An Interactive Learning Method to Engage Students in Modeling

Stephan Krusche
krusche@in.tum.de
Technical University of Munich
Munich, Germany

Lara Marie Reimer
laramarie.reimer@tum.de
Technical University of Munich
Munich, Germany

ABSTRACT

Modeling is an important skill in software engineering. However,
it is often not tangible for students and not appreciated. Students
prefer coding because they receive immediate feedback from the
compiler. Engaging students in modeling is difficult, especially in
large introductory courses.

We have developed an interactive learning method for modeling
which is based on an easy to use online editor. Students learn
modeling in guided tutorials in the lecture right after the theory
is introduced and deepen their modeling skills in group work and
homework exercises. This learning method was applied in a large
introductory course with more than 1000 students.

An empirical evaluation of the method demonstrated that the
students’ learning outcome in modeling improved significantly by
up to 87 %. Students are motivated to use models in their future
projects and understand how to approach problems with models.
The use of interactive models in programming exercises improves
their understanding of the taught concepts.

CCS CONCEPTS

« Social and professional topics — Software engineering ed-
ucation; « Applied computing — Interactive learning envi-
ronments; Learning management systems.

KEYWORDS

Software Engineering, Education, Learning Management System,
Online Editor, Modeling, Learning Success, Interactive

Preprint. To appear at ICSE 2020.

Nadine von Frankenberg
nadine.frankenberg@in.tum.de
Technical University of Munich

Munich, Germany

Bernd Bruegge
bruegge@in.tum.de
Technical University of Munich
Munich, Germany

1 INTRODUCTION

Software engineering requires practical application of knowledge
[6, 10, 34]. Modeling a system in the Unified Modeling Language
(UML) is an important practical skill to facilitate communication
between software engineers. Students typically get in touch with
UML modeling in undergraduate courses in university. While exam-
ples and exercises play a central role in the early phases of cognitive
skill acquisition [37], it is time consuming for instructors to create
and assess modeling exercises that stimulate all cognitive skills,
including creativity. Carefully developed and integrated examples
improve the learning outcome [35, 36]. Providing individual feed-
back and allowing students to improve their knowledge through
formative assessments are essential elements in learning [14, 15],
so that students can improve their skills.

However, with the rising numbers of students in introductory
courses, it is nearly impossible for instructors to teach the creative
aspects of modeling and to provide individual feedback. Courses
with hundreds of students create enormous efforts for instructors,
especially in the correction of exercises and exams, and make it
impossible to interact with each student on an individual level [26].
Modeling is a creative task where multiple solutions are possible
and it is difficult to judge immediately whether a solution is correct
or not [19, 24, 25]. It is not feasible to define all possible correct
solutions for a modeling exercise. The choice of the modeling tool
has many implications. The use of existing modeling tools such as
Visual Paradigm, Glifty, or draw.io overwhelms and demotivates
students due to their complexity. Assessing models with these tools
is not possible.

To overcome these problems, we designed an interactive learn-
ing method, where students start modeling in an easy to use online
editor that focuses on learnability. In this online editor, students
receive individual feedback directly next to the model elements
in order to avoid media breaks. Students use modeling techniques
such as UML to abstract ideas, reduce complexity, improve com-
munication, and to solve concrete problems. The instructor of the
course introduces different types of UML diagrams when they are
first needed in the software lifecycle.

Through guided tutorials and in-class exercises, students learn
the modeling notation of the respective UML diagram type in the
lecture. They further practice modeling in tutor exercise sessions.
Homework enables students to deepen their modeling skills in self-
study. The presentation of their own modeling solution in the ac-
companying tutor exercise sessions improves communication skills,

ICSE-SEET’20, May 23-29, 2020, Seoul, Republic of Korea

which are essential in software engineering. Individual feedback
on homework allows students to measure their learning progress
and improve their skills further. In this paper, we investigate the
following hypotheses:

H1 Learning success: Interactive learning methods improve the
learning success in modeling.

H2 Engagement: Integrating modeling throughout the software
lifecycle increases student engagement in modeling.

H3 Understanding: Interactive models in programming exer-
cises improve students’ understanding of the concepts taught.

The remainder of the paper is structured as follows: Section 2
describes related work in relation to relevant learning concepts.
Section 3 describes the interactive learning method and the tool
support in detail. In Section 4, we present a large software engi-
neering introduction course with more than 1000 students in which
we used the interactive learning method. Section 5 outlines the
evaluation and its results consisting of an online questionnaire,
data analysis and a quasi experiment. Section 6 discusses the advan-
tages and disadvantages of the proposed learning method. Section 7
concludes the paper and proposes future work.

2 RELATED WORK

Software engineering is an engaging, interactive, and collaborative
activity [38]. In the educational sector, creating engaging and inter-
active curricula is an important topic. Content delivery and content
exercise is often divided into lectures and exercises which can lead
to knowledge gaps. This concept is described by Ebbinghaus’s for-
getting curve which follows the psychological proposition “.. who
learns quickly also forgets quickly” [12] and illustrates the knowl-
edge retention rate over time [31]. The forgetting curve implies that
after learning new information, within the first 24 hours, there is a
retention loss of 40 % to 60 % - if this information is not practiced
in short cycles.

Several pedagogical concepts of learning aim at closing this
gap of content delivery and practice. Common concepts include:
blended learning, a combination of E-learning with the traditional
lecturing style that offers the course content through multiple de-
livery channels [4]; experiential learning, a methodology where
students learn from experience [17]; active learning where students
participate actively in all learning activities, rather than solely lis-
tening passively to a lecturer; and interactive learning, which is
based on active and blended learning and further engages students
in interactive activities using technology [8, 22].

Engaging students throughout the whole learning process has
proved to improve the retention rate. Think-Pair-Share (TPS) is an
approach where students work on a problem first individually, then
in small groups, and eventually with the whole class [28]. In a study
that involved a large introductory programming course, Kothiyal et.
al found that a TPS approach yielded 83 % of student engagement
[18]. Krusche et. al propose to introduce multiple short iterations
between teaching and exercising concepts by combining lectures
and exercises into interactive classes [21, 23], and report similar
results as Kothiyal, an average of 80 % of student engagement
throughout the semester.

Interactive learning concepts involve the direct hands-on ap-
plication of knowledge, which is important for learning software

Krusche, von Frankenberg, Reimer and Bruegge

engineering concepts [34]. The aforementioned concepts are par-
ticularly relevant for teaching modeling to students, considering
modeling being an informal and creative activity in the software
engineering process [7, 11, 19], rather than a concept that should
be learned by heart. Some methodologies following this concept
focus on collaborative learning environments for UML modeling
[1, 9] which may help students to lower the entrance barrier to
modeling. Others target the quality assessment and correctness of
models [24, 27, 29, 30]. Few approaches propose tools for assessing
models or offer scientific evidence on using such tools in practice.

3 LEARNING METHOD

Engaging students in modeling can be challenging. In this section,
we describe an interactive learning method that integrates modeling
into software lifecycle activities and guides students through their
modeling experience.

The learning method is based on active learning [5] and com-
bines lectures and exercises into small iterations to overcome the
artificial separation of theory and practice often applied at univer-
sities. Instead, instructors introduce small chunks of theory and
allow students to exercise them directly. Each theory-exercise cycle
consists of five steps [22]:

Theory: The instructor explains a new modeling concept, e.g.,
a diagram type or modeling technique, and describes the theory
behind while students listen and try to understand it.

Example: The instructor shows examples. Students relate the
learned modeling concepts and techniques to a concrete situation.

In-class exercise: Students apply the concept in an exercise,
e.g., a guided tutorial, and submit their solution.

Feedback: Students receive individual feedback on their own
solutions. The instructor provides an example solution, e.g., within
the guided tutorial, and explains it to the students to prevent mis-
conceptions [16]. The instructor can also show exemplary student
solutions and can discuss their strengths and weaknesses.

Reflection: The instructor facilitates a discussion about the
theory and the exercise so that the students reflect on their first
experience with the new modeling concept or modeling technique.
This can be done, e.g., by discussing best practices, repeating ad-
vantages of a technique, or showing how the exercise instantiates
the abstract concept.

3.1 Deepening the Learning Content

In addition to in-class exercises, the learning method includes group
work exercises and homework. Small tutor exercise sessions with
15-20 students are supposed to deepen the understanding of the
concepts explained in the lecture by means of suitable group or
team exercises. Students experience the application of the taught
concepts and methods with the help of manageable problems in
the different phases of software engineering.

Homework exercises enable students to deepen their knowledge
in self-study. The teaching concept motivates the students to par-
ticipate in homework exercises by providing individual feedback
and by granting exercise points that can be used to improve the
final grade of the course. Individual feedback on homework allows
students to measure learning progress and improve their skills.

An Interactive Learning Method to Engage Students in Modeling

Students present their solution to group work and homework exer-
cises in the tutor exercise sessions. The presentation of the solution
improves communication skills, which are essential in software
engineering.

3.2 Tool Support with Artemis and Apollon

Artemis is an exercise system with individual feedback that supports
interactive learning and is scalable to large courses [20]. It is open
source! and used by multiple universities and courses. Artemis
integrates an online modeling editor Apollon that is open source?
and available as standalone and free web application. Apollon
supports seven UML diagrams: class diagrams, object diagrams,
activity diagrams, use case diagrams, communication diagrams,
component diagrams and deployment diagrams. It is lightweight
and easy to use to lower the entrance barrier of digital modeling.
It focuses on the learning experience of students. Figure 1 shows
an example of a UML communication diagram. Students drag the
model elements from the right into the diagram and double-click
on an element to edit it in a small pop-up. They can drag and drop
relationships (e.g. control flow) between model elements.

Problem Statement:
For the given scenario in the Lecture 03 slides, model the dynamic behavior using a communication
diagram.

® Help
1b: start() Object
1a: enroll(Peter)
—_—

EIST: Course

Peter: Student

enroll(Student)
start()

receiveCertificate()

1 2.2: take(Peter)

Communication Link o

tificate() T || 3: evaluate()

Stephan: Lecturer

evaluate()
2.3: corre. Messages (Peter: Student —
2 prepé . Exam)
—
2.2: take(Peter)| - 0

Figure 1: The online modeling editor Apollon is integrated
into Artemis and supports the easy creation and assessment
of digital models.

Instructors and teaching assistants assess models and provide
feedback directly in Apollon. They double click on a model element
and assess it in a popup with a score in points and with additional
feedback comments to explain why a model element is correct or
wrong. In addition, they can provide general feedback about the
whole model or missing elements. Students can see this feedback
directly in place next to the model elements and learn from it.

!https://github.com/lslintum/Artemis
Zhttps://github.com/Islintum/Apollon
3https://apollon.ase.in.tum.de

ICSE-SEET’ 20, May 23-29, 2020, Seoul, Republic of Korea

Artemis includes an online code editor with interactive and
dynamic exercise instructions on the right [20]. Figure 2 shows a
screenshot. Interactive instructions change their color depending
on the progress of students. Already completed tasks and correctly
implemented model elements are marked in green, incomplete tasks
and not yet implemented model elements are marked in red. This
helps students to identify which parts of the exercise they have
already solved correctly and improves the understanding of the
source code on the model level. When they submit their current
solution, the interactive instructions update dynamically.

® 21%, 3 of 14 passed [T

B src/de/tumfin/ase/seecx/Course java Instructions >

package de.tum. in.ase.seecx;

Object Oriented Principals 1

v v v x x X

@ Person|

import java.util.list;
import java.util.Date;

// T0DO: Implement Course Class

~ public class Course {

9 private String title;

10 private List<Date> dates;
11 © Course

12 private Lecturer lecturer;

: : 2 lecturer* - Stri *attende
13 private List<Student> attendees; Lecturer! - title: String
14 © - dates: List<Date>

15+ public Course(String title) {
16 this.title = title;
¥

+ printCourseTitle(): void

19 3.(2) Implement a constructor of Course class 1 of 1 tests passing
Create a constructor for Course with one argument title of type
String, which initializes the title value of Course objects.

4. @ Implement a method of Course class 0 of 1 tests passing
Create a public method printCourseTitle () with return type void

Figure 2: Online code editor with interactive instructions on
the right side which include an interactive UML class dia-
gram that changes the color from red to green after success-
fully completing the corresponding programming task.

4 COURSE

This section describes the undergraduate software engineering
course SE1* at the Technical University of Munich. The instructors
of SE1 introduce students to UML modeling using the interactive
learning method described in Section 3.

The learning objectives of SE1 are to familiarize students with
relevant concepts, workflows, and methods of software engineering
and to apply them in all phases of software engineering projects.
This includes analyzing and evaluating problems, e.g., modeling the
problem, reusing classes and components, and testing the software.
With respect to UML, students learn to communicate using models.
They learn how and when to apply which model. They understand
the relationship between modeling and programming and learn
to abstract. Students learn to model and implement concrete prob-
lems in software engineering, for instance with the help of design
patterns.

SE1 is a mandatory Bachelor’s course offered in the second se-
mester for a heterogeneous group of students from the fields of
computer science, business informatics, and business, as well as
students from other fields. A prerequisite of the course is that the
students have basic programming experience, such as having suc-
cessfully completed an introductory course in computer science
(e.g., CS1). Course instructors use constructive alignment [2] to

“The course is called “Introduction to Software Engineering”

https://github.com/ls1intum/Artemis
https://github.com/ls1intum/Apollon
https://apollon.ase.in.tum.de

ICSE-SEET’20, May 23-29, 2020, Seoul, Republic of Korea

align teaching and assessment with the course objectives. For each
lecture, a set of learning goals is defined based on the six cognitive
skills in Bloom’s taxonomy [3]. The course focuses in particular on
higher cognitive skills so that students learn to apply the concepts
in concrete situations. Students cannot pass the course by simply
memorizing the course material.

4.1 Organization

One lecturer and two exercise instructors organize and teach the
course with the help of around 45 student tutors. The tutors are
bachelor and master students who successfully completed the course
in previous years. The course takes place in the summer semester
over 12 weeks. Table 1 shows the course content together with
the UML models that are taught in the respective lecture. Around
1600 students register for the course. There is no lecture hall with
enough seats for all students. The course uses a live stream and
broadcasts the lecture to two additional overflow lecture halls. Most
students either participate actively in the main lecture hall or watch
the live stream at home. Therefore, the overflow lecture halls are
closed after a few weeks. All students (within the main lecture hall,
in overflow lecture halls and in the live stream) can ask questions
using Slack®. Tutors answer these questions directly or pass on a
question to the lecturer to repeat and answer it for all students.

Week Content UML Model
1 Introduction Class
2 Model-based SE Use Case, Class
3 Requirements Analysis | Object, Communication
4 System Design I Component, Deployment
5 System Design I Component, Deployment
6 Object Design I Class
7 Object Design II Class
8 Model Transforrhnation State Chart
and Refactoring
Software Lifecycle ..
9 Modeling Y Activity
10 Software Configuration Activity
Management
11 Testing Class
12 Project Management Class, Activity

Table 1: Course Schedule: SE1 lasts 12 weeks. Each lecture
includes specific UML models.

4.2 Design

Large courses present the challenge of keeping students motivated
throughout the semester (without, e.g., enforcing mandatory at-
tendance). Students are easily distracted by off-topic conversations
with other students or social media, and stop paying attention to the
lecture. To deal with such situations, the course includes interactive
elements to activate the students and to keep students engaged
throughout the course. The interactive components include in-class
exercises, in-class quizzes, and group exercise sessions.

The study program of the university does not allow to include
weekly assignments in the calculation of the final grade. Therefore,

5Slack is a cloud-based instant messaging platform: https://slack.com

Krusche, von Frankenberg, Reimer and Bruegge

the course uses a bonus system that motivates students to partici-
pate in the course and its exercises: students can earn bonus points
for completing in-class and homework exercises successfully. They
need to present their homework twice in tutor exercise sessions to
get the bonus applied.

If they pass the final exam, their exercise points are mapped
to exam points that are then added to their final exam score to
improve it. The German grading system consists of marks between
1.0 (similar to A in the US grading system) and 5.0 (similar to F in
the US grading system), with 1.0 being the highest grade and 4.0
(similar to D in the US grading system) being the pass grade. For
instance, if students score 30 % of the bonus points, they receive
additional 3.0 points on top of their exam score, which improves
their final grade by 0.3. If they score 100 % of the bonus points,
they can receive a total bonus of 1.0, for instance, they can improve
from a 2.3 to a 1.3. Students have reported that this increases their
motivation to actively participate in the exercise system.

4.3 Exercises

The course includes quizzes, programming, modeling, and text ex-
ercises. In-class exercises include quizzes, to recapture previously
learned content. They also include programming and modeling ex-
ercises as guided tutorials. Tutors help with student questions and
problems during the in-class exercises. Group exercises mainly en-
compass modeling exercises, but also small programming exercises
and text exercises that the students work out together during their
group exercise sessions in small teams. Homework assignments
include modeling, programming, and text exercises and enable stu-
dents to deepen their knowledge in self-study.

4.3.1 Modeling Exercises. Students model a solution to concrete
problems using UML. Modeling exercises stimulate higher cogni-
tive skills and force students to analyze, evaluate and create. Apol-
lon supports UML class, object, activity, use case, communication,
component, and deployment diagrams. As shown in Table 1, each
lecture includes different UML model types, aligned with the taught
content. Figure 3 shows an example for a modeling exercise. Stu-
dents drag and drop the model elements into the canvas, can add
attributes, methods, and define associations between them. The
advantage of Apollon is that students cannot use a UML element
other than the ones specified for the specific model type.

4.3.2 Quiz Exercises. Students repeat already learned content dur-
ing lectures and test their knowledge. They stimulate lower cogni-
tive skills such as remembering and understanding the concepts. A
quiz question can either be a multiple choice (MC) question, a drag
and drop (DnD) question, or a short answer question. For questions
related to modeling, the quizzes include MC and DnD questions
where students drag elements to predefined spots on the canvas.

4.3.3 Programming Exercises. Students learn to make connections
and see differences between models and their implementation in
programming exercises. This stimulates their cognitive skills and
students learn to apply the knowledge when implementing source
code. A UML class diagram, e.g., represents the general structure
of the source code and can be used as interactive problem state-
ment in Artemis. Red model elements indicate that they are not
implemented correctly, whereas green elements indicate correctly

https://slack.com

An Interactive Learning Method to Engage Students in Modeling

«interfaces
Interface
Class
+ attribute: Type
+ method()
Abstract
Car Car -
color
accelerate() nterface | Enumeration
sinterfaces
Attributes Interface
color 0
senumerations
Enumeration
Methods

accelerate()

Figure 3: An example for a modeling exercise in Apollon.

implemented ones. This further helps students to understand what
UML models should contain and what should be left out.

4.3.4 Text Exercises. Students need to answer questions about the
learned concepts by writing open text responses. They, e.g., need to
explain similarities and differences between design patterns in their
own words and describe concrete situations how design patterns
can be used. These exercises stimulate analysis and evaluation skills.

4.4 Communication

The course uses Slack as communication tool to facilitate discus-
sions between students and teaching staff. Using instant messaging
lowers the entrance barrier for students to ask questions, because
it feels familiar to communicate (in reference to, e.g., social media
chats) and students ask more questions if they notice that other
students do the same. Students can communicate with each other
and send direct messages to tutors and instructors in case they have
a question or require help during the lectures and at any other time.
Slack offers the ability to use channels with specific purposes:
#announcements — Instructors post course-wide announcements
(students cannot post here), e.g., reminders that a lecture is can-
celled on a public holiday

#organization — Questions about the organization of the course
#lecture — Questions regarding the lecture slides

#exercise — Questions regarding the exercises

The instructors further encourage students to answer questions
themselves. This increases a ‘sense of belonging’ (which is hard
to achieve in such a large setting), when students communicate
with each other, but can also deepen their understanding of a topic,
e.g., in discussions that pursue questions. Students receive fast
replies, which increases the interactivity. Tutors help to moderate
discussions. They ensure a positive atmosphere, reprimand and
prevent bullying. They answer questions and point students to
previously asked questions, if it has already been asked before.

ICSE-SEET’ 20, May 23-29, 2020, Seoul, Republic of Korea

4.5 Tutor Exercise Sessions

45 tutors hold 80 weekly occurring tutor exercise sessions, each
with around 20 students. The main focus for tutors is to activate the
students in these sessions, to moderate discussions and to explain
the learned concepts again in case the students ask questions. Tutors
have the following responsibilities: attend a weekly tutor meeting
with the instructors®, assess exercises and hold one or two tutor
exercise sessions per week. Tutors also help with moderating the
Slack channels, answer questions on Artemis, help students during
in-class exercises, or review slides and exercise content.

In the tutor exercise sessions, students apply the knowledge
acquired in the lecture. Each tutor exercise session is structured as
follows:

(1) Review of previous lecture [5 - 10 min]: students discuss
the learning goals, outline, and summary.

(2) Homework presentation [30 - 45 min]: students present
their solution to homework exercises. Tutors asks questions
about the solution, point out typical mistakes and provide
additional feedback.

(3) Group work [30-45min]: Students work on predefined
group exercises in groups (3-6 students).

(4) Discussion of next homework [5 - 10 min]: the new home-
work exercises are briefly discussed.

The tutor exercise sessions review a specific topic that was cov-
ered in the lecture before and prepare the students for the next
homework assignment. They help to deepen the understanding of
the taught concepts. Group exercises show the application of the
learned methods with the help of concrete problems in the different
phases of software engineering. Homework assignments deepen
the knowledge in self study. Students receive individual feedback
on their homework submission, which allows them to measure
their learning progress and improve their skills. The presentation
of their own solution improves the communication skills of the
students, an essential skill in software engineering.

For instance, in lecture Object Design II, the course covered the
Strategy Design Pattern [13] by means of an example and the gen-
eral structure. In the corresponding tutor exercise session, there
was one group work, where students discussed the pattern’s prob-
lem, solution, benefits, consequences, etc. In the subsequent group
work, the students modeled a real-world example of the strategy
pattern as a UML class diagram. This exercise was designed to teach
students how to approach a concrete problem, how to analyze it,
and how to model this problem. In one homework assignment, the
students were given a similar problem: to model different encryp-
tion strategies as a UML class diagram, using the strategy pattern.
In another assignment in a programming exercise, the students had
to implement sorting algorithms using the strategy pattern.

4.6 Grading

While programming and quiz exercises are automatically evaluated,
modeling and text submissions are graded manually. Each tutor
grades about 25 submissions per exercise per week. Artemis offers a
double-blind grading system, which opts for less bias while grading.
Every week on Monday at noon, the homework is published. The

®Instructors discuss issues and present the next group work and homework.

ICSE-SEET’20, May 23-29, 2020, Seoul, Republic of Korea

students then have one week to create and upload their solutions.
In the following week, students present their homework in the
tutor exercise sessions. Tutors use example solutions and detailed
grading criteria to assess the students’ submissions and provide
individual feedback. In the grading criteria, instructors point out
that multiple solutions to modeling exercises can be correct.

When students are given sample solutions, they often do not
think about their own solutions, but tend to take the sample solution
as the single truth. To encourage self-reflection and revision, the
example solutions are not distributed to the students. The feedback
students receive about their solutions is crucial for them to under-
stand how they can improve. As shown in Figure 4, the feedback for
modeling exercises is comprised of the (1) points they receive for
one concrete element, (2) feedback for this element, and (3) general
feedback regarding the whole model.

Earth v | Assessment for Earth

X | size ®| Score: 035

Correct class

) p a
Mountain Assessment for size
name v name geore: o

height v size

Methods are missing

Next Assessment

General Feedback

The general structure is correct, however, you forgot to add the Earth's methods.
Pay more attention to associations and multiplicities, they are missing here.

Figure 4: An example for a modeling exercise with individ-
ual feedback.

5 EVALUATION

This section presents the evaluation of the interactive learning
method in the SE1 course in 2019 based on the hypotheses in Sec-
tion 1. We describe the research method, present the results and
discuss the findings and limitations.

5.1 Research Method

In order to test our hypotheses, we applied the following three
research methods:

(1) Online Questionnaire: we created an online questionnaire
and asked all participants of the SE1 course in 2019 to par-
ticipate.

(2) Data Analysis: we analyzed the participation and exercise
performance of the students in the modeling exercises in the
SE1 course in 2019.

(3) Quasi Experiment: we compared the results of modeling
tasks in the SE1 exams from 2018 and 2019. In 2018, the SE1
course did not include the interactive learning method for
modeling exercises and therefore serves as the control group.

5.1.1 Online Questionnaire. All participants of the course SE1 in
2019 were asked to complete a questionnaire about their experience
with the modeling exercises. The questionnaire consisted of four

Krusche, von Frankenberg, Reimer and Bruegge

main parts, each containing several questions: (1) demographic
information, in particular field of study, current semester, and the
student’s achieved prerequisites for SE1; (2) previous modeling
and programming experience (before taking SE1); (3) participation
in SE1; (4) modeling in SE1, including motivation, the interactive
learning method, and the tools being used.

5.1.2 Data Analysis. We analyzed the results of all modeling exer-
cises in SE1 in 2019. This includes a total of 17 modeling exercises;
9 of which were conducted as in-class exercises, the other 8 as
homework. Each of the modeling exercises was assigned a difficulty
level” as well as a score. To analyze each modeling exercise, we
have created a dataset that contains all participating students as
well as their individual scores per exercise. Based on the scores of
the participating students, we calculated the average success rate
in % of the total score.

5.1.3 Quasi Experiment. We carried out a quasi experiment with
post-testing of two student groups, i.e., students who took SE1 in
2018 and students who took SE1 in 2019, by comparing their scores
in the modeling tasks of the final exam. Both course instances in
2018 and 2019 had the same learning goals, the same course sched-
ule with the same content and the same exercise structure except
for modeling exercises: In 2018, SE1 did not use the interactive
learning method and instead relied on practicing modeling only in
homework. In 2019, SE1 used the interactive learning method and
introduced in-class modeling exercises. In terms of the quasi exper-
iment, the interactive learning method is the intervention. Apart
from that, there were no substantial differences in other variables.

The control group is comprised of the 2018 students, the experi-
mental group of the 2019 students. We did not execute a pre-test.
Our assumption was that students from both groups had similar
knowledge regarding modeling before taking part in the SE1 course,
mainly because the majority of both student groups was comprised
of second-semester bachelor students, with both groups following
the same curriculum. In both years, the course was attended by
over 1000 students, so that a normal distribution of the results can
be assumed. Both exams included five similar modeling tasks:

(1) Functional model: Create a UML use case diagram based
on a given problem statement (easy)

(2) Structural model: Create an analysis object model using
a UML class diagram based on a given problem statement
(medium)

(3) Dynamic model: Create an UML activity diagram (2018) /
UML communication diagram (2019) based on a given prob-
lem statement (medium)

(4) Architecture: Create a UML communication diagram of an
architectural style (2018, medium) / model the architecture
based on a given problem statement using a UML component
diagram (2019, hard)

(5) Model refactoring: Analyze an existing model, propose a
model refactoring and explain the reasoning (easy)

In the post test, we compared these five modeling tasks in two-
sample one-tailed t-tests to evaluate, whether the 2019 students
performed significantly better than the 2018 students. For all model
tasks, the null hypothesis H is that the 2019 students performed

TPossible difficulty levels: E = easy, M = medium, or H = hard

An Interactive Learning Method to Engage Students in Modeling

less or equal as compared to the 2018 group with a significance level
of @ = 0.01. Hy hypothesizes that the 2019 results are better than the
results from 2018. 1128 students completed the exam in 2018, 1225
completed the exam in 2019. To make the results comparable (two
tasks differed by one point) we calculated the mean and standard
deviation as relative values.

5.2 Results

This subsection shows the results of the three research methods.

5.2.1 Online Questionnaire. In total, 954 students participated in
the online questionnaire (response rate: 68 %). 90 % of the students
are enrolled in a Bachelor’s program, while 10 % of the participants
are enrolled in a Master’s program. 69 % of the students take SE1
in their second semester, followed by 18 % forth-semester students.

The first question (Q1) refers to the experience the student’s had
with UML modeling before taking the SE1 course. Figure 5 depicts
the answer distribution of Q1. 50 % of the participants stated that
they have “somewhat experience”, which means that they have
modeled using UML once in a previous course, followed by 29 %
of students students that stated that they have “little experience”,
which means that they had heard about UML models before. 17 %
had no experience at all, only 4 % stated that they model regularly.

Q1: How much experience did you have with UML modeling before taking SE1?

‘
TR T T
0% 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

B Much experience [l Somewnhat experience Little experience [l No experience
n =954

Figure 5: Limited modeling experience before SE1.

Q2 refers to the frequency of participation in a tutor exercise
session. 52 % of the students stated that they always attend the
tutor exercise sessions, while 27 % stated that they visit them very
often. 12 % participate sometimes, 7 % rarely attend and 2 % never
participate. Figure 6 depicts the distribution of answers.

Q2: How often do you participate in the tutor exercise sessions?

S meaw ww sl

0% 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %
W Always I Very often Sometimes M Rarely Il Never
n=954

2%

Figure 6: Regular participation in tutor exercise sessions.

In Q3, students were asked how often they submit their solutions
to the modeling exercises. The majority, 74 %, stated that they
submit always, 10 % submit very often. 9 % submit sometimes,
while 5 % submit rarely, and 2 % have never submitted any modeling
exercise. The results are shown in Figure 7.

Q3: How often do you submit your solutions to modeling exercises?

H0%1 9% 5%z %

0% 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %
M Always M Very often Sometimes I Rarely Il Never
n=954

Figure 7: Regular submissions of modeling exercises.

ICSE-SEET 20, May 23-29, 2020, Seoul, Republic of Korea

Q4 stated that the interactive models used in Artemis program-
ming exercises have helped the students to solve the exercises. The
rating was done by using a 5-point Likert scale as shown in Fig-
ure 8. 54 % strongly agree with the statement, 36 % agree. 6 % have
a neutral opinion on the statement, whereas 3 % disagree and 1 %
of the participants strongly disagree.

Q4: The interactive models in Artemis have helped me to understand and solve
the programming exercises.

R

0% 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %
I Strongly agree W Agree Neutral Disagree H Strongly disagree
n =954

Figure 8: Interactive models in programming exercises.

Q5 asked whether students would use models in their future
projects using a 5-point Likert scale (shown in Figure 9). 24 % of
the students stated that they strongly agree, 51 % stated that they
agree with this statement. 20 % have a neutral opinion. 4 % of the
students disagree and 1 % strongly disagree.

Q5: | would use modeling techniques in my own projects in the future.

| |
BT T T 1
" "
0% 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %
W Strongly agree I Agree Neutral Disagree H Strongly disagree
n=954

Figure 9: Use of modeling in future projects.

Q6 analyzed to which extent the students considered the different
exercise types as helpful (shown in Figure 10). Homework exercises
were rated most helpful for deepening and understanding modeling
after the theory was introduced (37 % strongly agree and 47 %
agree), followed by in-class exercises (28 % strongly agree, 49 %
agree). Group works were considered least helpful, with 13 % of
students strongly agreeing to the statement, 36 % agreeing, 31 %
neutral opinions, 16 % disagreeing and 4 % strongly disagreeing.

Q6: The exercises have helped me to deepen my understanding of
modeling after the theory was introduced.

In-class desnne %l %
| |

Group work 31 % 16 % 4 %
!

Homework 1% 4%§1 %

0% 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

[Sstrongly agree I Agree Neutral Disagree M Strongly disagree
n=954

Figure 10: Helpfulness of exercise types to deepen the un-
derstanding of modeling.

Q7 asked the participants to state their opinion on different
statements regarding the modeling exercises and concepts using
a 5-point Likert scale. Figure 11 shows the results. The exercises
and concepts especially helped the students to understand why to
use models (31 % strongly agree, 53 % agree) and improve their
modeling skills (32 % strongly agree and 53 % agree). 72 % state that
modeling helped them to understand how to approach problems in
software engineering.

ICSE-SEET 20, May 23-29, 2020, Seoul, Republic of Korea

Krusche, von Frankenberg, Reimer and Bruegge

Q7: The modeling exercises/concepts taught in SE1 have helped me to...

Abstract the most imporant aspects of a system 2 1ZG NS aoa 219 e 1%

Understand the connection to programming

[ey s T e o 1%

Communicate a solution to a particular problem to my tutor/other.. 200 N2 s 1% | 1%

Understand how to approach problems in software engineering

[a0s s 21 el 1

improve my modeing skils GG S e 1%
Understand why o use modets IIGTEGMI N SS 259] 1%
Understand how to structure models i8Iy 6% 5%l 1%
Motivate me to use models in the future — 9% I 2%

Choose the correct model for the respective software engineering activity

0%
= Strongly agree mAgree = Neutral

P s e e | 1w

0% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Disagree m Strongly disagree n =954

Figure 11: Helpfulness of modeling exercises in various aspects.

5.2.2 Data Analysis. In the second part of the evaluation, we an-
alyzed data from the Artemis system regarding the modeling ex-
ercises conducted during the SE1 2019 course. SE1 included 17
modeling exercises, 9 of them were guided tutorials done in the
lecture, 8 of them were executed by the students on their own as
homework. The results are summarized in Table 2.

Exercise Pts Diffi- Partici- Avg.

culty pations Score
1 L1 Modeling Tutorial 4 E 1147 97 %
2 H1 Use Case Model 4 E 1116 55 %
3 H2 Analysis Object Model 6 E 1090 75 %
4 L2 Communication Diagram 6 E 1136 88 %
5 H3 Communication Diagram 7 M 992 54 %
6 L3 Model View Controller 4 H 1070 99 %
7 L4 Component Diagram 3 M 1049 98 %
8 H4 Choose a Design Pattern 6 M 899 83 %
9 HS5 Strategy Pattern 5 M 886 91 %
10 L5 Model Refactoring 2 E 950 90 %
11 L6 Java to UML 2 E 898 67 %
12 Hé6 Tables to a Model 4 M 851 74 %
13 L7 Scrum as Activity Diagram 5 M 860 89 %
14 H7 Activity Diagram 8 M 884 82 %
15 HS8 Build & Release Manage- 10 M 851 95 %

ment Workflow

16 L8 Functional Model 4 E 819 62 %
17 L9 Analysis Object Model 6 M 810 74 %

Table 2: Students actively participate throughout the course.
They score more points in in-class exercises (L) than in
homework exercises (H) on average.

The table depicts the different exercises, including a unique iden-
tifier, e.g. L1, where “L” represents that the exercise was conducted
during a lecture. Exercises conducted as Homework are marked
with a leading “H”. All exercises are assigned a difficulty, there were
7 easy exercises, 9 medium ones and 1 hard one in the area of soft-
ware architectures. Each exercise in the table has a certain amount

of points (between 2 and 10) that the students can achieve, as well
as the number of participations and the average score achieved
in %. On average, the guided exercises performed in-class received
a higher average score (85 %) than the homework exercises, that
the students had to solve on their own (76 %).

5.2.3 Quasi Experiment. We compared the exam results SE1 in
2018 against the results of SE1 in 2019. Both exams covered the
same exercise types about functional, structural, dynamic, and ar-
chitecture models as well as refactoring of an existing model. We
calculated the average score the students reached in the exercises
and compared them against each other. The results are shown in
Figure 12.

Functional

Structural

Dynamic

Architecture

Refactoring

n2018 =1128
n2019 =1225

®2018 m=2019

Figure 12: Students scored significantly better in 3 modeling
tasks in the 2019 exam than in the 2018 exam.

Except for the exercise about refactoring, where students re-
ceived 4 % fewer points on average in 2019 (78 %) than in 2018
(81 %), the students performed better in the SE1 2019 exam than in
the 2018 exam in the analyzed modeling tasks. For the functional
model, the average score is at 87 %, which is 26 % higher than in
the 2018 exam, where students received 69 % of available points
on average. In the structural model, students received 55 % of the
points on average, which is 87 % more than in 2018, where they

An Interactive Learning Method to Engage Students in Modeling

received 29 % on average. The results for the dynamic model are
4 % higher (54 %) than in 2018 (52 %). The average score of the
architecture exercise is 55 % higher in 2019 with 25 % compared to
16 % in 2018.

To evaluate the significance of the results, we performed a two-
sample one-tailed t-test with a significance level of @ = 0.01. The
results of the t-tests per exercise are depicted in Table 3. If the
p-value for the exercise was below alpha, we rejected Hy and con-
sidered the results from 2019 as significantly better than 2018. For
the functional and structural models, we calculated a p-value of
2,2¢71% and for the architecture model a p-value of 6,4¢ 1>, which
means, that students were significantly better in the 2019 exam for
the same model type in 2018. For the dynamic model, we calculated
a p-value of 0,09, for the refactoring, the p-value was 0,99. This
means, that the 2019 results were not significantly better than in
2018.

Model X2018 X2019 02018 02019 P
Functional 0,689 0,867 0,334 0,237 22716
Structural 0,293 0549 0265 0310 2,2e1°

Dynamic 0,519 0538 0327 0365 0,09
Architecture 0,161 0,249 0,273 0,278 6,4e’ 1>
Refactoring 0,812 0,776 0,281 0,208 0,99

noo18 = 1128, nyp19 = 1225 a=0,01
Table 3: T-tests of the SE1 2018 and SE1 2019 underline that
the 2019 students were significantly better for functional,
structural and architecture models.

5.3 Findings

SE1 serves as introduction to modeling for most students in the com-
puter science curriculum. The modeling experience of the students
before the course is low.

The results show that the interactive learning method motivates
the students to attend the tutor exercise sessions and submit their
modeling exercises. The performance in the modeling exercises
indicates that, depending on the individual exercises, the amount of
good and successful submissions is high, with an average score of
85 % for guided in-class exercises and 76 % in homework exercises.
The main reason for the differences in the success rates between in-
class and homework exercises lies in the fact that in-class exercises
are usually performed together with the instructor. The instructor
explains and performs the exercise together with the students using
a projector. The students are able to see the correct steps of creating
the model by following the instructions.

The in-class exercises serve as a tutorial and aim at giving the
students a first hands-on experience in the specific UML model
type. Later on, the students have to apply their new knowledge
on their own in the homework. There are no instructions other
than the exercise description, so that they have to find a solution
without the help of the instructor. As this is usually more difficult
and more error-prone than following tutorial steps, the average
score is lower. When comparing the examinations of SE1 in the
2019 with the control group in 2018, the results in the modeling

ICSE-SEET’ 20, May 23-29, 2020, Seoul, Republic of Korea

exercises were significantly better for the 2019 group, which used
the interactive learning method.

Finding 1: Interactive learning improves the learning suc-
cess in modeling.

SE1 covers different UML models, that are being created through-
out the whole software lifecycle. The teaching schedule and model-
ing exercises are aligned to cover different types of modeling in the
corresponding lecture and following tutor exercise sessions and
homework exercises. The students get an overview about when to
use which UML model. The results show that most participating
students submit their modeling exercises every week or at least on
a regular basis.

The number of participations between the first (1147 participa-
tions) and the last modeling exercises (810 participations) stayed
on a high level compared to traditional courses, where usually only
about 25 % of the students still actively participate in the last lec-
tures and exercises. The results of the questionnaire show, that
students are highly motivated because of the interactive learning
method and the use of modeling throughout the whole software
engineering lifecycle. Higher motivation causes students to engage
more in the lecture.

Finding 2a: Integrating modeling throughout the whole soft-
ware lifecycle increases student engagement in modeling.

Finding 2b: Interactive learning increases student engage-
ment in modeling.

Most of the participating students in the survey reported that the
interactive learning method has helped them to approach different
problems in software engineering. They understand the connec-
tion between modeling and programming. Especially the usage of
the interactive UML class diagrams in the programming exercises
helped them to better understand the programming exercises and
find the correct solution.

Finding 3: Interactive models in programming exercises im-
prove the students’ understanding of the taught concepts.

Most of the students also state they would use modeling tech-
niques in their own projects in the future and that it helped them
to better understand how to approach problems in software engi-
neering. This is also emphasized by the success of the students in
the 2019 exam compared to their results in the 2018 exam, where
the interactive learning method was not used.

5.4 Threats to Validity

Internal validity: The evaluation does not measure all variables
that could lead to better exam results. Existing knowledge, moti-
vation, the exact wording of an exam question and other external
factors might influence how students perform a modeling task in
an exam. The internal validity of the results in the quasi experiment
might be limited [32]. However, the online questionnaire and the
data analysis support the findings.

ICSE-SEET’20, May 23-29, 2020, Seoul, Republic of Korea

External validity: The SE1 course is one specific example of
courses, where modeling is taught. It is a mandatory course that
is offered to many students, who may differ in their field of stud-
ies as well as in their previous experiences. We assume that the
interactive learning method can be successfully applied in other
software engineering courses and is generalizable. However, other
study programs and regulations might make it difficult to adopt the
approach.

Construct validity: The validity of the questionnaire might be
affected by the wording of the questions or due to the fact that
students like the approach of getting feedback, which does not
necessarily improve their learning outcome. To limit the influence,
we carefully designed the questions, used Likert scales as answer
options and multiple researchers reviewed the wording. The mea-
sures in the quasi experiment and the data analysis support the
findings.

6 DISCUSSION

While individual feedback for modeling exercises improves the
students understanding and retention rate in terms of modeling
and problem solving, as shown in Section 5.3, assessing each model
submission increases the workload. Due to the amount of exercises
to be assessed, it is hard to provide meaningful and understandable
feedback comments, which can lead to partly incomprehensible
and insufficient feedback. We have observed that tutors take more
time at the beginning and take less time towards the end. Some
tutors lack the required expertise or motivation which can result
in inconsistent assessments in terms of fairness and correctness.

With either missing or insufficient feedback comments, students
may get confused and would require a more extensive feedback to
understand their faults. We have added a “request more feedback”
functionality to Artemis, so that students can ask specific questions
and another tutor answers them. A lack of feedback may also moti-
vate students to participate more in discussions during the group
work exercises, where they can ask their tutor for clarification.
Artemis helps to assess student submissions with less bias than
traditional methods, because student and tutor names are hidden.
A random allocation of assessments also improves the fairness of
assessments.

One of our main goals is to teach creativity in modeling which
can further enhance problem solving abilities as well as understand-
ing of object-orientated principles. For students new to modeling,
this can be difficult. First, students are used to solve programming
exercises where the compiler tells them exactly where they made
a mistake, in real-time. This allows students to find and fix mis-
takes easily. Second, students are often used to precise problem
statements and assume only one correct solution. They may have
trouble in understanding that multiple solutions can be correct,
which is the case in modeling. Third, students new to modeling
may also lack the confidence in creating, presenting and discussing
their own solutions with tutors or peer students. In our learning
method, we approach these challenges by instructing tutors to ac-
tively encourage discussions and asking students to present their
solutions to homework exercises at least twice during the tutor
exercise sessions in order to qualify for the bonus system.

Krusche, von Frankenberg, Reimer and Bruegge

There are certain benefits for modeling on paper first, rather than
using online editors, regarding syntax, semantic, and aesthetics [33].
Students may become used to using an online editor that already
provides the syntax. In the paper-based exam, they would have
to remember the syntax themselves and still draw their solutions
on paper. Online editors, on the other hand, offer the function to
change models easily, e.g., by adding a new element and replacing
existing elements. On paper, this can quickly become unreadable
and cumbersome.

Extrinsic motivation might also be a factor, because learning may
be affected by assessments and bonus points for their work, rather
than solely focusing on feedback and learning outcome. In our
experience, especially students in their first year can have trouble
in differing between learning and receiving feedback. The bonus
might motivate those students more to participate in the exercises
than the effect of practicing and improving their skills.

7 CONCLUSION

In this paper, we presented an interactive learning method that
teaches modeling in an interactive setting, where students learn the
problem solving aspects of modeling, can iterate through different
types of models, and discuss their results in tutor exercise sessions.
We present how Artemis and Apollon support students, instructors,
and tutors in learning and teaching modeling throughout the whole
software engineering lifecycle. We applied the interactive learning
method in a large introductory software engineering course with
more than 1000 students. Our empirical evaluation consisting of
an online questionnaire, data analysis, and a quasi experiment
shows that the interactive learning method improves the learning
success of the students significantly and increases their motivation
in modeling.

In the future, we want to integrate team projects with realistic
problem statements and modeling tasks in our courses that are sup-
ported by the interactive learning method. Modeling with real-time
synchronization in Apollon would allow students to collaborate
on the model creation even in distributed settings. We also want
to incorporate peer reviews for modeling exercises in Artemis so
that students also have to grade models and provide feedback to
other students because evaluating a model further improves the
own modeling skills.

REFERENCES

[1] Mohammed Basheri, Liz Burd, and Nilufar Baghaei. 2012. Collaborative software
design using multi-touch tables. In 4th International Congress on Engineering
Education. IEEE, 1-5.

[2] John Biggs. 2003. Aligning teaching and assessing to course objectives. Teaching

and learning in higher education: New trends and innovations 2, 13-17.

Benjamin Bloom, Max Engelhart, Edward Furst, Walker Hill, and David Krath-

wohl. 1956. Taxonomy of Educational Objectives: The Classification of Educa-

tional Goals.

[4] Curtis Bonk and Charles Graham. 2012. The handbook of blended learning: Global
perspectives, local designs. John Wiley & Sons.

[5] Charles Bonwell and James Eison. 1991. Active Learning: Creating Excitement in
the Classroom. ASHE-ERIC Higher Education Reports.

[6] Bernd Bruegge, Stephan Krusche, and Lukas Alperowitz. 2015. Software Engi-
neering Project Courses with Industrial Clients. ACM Transactions on Computing
Education 15, 4, 17:1-17:31.

[7] Bernd Bruegge, Stephan Krusche, and Martin Wagner. 2012. Teaching Tornado:

from communication models to releases. In Proceedings of the MODELS Educators’

Symposium. ACM, 5-12.

Doug Buehl. 2017. Classroom strategies for interactive learning. Stenhouse Pub-

lishers.

B3

—_
o)

An Interactive Learning Method to Engage Students in Modeling

(9]

[10]

[11]

[12

[13]

[14

[15]

[16

[17

(18]

[19]

[20

[21

[22]

Weiqin Chen, Roger Heggernes Pedersen, and @ystein Pettersen. 2006. CoLeMo:
A collaborative learning environment for UML modelling. Interactive Learning
Environments 14, 3, 233-249.

Thomas Connolly, Mark Stansfield, and Thomas Hainey. 2007. An application of
games-based learning within software engineering. British Journal of Educational
Technology 38, 3, 416-428.

Dora Dzvonyar, Stephan Krusche, and Lukas Alperowitz. 2014. Real Projects with
Informal Models. In Proceedings of the MODELS Educators Symposium. 39-45.
Hermann Ebbinghaus. 2013. Memory: A contribution to experimental psychology.
Annals of neurosciences 20, 4, 155.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1993. Design
patterns: Abstraction and reuse of object-oriented design. In European Conference
on Object-Oriented Programming. Springer, 406—431.

Richard Higgins, Peter Hartley, and Alan Skelton. 2002. The conscientious
consumer: Reconsidering the role of assessment feedback in student learning.
Studies in higher education 27, 1, 53-64.

Alastair Irons. 2007. Enhancing learning through formative assessment and feed-
back. Routledge.

Paul Kirschner, John Sweller, and Richard Clark. 2006. Why minimal guidance
during instruction does not work: An analysis of the failure of constructivist,
discovery, problem-based, experiential, and inquiry-based teaching. Educational
psychologist 41, 2, 75-86.

Alice Kolb and David Kolb. 2005. Learning styles and learning spaces: Enhancing
experiential learning in higher education. Academy of management learning &
education 4, 2, 193-212.

Aditi Kothiyal, Rwitajit Majumdar, Sahana Murthy, and Sridhar Iyer. 2013. Effect
of think-pair-share in a large CS1 class: 83% sustained engagement. In Proceedings
of the 9th annual international conference on International computing education
research. ACM, 137-144.

Stephan Krusche, Bernd Briigge, Irina Camilleri, Kirill Krinkin, Andreas Seitz,
and Cecil Wobker. 2017. Chaordic Learning: A Case Study. In 39th International
Conference on Software Engineering: Software Engineering Education and Training.
IEEE, 87-96.

Stephan Krusche and Andreas Seitz. 2018. ArTEMiS: An Automatic Assessment
Management System for Interactive Learning. In Proceedings of the 49th Technical
Symposium on Computer Science Education (SIGCSE). ACM, 284-289.

Stephan Krusche and Andreas Seitz. 2019. Increasing the Interactivity in Software
Engineering MOOCs - A Case Study. In 52nd Hawaii International Conference on
System Sciences. 1-10.

Stephan Krusche, Andreas Seitz, Jirgen Borstler, and Bernd Bruegge. 2017. Inter-
active learning: Increasing student participation through shorter exercise cycles.

ICSE-SEET’ 20, May 23-29, 2020, Seoul, Republic of Korea

In Proceedings of the 19th Australasian Computing Education Conference. ACM,
17-26.

Stephan Krusche, Nadine von Frankenberg, and Sami Afifi. 2017. Experiences of
a Software Engineering Course based on Interactive Learning. In Tagungsband
des 15. Workshops Software Engineering im Unterricht der Hochschulen. 32-40.
Christian Lange and Michel Chaudron. 2004. An empirical assessment of com-
pleteness in UML designs. In Proceedings of the 8th International Conference on
Empirical Assessment in Software Engineering. 111-121.

Christian Lange, Bart DuBois, Michel Chaudron, and Serge Demeyer. 2006. An
experimental investigation of UML modeling conventions. In International Con-
ference on Model Driven Engineering Languages and Systems. Springer, 27-41.
Harold Leavitt and Bernard Bass. 1964. Organizational psychology. Annual
Review of Psychology 15, 1, 371-398.

WenQian Liu, Steve Easterbrook, and John Mylopoulos. 2002. Rule-based detec-
tion of inconsistency in UML models. In Workshop on Consistency Problems in
UML-Based Software Development, Vol. 5.

Frank Lyman. 1987. Think-pair-share: An expanding teaching technique. Maa-Cie
Cooperative News 1, 1, 1-2.

Jacqueline McQuillan and James Power. 2006. On the application of software
metrics to UML models. In International Conference on Model Driven Engineering
Languages and Systems. Springer, 217-226.

Kashif Mehmood and Samira Si-Said Cherfi. 2009. Evaluating the Functionality
of Conceptual Models. In ER Workshops.

[31] Jaap Murre and Joeri Dros. 2015. Replication and analysis of Ebbinghaus’ forget-

ting curve. PloS one 10, 7.

Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. 2012. Case Study
Research in Software Engineering: Guidelines and Examples (1st ed.). Wiley Pub-
lishing.

Doris Schmedding and Anna Vasileva. 2017. Reviews-ein Instrument zur Qual-
itatsverbesserung von UML-Diagrammen.. In SEUH. 8-19.

David Shaffer. 2004. Pedagogical praxis: The professions as models for postin-
dustrial education. Teachers College Record 106, 7, 1401-1421.

John Sweller and Graham A. Cooper. 1985. The use of worked examples as a
substitute for problem solving in learning algebra. Cognition and Instruction 2, 1,
59-89.

J. Gregory Trafton and Brian J. Reiser. 1993. Studying Examples and Solving

Problems: Contributions to Skill Acquisition. Technical Report. Naval HCI Research
Lab, Washington, DC, USA.

Kurt VanLehn. 1996. Cognitive Skill Acquisition. Annual Review of Psychology
47, 513-539.

Jim Whitehead. 2007. Collaboration in Software Engineering: A Roadmap. FOSE
7, 214-225.

	Abstract
	1 Introduction
	2 Related Work
	3 Learning Method
	3.1 Deepening the Learning Content
	3.2 Tool Support with Artemis and Apollon

	4 Course
	4.1 Organization
	4.2 Design
	4.3 Exercises
	4.4 Communication
	4.5 Tutor Exercise Sessions
	4.6 Grading

	5 Evaluation
	5.1 Research Method
	5.2 Results
	5.3 Findings
	5.4 Threats to Validity

	6 Discussion
	7 Conclusion
	References

