
Semi-Automatic Assessment of Modeling Exercises using Supervised
Machine Learning

Stephan Krusche
Technical University of Munich

krusche@in.tum.de

Abstract

Motivation: Modeling is an essential skill in
software engineering. With rising numbers of
students, introductory courses with hundreds of students
are becoming standard. Grading all students’
exercise solutions and providing individual feedback
is time-consuming. Objectives: This paper describes
a semi-automatic assessment approach based on
supervised machine learning. It aims to increase the
fairness and efficiency of grading and improve the
provided feedback quality.

Method: While manually assessing the first
submitted models, the system learns which elements are
correct or wrong and which feedback is appropriate.
The system identifies similar model elements in
subsequent assessments and suggests how to assess
them based on scores and feedback of previous
assessments. While reviewing new submissions,
reviewers apply the suggestions or adjust them and
manually assess the remaining model elements.

Results: We empirically evaluated this approach in
three modeling exercises in a large software engineering
course, each with more than 800 participants, and
compared the results with three manually assessed
exercises. A quantitative analysis reveals an automatic
feedback rate between 65 % and 80 %. Between
4.6 % and 9.6 % of the suggestions had to be manually
adjusted. Discussion: Qualitative feedback indicates
that semi-automatic assessment reduces the effort and
improves consistency. Few participants noted that the
proposed feedback sometimes does not fit the context of
the submission and that the selection of feedback should
be further improved.

1. Introduction

Software engineering deals with complexity and
change. It requires the practical application of
knowledge [1, 2]. Modeling a system in UML is
an essential practical skill. It allows abstracting the

system and leaving out intricate details. It facilitates
communication between software engineers on a higher
abstraction. Students typically become familiar with
modeling in large undergraduate courses in university.

While examples and exercises play a central role in
the early phases of cognitive skill acquisition [3], it is
time-consuming for instructors to create good modeling
exercises. However, carefully developed examples
increase the learning outcome [4, 5]. In addition,
providing individual feedback is essential in learning
in a class environment [6] to improve students’ skills.
When following an interactive teaching style, including
in-class exercises [7, 8, 9], the students submit several
models over a semester and further increase the number
of needed assessments.

However, with the rising number of students in
introductory courses, it is nearly impossible for an
instructor to manually grade all students’ solutions to
modeling exercises and provide individual feedback.
For example, at the Technical University of Munich,
up to 2,200 students from three different study
programs regularly participate in the undergraduate
software engineering course. One possible solution
is the recruitment of tutors1 who could take over the
assessments. However, it is not easy to find enough
skilled tutors who can provide good feedback for
students. In addition, the instructor would need to hire,
coordinate and introduce the tutors to each exercise
and the possible sample solutions, which would require
much discussion about the correct and wrong aspects of
the exercise.

Even when the university could employ tutors,
feedback from multiple persons is not always fair. The
experience between tutors differs and is typically lower
than the experience of an instructor, who has taught
the course for many years and can be considered as
a modeling expert. Inexperience can result in grading
conflicts depending on how strict each tutor assesses
a solution. Grading criteria help to even out the

1Tutors are experienced students who have passed the course in the
previous year and receive money for helping in the teaching process.



inexperience, but tutors can still choose to disregard
them. There is typically a sample solution for modeling
exercises, so that students can compare their own
solution with the sample solution. However, this might
not specifically help an individual student to improve
her modeling knowledge. The sample solution only
describes one possible correct solution for a modeling
exercise. To determine whether a solution is similar
to the sample solution, students need to have existing
modeling skills.

Modeling is a creative task: multiple solutions
are possible, and it is not easy to assess immediately
whether a solution is correct or not [10, 11]. It is
not feasible to define all possible correct solutions.
This paper proposes semi-automatic assessment using
a customized supervised machine learning approach.
While manually assessing the first submitted models,
the system learns about the correct and incorrect model
elements and can propose suggestions for similar model
elements in subsequent assessments. When reviewing
new submissions, the reviewers can accept the automatic
suggestion or adjust it based on the context of the model
and assess all remaining model elements manually.

The paper is structured as follows. Section
2 explains more details about teaching modeling
and the challenges concerning creativity and sample
solutions. Section 3 discusses related work in
the context of assessing submissions to modeling
exercises. In Section 4, we present the method for
the semi-automatic assessment of modeling exercises
using supervised machine learning. Section 5 shows an
empirical evaluation of a large undergraduate software
engineering course. Section 6 concludes the paper

2. Background

A UML model “captures the important aspects of
the thing being modeled from a certain point of view”
[12]. It is an abstraction and generalization and omits
certain details. This makes models useful for software
engineering because both handle the complexity by
focusing on relevant details and leaving out the rest.
It consists of different diagram types, e.g. UML class
diagrams to describe the structure of the system.

Teaching UML modeling to students is a difficult
task. While the structural aspects of a model follow
certain rules that can be learned by heart, it is
challenging for students to map a realistic problem
statement to a concrete model. Including all semantics
in a correct way is challenging and sometimes not even
possible due to abstraction and simplification. Students
have to decide on certain trade-offs when modeling a
problem which includes higher-level skills.

Bloom’s taxonomy classifies learning goals [13].
Modeling requires understanding and analyzing a
problem, evaluating different design solutions, and
combining them to create new knowledge. Designing
a system and modeling it in UML allow for multiple
ways how to solve the problem. The freedom in creating
UML models has impact on the assessment of modeling
exercises. Multiple solutions can be correct and can
show important aspects of a problem. There is a risk in
teaching that instructors focus on one particular sample
solution and that students misunderstand that only this
solution is correct and all other solutions are wrong.

However, the nature of modeling is abstraction by
hiding complex details. It is difficult to decide which
complex details should be hidden and which aspects are
necessary to understand the core idea of the problem
[14]. Even experienced modelers will come up with
different solutions which is one advantage of modeling
because it stimulates discussion among the system
and facilitates communication. But this also poses a
challenge in teaching, especially if instructors do not
have enough time to teach students about these aspects
of modeling, e.g. in undergraduate courses.

One sample solution cannot cover all aspects of a
problem and can constraint the creativity of students.
While it allows to compare, it is difficult to decide if
a solution is still correct if it differs from the sample
solution. Showing a sample solution poses the risk
that students learn one out of many representations of a
system by heart instead of using their creativity to come
up with their own representation. Students should learn
how to address a problem with the help of modeling by
applying the skill on their own. Instructors then provide
guidance with an individual assessment for each student.

Such an assessment should “provide learners an
opportunity to demonstrate achievement of outcomes
and to demonstrate progress toward the learning
outcomes” [15]. It identifies gaps between the student’s
understanding and the actual knowledge [16]. Individual
feedback includes information why certain aspects are
incorrect and facilitates learning. Students learn about
their mistakes, improve their solution and identify
strengths and weaknesses. When instructors assess
UML models, they typically scan the submitted model
for known (groups of) model elements and evaluate if
they are correct in their structure, semantics and visual
aspects [17]. In large courses, they face similar models
frequently which leads to recurring manual tasks.

3. Related Work

Soler et al. created a learning platform [18]
and support exercises for database design [19].



Instructors have to specify the attribute names, which
should be used in the solution, and define multiple
sample solutions in a prescribed format to assess
submissions automatically. Solutions describe classes
and associations. The specified attributes from the
exercise description are assigned to the classes in the
solutions. The system determines the most similar
sample solution by matching the attributes.

By comparing the most similar sample solution
with the student submission, the system returns errors
such as incorrect numbers of classes or associations
or multiplicity errors. In contrast to the approach
presented in this paper, students do not have to come
up with attributes themselves, which is an important
skill in modeling. Instructors have to define multiple
sample solutions before the assessment starts, which is
time-consuming and it is not guaranteed that all possible
solutions are covered. The system is limited to UML
class diagrams and does not learn which elements are
correct or wrong on the fly.

Hasker developed a similar approach [20], but does
not require exercise descriptions to specify attribute
names. Matching between sample and student solutions
is done by name matching, e.g., class names are matched
as a whole and for attributes, methods and associations,
the system uses substring matching.

Hoggarth and Lockyer [21] shifted the problem of
finding similarities between a sample solution and a
student solution from the system to the student. An
instructor provides one sample solution. When students
submit their solution, they are presented a dialog box.
It breaks down both solutions in parts and lists them.
Student then have to match their model elements to
those of the sample solution. The system provides the
student a list of feedback describing the differences
between the solutions, which acts as a guidance. This
approach only allows one sample solution, which might
not be similar at all to the student solution. It also
assumes that students are familiar with modeling and
can match their solution to the sample solution.

Ali et al. [22] designed a system where the student
submission is compared to a so-called learner’s sample
solution. The correctness is checked in three steps: class
structure analysis, verification process and language
checking. The steps are executed sequentially, only
if the previous step did not result in errors. The first
step checks the general structure of the UML model,
e.g., number of classes and attributes. The second step
verifies whether the associations are correct. The last
step validates the naming of the classes, attributes and
methods. This approach has the disadvantage that the
sample solution does not cover all possible solutions.
Students have the freedom to choose attribute names

themselves, so it is likely that the student solution cannot
be compared to the sample solution.

Striewe and Goedicke propose a more flexible
solution to assess UML models [23]. They take
advantage of UML diagrams being similar to graphs.
Instructors can define rules to describe a desired or
undesired element. With a graph query engine, the
system can verify the rules. Apart from exercise specific
rules, they implemented general rules, e.g. checking
missing names, roles, cardinalities or directions of
associations. Although their solution is more flexible
than the other ones, the instructor still has to define the
rules manually and it is not guaranteed that all possible
rules are covered and that all possible student solutions
can be assessed with these rules.

4. Method

Automating recurring tasks in the assessment can
reduce the correction effort. At the same time, it can
preserve that multiple submissions are considered as
correct and would not limit the modeling creativity of
students. To support this idea, a modeling assessment
framework needs to learn from manual model grading
and apply the learned knowledge for the correction
of other model submissions enabling a semi-automatic
assessment approach as shown in Figure 1.
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Figure 1. Semi-automatic assessment workflow

based on supervised learning.

Students submit their models as solution to a specific
exercise. In the beginning, there is not enough
knowledge for the system to assess automatically, so
the assessment proposal will be empty and reviewers
needs to assess the complete solution manually. The
system analyzes the manual assessment and generates
knowledge that can be used to propose automatic
assessment for subsequent submissions with similar
model elements. Then, reviewers start with a
partly assessed submission with automatically proposed



feedback. They can either confirm the proposed
assessments in case they are correct, or adjust the
assessment in case they are wrong for the current
submission, e.g. due to a different context. Following
an interactive learning approach [7], students can review
the assessment and use it to refine their model and
submit another version to the same exercise, if the due
date of the exercise has not passed yet.

To enable the system to learn, two core concepts are
necessary. First, the system needs to decompose models
into smaller elements. Figure 2 shows the important
model elements in a UML class diagram: classes,
attributes, methods and associations. Other diagrams
can be decomposed into different model elements.
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Figure 2. Taxonomy of important model elements

Second, it needs to identify similar model elements
in other submissions based on similarity analysis and
build model clusters. A cluster includes all similar
model elements of all submissions in one exercise.
Model elements are considered similar based on their
type, name and context. All model elements in one
cluster have the same type (e.g. UMLMethod), similar
properties (e.g. a similar name) and the same context
(e.g. a similar parent class). Then, the system can apply
the existing assessment of one model element to other
elements in the same model cluster. The knowledge in
Figure 1 is then the combination of the model clusters
(based on similarity analysis) and the manual feedback
associated to the model elements in one cluster.

Attributes and methods belong to the same model
cluster if they are specified in the same UML class and
if they have a similar name. Similarity of names could
be measured using a Levenshtein distance metric [24].
The system would assume two names are similar if the
normalized Levenshtein distance metric is higher than
e.g. 90 %2. A more sophisticated similarity metrics
using natural language processing, topic modeling and
synonym analysis could also be used [25].

2The actual computation is more difficult and takes all properties
of a model element into account.

UML classes belong to the same cluster if they have
a similar name, if they have a similar kind (e.g. abstract,
interface) and if they have similar associations to other
classes. The last point includes the context of classes
to ensure classes are only identified as similar, if they
are defined in the same context. Associations belong to
the same cluster if they have the same source and target,
have the same kind and have similar multiplicities and
roles with only small deviations.

When a reviewer assesses one model element in
a model cluster, the system learns whether the model
element is correct or not and can apply the same score
and feedback to all other model elements in the same
cluster. By using this approach, each manual assessment
creates additional knowledge which can be used for
automatic assessment proposals. It makes sure that in
the manual reviewing process, multiple solutions can be
identified as correct, even if they deviate. And it also
focuses on detailed feedback that highlights mistakes on
a small scale, i.e. the individual model element. The
system can suggest the next manual assessment as the
one where the most knowledge is gained by choosing the
submission in which the least amount of model elements
would include an assessment proposal. Figure 3 shows
an example how the system learns.

1. Submission 2. Submission 3. Submission

Manual assessment Manual assessment 
Proposed  

automatic assessment

Figure 3. Example how manual assessments lead to

knowledge for a proposed automatic assessment

The first two submissions are manually assessed
and produce enough knowledge so that the system
can propose assessments for all six model elements
in the third submission. While it might be tempting
to automatically submit the assessment of the third
submission, we decided that it is still necessary that a
reviewer inspects the model. There are several reasons
for this: First, the context and similarity detection are
not always correct. Second, missing model elements
cannot be identified with this approach. Third, even if
the scores (in the example expressed with green ticks
and red crosses) are proposed correctly, the textual
feedback (not shown in Figure 3) might not fully apply.
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Figure 4. Assessment user interface: the assessment editor on the left includes proposed assessments

(highlighted in blue). Instructions on the right include problem statement, example solution and grading criteria.

Figure 4 shows how the assessment user interface.
The student submission is on the left. All model
elements in blue include automatically proposed
feedback. In the shown example most elements
are correct (green tick) and only one element has a
neutral score (the association between Client and
Encryption) shown with a blue exclamation mark.
Some elements are not yet assessed: two associations
and the four methods with a white background. The
reviewer can see the problem statement on the right
side (collapsed in Figure 4). An example solution with
an explanation and grading criteria are also shown. A
reviewer can simply drag and drop grading criteria to
model elements to simplify the review process. Then,
a predefined score and feedback is added to the model
element which can further be adapted if needed.

5. Evaluation

We implemented the semi-automatic assessment
method in Artemis [26], a learning management system
that focuses on individual and immediate feedback.
Artemis integrates the lightweight online modeling
editor Apollon [27] and is open source. We used
the method in three exercises in a large undergraduate
software engineering course SE1 in the summer 2019
with 1600 participants. SE1 teaches basic software
engineering concepts, such as requirements analysis,
system design, object design, testing, delivery, UML

modeling and design patterns. The only prerequisite
is experience with object-oriented programming, e.g.
gained in a CS1 course. Exercise participation is
voluntary, the final grade is based on an exam.

5.1. Study Design

This section describes the design based on
quantitative analysis in six exercises and qualitative
analysis in an online survey with 22 tutors.

5.1.1. Exercises In the following six exercises,
students had to create a UML class diagram.

E1 Reverse engineer database tables to a model
E2 Model build and release management as object model
E3 Create an analysis object model for Scrum
E4 Choose a design pattern
E5 Mapping Java to UML
E6 Bumpers Analysis Object Model

E1, E2, and E3 use semi-automatic assessment as
proposed in this paper. E4, E5, and E6 are three
randomly chosen modeling exercises for a comparison.

E1 was about reverse engineering database tables
into a UML class diagram. Students should leave out
unnecessary attributes and methods and group columns
logically in an inheritance taxonomy. The exercise



included several hints about the structure of the UML
class diagram and was constrained in terms of creativity.
While there have been multiple correct solutions, e.g.
how to exactly model the inheritance relationship, the
model had to match the given database scheme.

In E2, the students had to transform a given informal
build and release management workflow into an analysis
object model including useful attributes and methods.
The resulting analysis object model should include the
most important concepts as objects, their properties as
attributes and the activities as methods. The given
workflow contained several activities such as compiling,
testing, building and releasing the source code as well
as using the software and providing feedback. It
also included typical tools such as version control and
continuous integration systems as well as three roles:
developer, release manager and user.

E3 built on the previously taught knowledge about
Scrum [28]. Student had to create an analysis object
model with the most important core concepts of Scrum
and their relationships. The idea was to model the
Scrum artifacts (e.g. backlog item) and meetings (e.g.
sprint planning meeting) as objects and add proper
attributes and methods (e.g. estimate() on the object
backlog item). The exercises E2 and E3 included more
freedom than E1, because the exercise was not to create
a complete and fully consistent model of the given
theories, but to express the most important concepts in
an understandable way.

E4 asks the students to choose an appropriate
software design pattern [29] based on a problem
statement and to model the concrete situation using this
design pattern. While the exercise provides some kind
of creativity, the problem statement narrows down the
choice of patterns and includes several key words that
student should use in the resulting UML class diagram
as class name, attributes or methods.

In E5, the students had to reverse engineer Java
code into a UML diagram. Correct solutions to the
exercise only allowed a limited number of choices,
e.g. whether to use aggregation, composition or
unidirectional associations, or the explicit use of default
values (role names, multiplicities, etc.). Therefore, the
creative nature of the exercise was limited.

Student had to extend an existing analysis object
model in E6 based on new requirements in the context
of the game Bumpers. In Bumpers, one player steers a
car and crashes it in a specified way into other cars that
are randomly controlled by the computer. The students
experienced two sprints as in-class exercises and had
to work on the third sprint as homework including the
implementation of new simple requirements and the
modeling of the extension to the UML class diagram of

the previous sprint. The concrete realization included
a couple of creative aspects, e.g. in the choice of the
concrete mode of crash detection. E6 focused on the the
modeling part of the homework exercise.

5.1.2. Quantitative Analysis We evaluate the
resulting data of all six exercises in a quantitative
analysis and compare the data of exercises with
semi-automatic assessment (E1, E2 and E3) with the
data of exercises with manual assessment (E4, E5, E6).
We obtained the data by executing SQL statements
against the database of Artemis. The data consists of
real student submissions and assessments by tutors.
The analysis focuses on the assessment type of the
individual model elements (automatic, adjusted or
manual). By analyzing the amount of automatically
proposed feedback for model elements compared to the
total number of feedback items for model elements, we
gain information about the percentage of automatically
assessed model elements (automatic assessment rate).

In order to compare the evaluation results of different
exercises with each other, a way to classify modeling
exercises in terms of variability is necessary. The
variability provides information about the number of
possible solutions to an exercise and we expect that it is
closely coupled to the automatic assessment rate of the
system. For example, an exercise with only one possible
solution creates less model clusters which increases
the potential of automatic assessments compared to an
exercise with multiple different possible solutions. One
way of analyzing the variability is the comparison of the
problem statements of the exercises.

However, this does not constitute a formal method,
as it does not yield an unambiguous, comparable
benchmark and it is subject to the experience of the
person who evaluates the problem statement. Therefore,
we introduce a variability index that specifies a distinct
value for each modeling exercise. It takes the average
amount of model elements per submission and the
number of model clusters into account:

• a = avg. elements per submission
• p = #model clusters with positive feedback
• c = #all model clusters
• e = #assessed elements

We define two variability indices v1 and v2:

v1 =
p

a
(1)

v2 =
c

a
(2)



Definition (1) takes all model clusters into account
that have a positive score. It represents the number
of different model elements of all submissions that the
reviewers considered as correct. The average number of
model elements per submission is an indication about
the size of the solutions. Both numbers in relation
provide the variability of the corresponding exercise,
i.e. it is an indicator of the amount of possible correct
solutions. The higher the index, the greater is the
variability of the exercise.

If the number of correct model elements is much
higher than the average number of model elements per
submission, there must be multiple different possible
solutions. If both numbers are almost identical, the
elements in the correct solutions do not vary much
which indicates that there is only one correct solution
to the exercise. Equation (2) is similar, but considers
all model clusters instead. In contrast to equation (1),
it provides information about the variety of all student
submissions, not only the correct ones. For a better
comparison between exercises, the variability values
should be between 0 % and 100 %. Therefore, we adjust
the equations in the following way:

vp =
p− a

e− a
(3)

vc =
c− a

e− a
(4)

vp describes the variability in terms of good
solutions, while vc describes it in terms of all solutions.
If the number of model clusters equals the average
number of elements per submission, the submissions do
not vary much. In this case, vp and vc converge to 0.
If the number of model clusters equals the number of
assessed elements, every model cluster contains only
one element and there are no similar model elements
among the submissions. Then, the normalized equations
converge to 1 and express that variability is high.

5.1.3. Qualitative Analysis To evaluate the quality
of the proposed system from a users perspective, we
conduct a qualitative analysis in the form of a user
survey. The survey targets the 45 tutors that used the
new approach for the assessment of the exercises in
the SE1 course. It consists of different questions that
focus on the quality of the automatic assessments and
the impact on the manual assessment process.

Since the tutors have used the pure manual and the
new semi-automatic assessment approach in SE1 in the
summer term 2019, the survey is suitable for a direct
comparison of both approaches. The online survey

asked the tutors what they like and what they do not like
about the approach using free text answers. We invited
all 45 tutors of SE1 to participate in the survey. 22 of the
tutors (response rate 48.9 %) completed the survey.

5.2. Objectives

We formulate the following hypotheses with respect
to the semi-automatic assessment approach that was
implemented in the modeling assessment framework
Compass in Artemis [26]:

H1 Reduced assessment effort: The approach reduces
the manual assessment effort.

H2 Improved feedback quality: The approach
improves the quality of the feedback.

While the proposed system aims to reduce the
manual assessment effort, it must also focus on the
quality of the resulting feedback at the same time.
The quality has a direct impact on the students’
learning progress. Therefore, the main goals are to
reduce the manual effort, while at the same time
improving the quality of the provided feedback in
terms of fairness, consistency and understandability.
High quality feedback takes the context of the exercise
into account and helps students to improve their
understanding and prevents misconceptions.

5.3. Results

This section structures the results according to
the different evaluation methods. It describes the
outcome of the quantitative analysis of the data from
the four exercises of the case study. It shows the most
meaningful answers of the online survey with the tutors.

5.3.1. Quantitative Analysis The quantitative
analysis evaluates data from modeling exercises where
the proposed method was used. Table 1 shows the
results of the analysis. Each column represents one of
the exercises E1 - E3. The table lists the number of
assessed submissions and the total number of assessed
elements as well as the ratio (i.e. how many model
elements have been assessed).

In the three exercises, between 836 and 887 students
submitted their model solution. The submissions
of exercise E2 contain the most elements in total
and also the most assessed elements. This exercise
has the highest average amount of elements and
assessed elements per submission. The feedback items
represent the assessment of single model elements of the
submissions.



Exercise E1 E2 E3
Assessed submissions 887 877 836

Total elements 17,558 32,954 21,361

Assessed elements (e) 14,035 23,942 12,894

Assessed elements (ratio) 79.9 % 72.7 % 60.4 %

Avg. elem. per submission (a) 19.8 37.6 25.5

Avg. assessed elem. per submission 15.8 27.3 15.4

Automatic feedback 76.1 % 80.3 % 65.0 %

Adjusted feedback 7.0 % 4.6 % 9.6 %

Manual feedback 17.0 % 15.1 % 25.4 %

Model clusters (c) 943 2,641 2,232

Avg. elements per model cluster 14.8 9.1 5.8

Optimal manual correction effort 6.7 % 11.0 % 17.3 %

Max. automatic assessment rate 93.2 % 89.0 % 82.7 %

Variability index vp 1.4 % 7.1 % 10.0 %

Variability index vc 6.6 % 10.9 % 17.2 %

Table 1. Results of the quantitative analysis for

exercises E1 - E3 (assessed semi-automatically)

The next three rows show the respective proportion
of the different feedback types and add up to 100 %:

• Automatic: The feedback was created by the system
automatically and it was not adjusted.

• Adjusted: The feedback was created by the system
automatically, but the score of feedback text was
changed by a reviewer.

• Manual: The feedback was manually created by a
reviewer as the system could not (yet) review the
corresponding model element.

In the three exercises, the automatic assessment rate
is between 65.0 % and 80.3 %. This number show how
many model elements could be assessed automatically
by the system. E1 has the smallest number of model
clusters with 943, E2 has the highest number E2 with
2,641. E1 has the highest amount of elements per model
cluster with 14.8. The optimal correction effort is the
relation of model clusters to assessed model elements. It
describes the maximum amount of model elements that
reviewers would have to assess manually in an optimal
scenario, i.e. without any duplicated assessment of
similar model elements. From E1 to E3, this parameter
lies between 6.7 % and 17.3 %.

Table 1 shows the theoretical maximum automatic
assessment rate, which is the maximum amount of
model elements that can be assessed automatically by
the system with the given data. It is the optimal
correction effort subtracted from 100 %. The last row
in the table displays the variability indices. vc is 6.6 %
for E1, 10.9 % for E2 and 17.2 % for E3.

Exercise E4 E5 E6
Assessed submissions 927 921 1,111

Total elements 25,135 10,020 48,771

Assessed elements (e) 8,494 4,937 6,092

Assessed elements (ratio) 33.8 % 49.3 % 12.5 %

Avg. elem. per submission (a) 27.1 10.9 43.9

Avg. assessed elem. per submission 9.2 5.4 5.5

Model clusters (c) 1,453 251 1,936

Avg. elements per model cluster 5.9 19.7 3.2

Optimal manual correction effort 17.1 % 5.1 % 31.8 %

Max. automatic assessment rate 82.9 % 94.9 % 68.2 %

Variability index vc 16.8 % 4.9 % 31.3 %

Table 2. Results of the quantitative analysis for

exercises E4 - E6 (assessed manually)

For a comparison, we calculated the same values
with three completely manually assessed modeling
exercises E4 - E6 in the same SE1 course. Table 2
shows the results. E4 was a medium exercise with
27.1 model elements per submission and a variability
of 16.8 %. E5 was a rather small exercise with 10.9
model elements per submission and a small variability
of 4.9 %. It therefore would have the smallest optimal
manual correction effort. E6 was a relatively large
exercise with 43.9 model elements per submission and
a greater variability of 31.3 %.

In contrast to the exercise E1 - E3 shown in Table 1
the ratio of assessed elements is significantly smaller.
The main reason is that feedback was not automatically
applied to other submissions.

5.3.2. Qualitative Analysis The survey asked tutors
what they like and what they do not like about the
approach. They answered in free text. The following
list presents a representative selection of the most
meaningful answers to the question what they like:

• “Most of the time it got the score correct.”
• “Clear visualization of automatically assessed items.”
• “I got an insight to the Feedback of the other tutors

which led to more consistency in grading.”
• “Easy models were corrected very good.”
• “The more assessments are done, the less I have to

assess manually. I can focus on the key elements.”
• “Good overview about what parts of the diagram are

correct in the first view, I could see for what other
tutors gave points.”

The majority of the replies stated that the proposed
score was mostly correct. The tutors liked the
visualization of the automatic assessments. Another



advantage that several tutors mentioned is that they got
an overview of how other tutors graded the elements
which increases the consistency of the assessments. The
tutors did not like the following aspects:

• “Feedback message are not accurate sometimes.”
• “It was faster for me to assess without automatic

assessment, my feedback was more complete than the
automated one. I was slower because we were told to
double check and not trust the automated assessment.
Reviewing all feedback and scores was exhausting.”

• “Feedback was sometimes inconsistent with scores.”

25 % of the tutors mentioned that the proposed
feedback was not always matching the context of the
elements and had to be adjusted. Two tutors consider
the semi-automatic approach to be more time consuming
than the purely manual assessment workflow.

5.4. Discussion

The evaluation shows that the semi-automatic
assessment approach reduces the manual assessment
effort of the tutors, thus supporting H1. The survey
reveals that not all tutors consider the new approach
as helpful. One of the problems is the selection of the
proposed feedback as it is too specific to the situation of
a submission in most cases and does not fit the context
of similar elements in other submissions.

One way of improving the approach would be to
increase the influence of the elements’ context on the
similarity calculations. This could increase the accuracy
of the feedback as the model clusters are more context
specific. However, it might also result in a lot of model
clusters with very few or even only one single element
and thus decrease the automatic assessment rate. We
should be careful with the influence of the context
and also consider other approaches for selecting and
assigning automatic feedback instead.

With respect to H2, we can observe that the
number of assessed elements between purely manually
graded exercises (E4 - E6) increases when using the
semi-automatic approach (E1 - E3). In conversations
with students, we found that the perceived quality
increased in the exercises with semi-automatic
assessments. The number of complaints was lower than
for manually assessed ones. However, we were not yet
able to quantitatively assess the quality and consistency
of the contained feedback texts and compare it with
manually graded exercises. It is not feasible to analyze
the whole data set, but it would be interesting to analyze
representative, random samples. Therefore, we have
first anecdotal evidence that supports H2, but additional
empirical evaluations are needed.

5.5. Limitations

This section analyzes the limitations of the
evaluation regarding the validity of the results. The first
limitation concerns the significance of the online survey.
22 tutors (48.9 %) who used the system completed the
survey. This number is too small to obtain reliable
results. The validity of this evaluation is limited by the
similar reasons regarding wording and understanding.

While the tutors had previous experience in
modeling, most of them had only limited modeling skills
and it was the first time for them to assess models. A
general issue with user questionnaires as the only quality
assessment method is the negativity bias. Users are more
likely to remember negative than positive experiences
and, therefore, provide more negative feedback.

We cannot be sure that all of the tutors actually
reviewed every single automatically assessed element. It
could be the case that some tutors relied too much on the
automatic assessments which would distort the results
of the quantitative analysis. To derive reliable findings
from evaluation results, the size of the conducted study
is one of the decisive aspects. The three exercises on
which the proposed system was tested may be too few
to make general statements about the effectiveness of the
new semi-automatic assessment approach.

6. Conclusion

Modeling is not a deterministic activity. Instead, it
includes creativity: there are typically multiple correct
solutions to a given problem. In this paper, we presented
a semi-automatic approach for assessing solutions to
modeling exercises. Based on a customized machine
learning approach including a supervised classification
and an automatic similarity detection for clustering, we
developed a system including three main components:

1. Apollon: A modeling editor that allows students to
create and submit models.

2. Artemis: An assessment editor to manually grade the
student submissions and to provide feedback.

3. Compass: An automatic assessment component that
categorizes similar elements and learns which model
elements are correct and wrong by analyzing manual
assessments.

Apollon is open source3 and allows to model freely and
without an account4. Artemis is open source5 and is
used in many courses in more than ten universities.

3https://github.com/ls1intum/Apollon
4https://apollon.ase.in.tum.de
5https://github.com/ls1intum/Artemis



We applied the approach in three exercises in which
more than 800 students participated. In each exercise,
this approach was able to propose automatic feedback
to more than 65 % of the model elements automatically.
A qualitative study with the tutors shows that the
approach has several advantages, but some tutors are
skeptical, and the feedback text selection needs to be
improved. For example, showing how many other
tutors have already manually assessed or confirmed the
score could improve this issue. In addition, adding
predefined options for feedback in the grading criteria
could simplify the feedback selection.

The Artemis version used for the evaluation did not
yet support multiple submissions. Tutors should be
able to start assessing solutions while students are still
working on the exercise. Students who submit early
and receive an assessment before the due date have the
chance to include the feedback to improve their model.
This improvement will allow students to show that they
have improved their modeling skills and receive another
assessment.
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