated
their thoughts. The detailed evaluation is discussed
in Section 5.

4.1 Course Format

The course had a heterogeneous distribution of 300
students with two groups standing out: around half
of the students are bachelor students with major in
information system who have to take this course in
their studies. The other half are master students in
computer science and take the course by their own
choice. The challenge is to keep the lecture content
easy enough for less experienced students, but also
stimulating enough for more experienced ones.

The course took place in one semester over 13
weeks in the summer 2016, with a three hour time
slot for lectures and exercises between 8:15 am and
11:30 am, including a 15min break. A single instructor
taught the course with the help of 9 teaching assis-
tants. Table 1 shows the schedule and the content of
each lecture.

Week | Class content

1 Team Formation

2 Project Organization

3 Software Lifecycle Models

4 Agile Methods (Krusche et al., 2014)
Prototyping & Usability Management
(Bruegge et al., 2012)

6 Proposal Management

Branch, Merge & Review

7 Management (Krusche et al., 2016)
Contracting & Estimation
Continuous Integration
10 Continuous Delivery (Krusche and Alperowitz, 2014)

Feedback Management (Krusche and Bruegge, 2014)

11 | Risk and Demo Management

12 | Global Project Management

13 | Project Management Antipattern

Table 1: Overview of the course content

In large courses, students get easily distracted, may
no longer pay attention to the lecture, or may engage
in off-topic conversations with each other. Therefore,
our main goal was to design and structure each class
so that students are engaged and motivated using
interactive learning.

As additional motivation, students were able to earn
bonus points (BP) for participating in exercises. If they
earned enough BPs, their grade in the final exam was
improved accordingly. Students reported in a survey

35

Stephan Krusche, Nadine von Frankenberg und Sami Afifi - Experiences of a Software Engineering Course based on Interactive Learning

that the bonus was a “strong motivation to be active in
the course”. In the following, we illustrate the course
concept in more detail.

4.2 AQuizzes

During each class, multiple choice quizzes gave stu-
dents the opportunity to revise the covered theory, and
to earn BPs. To motivate students to attend class, we
performed the quizzes dynamically during the class
after certain lecture content was completed. Thus,
only students present in class could participate in the
quizzes. On average, 181 students participated in the
quizzes per class.

We optimized the creation of quiz questions during
the course using an iterative feedback approach to
minimize misunderstandings and ambiguities. Two
TAs created the quizzes based on the lecture content,
then all TAs reviewed the questions to find errors and
misunderstandings. On average, there were three
quizzes per class. A quiz consisted of three questions
with three to four answer choices each, an example of
a question is shown in Figure 3.

Question: What are key characteristics of the Waterfall Model?

1. Progress is measured by the number of tasks that have
been completed.
2. At the end of each activity, a verification step prevents the
deletion or unwanted introduction of requirements.
X 3. The Waterfall Model allows the repetition of activities if
requirements change unexpectedly.
X 4. Traditional managers do not like waterfall-based models,
since fixed milestones are bad for progress measurement.

Figure 3: Example question with four answer choices

To prevent cheating during the quiz, students could
see their results only after the quiz was closed. Ques-
tions and answer choices were randomly interchanged
in the learning management system which included
an automated quiz grading component that showed
the overall quiz performance. As a result, there was
no correction overhead.

Most students liked the concept of using quizzes di-
rectly after the lecture content, and stated in a survey
that it was ”good to use quizzes to see right away what
I learned”. The quiz performance of all participating
students was available instantly to the instructor, and
provided information on how well the students could
follow the lecture. After each quiz, the instructor
shortly reviewed and discussed questions and answers
with the students. This offered the opportunity to
repeat key points of the taught theories. Students also
had the chance to give feedback about the quiz.

In the beginning of the course, some students re-
ported “too little time to read and answer some ques-
tions”. We considered this when designing subse-
quent quizzes. Other students’ reported inconsisten-
cies in the quizzes and helped to improve the ques-
tions. There was controversial feedback concerning
the quizzes, as some students felt that they “put too

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

much pressure” on them. Most students appreciated
the quizzes as a direct control of their learning out-
come. One student reported: “I like the quizzes a lot.
They really help me to understand the topics faster
and better”. Another one stated in the Slack! chan-
nel that was open during class: “quizzes wake me up
better than coffee” as shown in Figure 4.

ftchatter
April 25th

L Thanks @krusche. | also thought confluence would just have a scope o
used unique file names

ﬂ Stephan Krusche
§

April 26th

. Lukas Welte

Today

T,, ,i Michael Wang
Quizzes wake me up better than coffee...

Figure 4: Slack channel with students’ comments dur-
ing the lecture

4.3 Exercises and Homework

In the first class, students organized themselves into
51 teams, with 5 students per team, to participate in
a team project. Each team chose one of three distinct
problem statements, and had the task to implement
a small mobile app until the end of the course, while
applying project management methodologies. The stu-
dents had to include at least one experienced and one
unexperienced team member to give unexperienced
students the opportunity to learn from more experi-
enced ones, following the master apprentice approach
(Collins et al., 1991). Experienced students could also
benefit, since they deepened their knowledge, and
were challenged by optional harder tasks.

The first team exercise was an icebreaker in the first
class where all teams participated in a small competi-
tion, the marshmallow challenge (Wujec, 2010) in the
lecture hall as part of the team formation class. The
teams had 18 minutes to build the tallest structure
using spaghetti sticks, tape, rope and a marshmallow.
Figure 5 shows how the teams built the spaghetti tow-
ers in the classroom. After the exercise, each team
had to measure its own tower according to specific
rules and upload the picture to a shared space. The
TAs evaluated the tower and the measurement and
awarded the best team with small prices.

The instructor performed in-class exercises live on
a computer shown on a projector. A second projector
showed the corresponding lecture slides with detailed
screenshots. The TAs walked through the lecture hall
and helped if necessary. However, TAs did not explic-
itly tell students the solutions to the exercises, but

LSlack is a popular free team chat service that we used in class to
improve the communication between instructor, TAs and students:
https://slack.com.

36

Stephan Krusche, Nadine von Frankenberg und Sami Afifi - Experiences of a Software Engineering Course based on Interactive Learning

Figure 5: Icebreaker with about 200 students in 51
teams in the lecture hall

rather pointed them into the right direction, so that
they worked out the solutions themselves.

Immediate feedback was an important factor for the
exercises. Students could review sample solutions on
the projector, and were assisted by TAs. The exercise
tools and the screenshots in the lecture slides provided
additional feedback. If the student’s screen looked
identical to the screenshot on the slide after a task, or
the tool reported a success message, the students knew
that they performed the exercise correctly. We used
several workflows and tools that are used in industry
in order to demonstrate practical usage (Klepper et al.,
2015). Most students found this approach helpful, and
liked that the “exercises were practical and relevant”.

To deepen the students’ understanding, each lecture
included a team project exercise to learn and apply
management concepts, following a learning by doing
approach. Students e.g. learned agile methods, and
had to apply them throughout the team project. They
performed self-organized meetings and documented
their meetings, including a meeting-selfie of all partic-
ipants to add a fun factor to the exercise. Another ex-
ample is that they formed pairs in class, implemented
a small feature, and then reviewed their partner’s pull
requests to understand the code review workflow (Kr-
usche et al., 2016). Students then followed this pull
request workflow when implementing the mobile app
in the team projects. While the team projects were
not mandatory, students could earn 50 % of the bonus
points. Therefore, many students were motivated to
participate in the team projects.

Multiple TAs reviewed the exercises that could not
be assessed automatically. The students received feed-
back at the latest two weeks after the submission dead-
line. As Kothiyal and his colleagues point out, “prompt
and descriptive feedback on their [the students] un-
derstanding” enables both, students and instructor,
to “use this feedback to modify their learning and
teaching respectively” (Kothiyal et al., 2013). Stu-
dents found fast feedback motivating and helpful. For
each exercise, students could see the current grad-

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

ing status and deadline so that they had an overview
which exercises were due in the current week. They
could see which TA graded their exercise to directly
communicate with the TA to clarify questions.

5 Evaluation

This section describes the study design, the findings
and the limitations of an evaluation of the course POM
in summer 2016.

5.1 Study Design
We state the following hypotheses:

H1 Participation: Interactive in-class exercises in-
crease the participation of students.

H2 Improved Learning: The mix of theory, quizzes
and exercises in class leads to an improved learn-
ing experience for students.

We validate the hypotheses with a quantitative and
a qualitative evaluation. In the quantitative evalua-
tion, we measured the participation of students by
counting how many students attended class and com-
pleted specific exercises.

In the qualitative evaluation, we investigated the
students’ improvements in topics that we applied in
individual and team based exercises using an online
survey. We asked about their opinion on the exercise
concept. The questionnaire consisted of 14 questions,
took about 10 minutes and was not mandatory for
the students. It included questions about personal
data, the participation in individual exercises, and
application of techniques in the team project. We also
wanted to know if students improved their skills in
techniques and if they felt confident to apply tech-
niques in their next team project. Finally, we asked in
an open question how the course can be improved.

We conducted the survey in July 2016 and gave
the students two weeks to complete it. We created
personalized tokens and asked the 272 students, who
completed the final exam of the course, to participate
in the anonymous survey. The open source survey
tool LimeSurvey? guarantees that the answers are
anonymous by strictly separating token and answer
tables in the database. We received 190 responses,
which corresponds to a response rate of 70 %.

5.2 Findings

The quantitative evaluation shows that more students
participated in POM in summer 2016 than in a previ-
ous instance of the course without interactive learning
in summer 2014 or in other courses of the same faculty.
Figure 6 shows that the number of participants per
class in 2016 was around 80 % in the beginning and
around 60 % in the end of the course, although the
class started early at 8:15 am in the morning. Figure 7
shows that in the same course in 2014, the attendance
rate steadily decreases to less than 20 % until the end

2http://www.limesurvey.org

37

Stephan Krusche, Nadine von Frankenberg und Sami Afifi - Experiences of a Software Engineering Course based on Interactive Learning

of the course. On average, 71 % of all participants
of the course completed the team exercises, whereas
72 % completed the individual exercises. From these
numbers, we have first anecdotal evidence that H1 is
supported: interactive in-class exercises increase the
participation of students.

of who partici in the in-cl
300

20| s 221 2m 217
200 186 185 192 168 175

150 153 149 142 154

100

50 75% 81% 78% 80% 68% 68% 71% 62% 64% 56% 55% 52% 57%

1 2 3 4 5 6 7 8 9 10 1 12 13

Total Participants: 272 Class

Figure 6: Number of participants per class in POM in
summer 2016 with interactive learning

Number of students who participated in class (POM 2014)
350

280
210 | 199 192 199

149 128
103 104 109 87

70 44
0 58% 36% 56% 43% 30% 58% 30% 64% 36% 32% 25% 13% 18% 21% 18%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Total participants: 345

222

140 125
62 71 63

Lecture

Figure 7: Number of participants per lecture in POM
in summer 2014 without interactive learning

The qualitative evaluation showed that on average
80 % of the students, who participated in an indi-
vidual and team exercise, agree (or strongly agree)
that they improved their knowledge and that they are
confident to apply the knowledge in their next team
project. Table 2 shows results of the qualitative evalua-
tion, i.e. whether students agreed to given statements
in the qualitative evaluation. 80 % of the students
agreed that the use of interactive learning increased
their learning success (S1), and 71 % agreed that it
improved their understanding of the theory during
class (S2).

In-class exercises motivated 76 % of the students to
attend the lecture (S3) and quizzes motivated 54 % of
the students to listen to the lecturer (S4). Interactive
tutorials helped 65 % of the students to learn new
concepts and also 65 % were able to deepen their
knowledge in team exercises. These answers can be
considered as anecdotal evidence that H2 is supported:
the mix of theory, quizzes and exercises in class leads
to an improved learning experience of the students.

Formulating multiple choice quiz questions and
their respective answer possibilities unambiguously
proved to be challenging, especially when asking ques-
tion that are beyond simple definitions. At the begin-
ning of the course, we varied the number of questions

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

per class, the number of answer choices per ques-
tion, and the time per question. After the quizzes, we
presented the correct solutions and discussed them
quickly with the students. In the first half of the course
the average number of quizzes per lecture session was
higher: on average, we had five quizzes with 3 ques-
tions each, leading to 15 questions per class.

In an intermediate evaluation, we found that the
number of quizzes per class was too high, so we re-
duced it to three quizzes and nine questions on aver-
age per class. The available time per questions was
between 60 and 120 seconds depending on its diffi-
culty and length. Additionally, we evaluated each quiz
regarding the students’ response rate. This helped us
to extract weak and misleading factors of the ques-
tions and answers, e.g. when many students selected
a wrong answer choice due to misinterpretation.

In total, many students reported that this course
was their favorite course in the semester and that they
wish that more courses would be rich in variety and
activation during class.

5.3 Limitations

A limitation of the qualitative evaluation is that per-
sonal opinions of students might not reflect the real
situation, because they could be subjective. Beginners
cannot estimate objectively about their real improve-
ment, and the confidence to apply a concept does not
necessarily mean that the student is in fact able to
apply it.

Other positive effects of the course, such as the open
atmosphere towards feedback, might have a positive
influence on the evaluation result. Only if students
like interactive exercises, this does not necessarily
mean that their skills improve. To alleviate these
threats, we additionally evaluated the participation
in the lectures and exercises quantitatively in a more
objective manner.

6 Related Work

Active learning techniques applied in computer sci-
ence show an increase in students’ learning, engage-
ment, and overall performance. A popular approach
is Think-Pair-Share (TPS), where students first work
on a problem individually, then in small groups and
finally with the whole class.

Kothiyal and his colleagues describe a setting that
uses TPS in a large level-1 programming course
(Kothiyal et al., 2013). The course included lectures
and programming labs. The lectures had two TPS
activities, where students first worked on questions
individually, and then with a subsequent task in pairs,
while an instructor could be asked for help. Finally,
class-wide discussions were facilitated concerning the
former tasks. The study reports an average of 83 %
student engagement for TPS-based courses. This ap-
proach shows some parallels to our course setup, since
we introduced individual and team exercises, similar

38

Stephan Krusche, Nadine von Frankenberg und Sami Afifi - Experiences of a Software Engineering Course based on Interactive Learning

Statement Strong Agree | Neutral | Disagree S.trong
Agree Disagree

S1 | The mix of theory, quizzes and exercises in class con-| 36 % | 44% | 13 % 4 % 3%
tributed to my learning success

S2 | The mix of theory, quizzes and exercises improved my | 33% | 38% | 16 % 10 % 3%
understanding of the theory during class

S3 | In-class exercises motivated me to attend the lecture 35% | 41% | 14 % 6 % 4%

S4 | Quizzes motivated me during class to actively listento | 19% | 34% | 23 % 15 % 9 %
the lecturer

S5 | Interactive tutorials were particularly helpful to under-| 24% | 41% | 24 % 9 % 2%
stand concepts that I did not know before

S6 | Team exercises helped me to apply the concept in a differ-| 16 % | 49% | 26 % 6 % 3%
ent setting to deepen my knowledge and understanding

Table 2: Evaluation results with Likert scale typed responses whether students agree to given statements

to the think and pair phases. The share phase is also
present, as students could join discussions with the
instructor.

Kurtz and his colleagues describe an active learn-
ing approach using microlabs (Kurtz et al., 2014).
Students perform 5-10min activities during lectures,
either individually or in groups, and submit their an-
swers to an automated grading system, using tablets
as delivery mechanism. Students receive constructive
feedback, and can revise their answers. The study
concludes that microlabs can increase the students’
learning gains. This approach can be compared with
the in-class exercises we performed. Students had a
pre-defined time limit for the exercises and submitted
their solutions to an automated grading system, or to
an online documentation tool. The key point is, that
both approaches are used during lectures.

Campbell and his colleagues describe a flipped class-
room approach with video lectures, labs and assign-
ments (Campbell et al., 2014). Similar to our ap-
proach, quizzes were used and contributed to the
course grade. However, the authors do not give credit
for in-class exercises, and report a low lecture atten-
dance rate. Our course design includes homework
assignments as team exercises, as well as immediate
feedback for in-class exercises to keep students moti-
vated.

Heckman reports, there is “a large increase in stu-
dent engagement” for the use of in-class laboratories
(Heckman, 2015). His approach is similar to our in-
class exercises, but not used in large classes.

7 Conclusion

In this paper we described our experiences with an
interactive learning course in project management in
software engineering. Interactive learning is based on
active, computer based and experiential learning: the
instructor combines lectures and exercises into mul-
tiple iterations of theory, example, exercise, solution
and feedback. The course includes multiple choice

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

quizzes and interactive tutorials as in-class exercises
and an additional team project where students ap-
ply their knowledge in a different setting. This mix
supports different knowledge dimensions.

We applied and evaluated interactive learning in a
large course with 300 students. We found that inter-
active learning increases the participation of students.
Our findings show that students are more engaged
and motivated, if they practically apply and exercise
the previously learned theory in class. By providing
students with theoretical foundations and practical
exercises, their learning experience improves.

References

Anderson, D. (2010). Kanban: Successful Evolutionary
Change for Your Technology Business. Blue Hole
Press.

Ben-Ari, R., Krole, R., and Har-Even, D. (2003). Dif-
ferential effects of simple frontal versus complex
teaching strategy on teachers’ stress, burnout, and
satisfaction. International Journal of Stress Manage-
ment.

Bonwell, C. and Eison, J. (1991). Active Learning:
Creating Excitement in the Classroom. ASHE-ERIC
Higher Education Reports.

Boud, D. and Feletti, G. (1998). The challenge of
problem-based learning. Psychology Press.

Brophy, J. and Good, T. (1994). Looking in Classrooms.
HarperCollins College Publishers.

Bruegge, B., Krusche, S., and Alperowitz, L. (2015).
Software engineering project courses with industrial
clients. ACM Transactions on Computing Education.

Bruegge, B., Krusche, S., and Wagner, M. (2012).
Teaching Tornado: from communication models
to releases. In Proceedings of the 8th edition of the
Educators’ Symposium, pages 5-12. ACM.

39

Stephan Krusche, Nadine von Frankenberg und Sami Afifi -

Campbell, J., Horton, D., Craig, M., and Gries, P.
(2014). Evaluating an inverted csl. In Proceed-
ings of the 45th technical symposium on Computer
science education, pages 307-312. ACM.

Chacon, S. (2009). Pro git. Apress.

Collins, A., Brown, J., and Holum, A. (1991). Cogni-
tive apprenticeship: Making thinking visible. Amer-
ican educator.

Connolly, T., Stansfield, M., and Hainey, T. (2007).
An application of games-based learning within soft-
ware engineering. British Journal of Educational
Technology, 38(3):416-428.

Cunliffe, A. (2002). Reflexive dialogical practice
in management learning. Management learning,
33(1):35-61.

Garrison, R. and Kanuka, H. (2004). Blended learning:
Uncovering its transformative potential in higher
education. The internet and higher education.

Grabinger, R. and Dunlap, J. (1995). Rich environ-
ments for active learning: A definition. Research in
Learning Technology, 3(2):5-34.

Heckman, S. (2015). An empirical study of in-class
laboratories on student learning of linear data struc-
tures. In Proceedings of the 11th annual confer-
ence on International Computing Education Research,
pages 217-225. ACM.

Johnson, D. et al. (1991). Cooperative Learning: In-
creasing College Faculty Instructional Productivity.
ASHE-ERIC Higher Education Report. ERIC.

Klepper, S., Krusche, S., Peters, S., Bruegge, B., and
Alperowitz, L. (2015). Introducing continuous de-
livery of mobile apps in a corporate environment:
A case study. In Proceedings of the 2nd International
Workshop on Rapid Continuous Software Engineering,
pages 5-11. IEEE/ACM.

Kolb, D. (1984). Experiential learning: Experience as
the source of learning and development. Prentice
Hall.

Korthagen, F., Kessels, J., Koster, B., Lagerwerf, B., and
Wubbels, T. (2001). Linking practice and theory: The
pedagogy of realistic teacher education. Routledge.

Kothiyal, A., Majumdar, R., Murthy, S., and Iyer, S.
(2013). Effect of think-pair-share in a large csl
class: 83% sustained engagement. In Proceedings of
the 9th annual conference on International computing
education research, pages 137-144. ACM.

Krathwohl, D. (2002). A revision of bloom’s taxonomy:
An overview. Theory into Practice, 41(4):212-218.

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

Experiences of a Software Engineering Course based on Interactive Learning

Kraut, R., Fish, R., Root, R., and Chalfonte, B. (1990).
Informal communication in organizations: Form,
function, and technology. In Human reactions to
technology: Claremont symposium on applied social
psychology, pages 145-199. Citeseer.

Krusche, S. and Alperowitz, L. (2014). Introduction
of Continuous Delivery in Multi-Customer Project
Courses. In Proceedings of the 36th International
Conference on Software Engineering, pages 335-343.
IEEE.

Krusche, S., Alperowitz, L., Bruegge, B., and Wagner,
M. (2014). Rugby: An agile process model based
on continuous delivery. In Proceedings of the 1st In-
ternational Workshop on Rapid Continuous Software
Engineering, pages 42-50. ACM.

Krusche, S., Berisha, M., and Bruegge, B. (2016).
Teaching Code Review Management using Branch
Based Workflows. In Companion Proceedings of the
38th International Conference on Software Engineer-
ing. IEEE.

Krusche, S. and Bruegge, B. (2014). User feedback in
mobile development. In Proceedings of the 2nd Inter-
national Workshop on Mobile Development Lifecycle,
pages 25-26. ACM.

Krusche, S., Seitz, A., Borstler, J., and Bruegge, B.
(2017). Interactive learning: Increasing student
participation through shorter exercise cycles. In
Proceedings of the 19th Australasian Computing Edu-
cation Conference. ACM.

Kurtz, B., Fenwick, J., Tashakkori, R., Esmail, A., and
Tate, S. (2014). Active learning during lecture using
tablets. In Proceedings of the 45th technical sympo-
sium on computer science education, pages 121-126.
ACM.

Michael, J. (2006). Where’s the evidence that active
learning works? Advances in Physiology Education,
30(4):159-167.

Prince, M. (2004). Does active learning work? a
review of the research. Journal of Engineering Edu-
cation, 93(4):223-231.

Schwaber, K. (1995). Scrum development process.
In Proceedings of the OOPSLA Workshop on Business
Object Design and Information.

Shaffer, D. (2004). Pedagogical praxis: The profes-
sions as models for postindustrial education. Teach-
ers College Record, 106(7):1401-1421.

Whitehead, J. (2007). Collaboration in software engi-
neering: A roadmap. FOSE, 7(2007):214-225.

Waujec, T. (2010). The Marshmallow Challenge - TED
Talk. Retrieved January 08, 2016 from http://
marshmallowchallenge.com.

40

